Abstract

This study makes a claim of utilizing the photothermal effect of graphene oxide nanosheets (GONs) to effectively produce various microbubbles in an optical microfiber system at infrared optical communications band. A low power continuous-wave light at wavelength of 1527−1566 nm was launched into the microfiber to form GONs-deposition which acted as a linear heat source for creating various microbubbles. Both thermal convection flow and optical gradient force were responsible for the driving force to assemble GONs onto the microfiber. This simple optical fiber system can be used for assembling other micro/nanoscale particles and biomolecules, which has prospective applications in sensing, microfluidics, virus detection, and other biochip techniques.

©2013 Optical Society of America

1. Introduction

The last two decades has witnessed the growing popularity of microbubbles in a wide variety of applications, such as medical imaging [1], biomedical analysis [2], drug delivery [3], microfluidic operations (e.g. switch [4], logic [5], mixer [6], transport [7]). And the generation of microbubbles in fluids has attracted increasing attention [814]. Various methods based on optically controlled systems have been adopted to generate microbubbles. Researchers found that microbubbles can be produced by laser-induced cavitation [15,16], and by using highly focused continuous-wave (CW) laser beams to illuminate optically absorbent substrates [9,13,17,18], optically trapped absorbing particles [19,20], and absorbing liquids [21]. Recent studies have also showed that single microbubble can be formed on an optical fiber tip coated with nanoparticles [12]. The methods above depend on two essential factors: photothermal properties of materials and utilization of light energy. In view of cost and operability, propagating light along an optical fiber is more desirable than light illuminating through a focused laser beam, which is produced by a complex bulky optical system. Aforesaid methods, however, suffer difficulties in producing multiple microbubbles owing to the small-area heat source of the focused laser and fiber tip. Accordingly, it should be proposed that a great quantity of microbubbles can be produce by amplifying the area of heat source. And recently, it has been demonstrated that based on enhanced evanescent fields of micro/nanofibers [22], a large number of dielectric microparticles and bacteria can be trapped, assembled, and transported in liquid. So it is inferred that assembling photothermal materials onto optical micro/nanofiber can be an effective method for producing large-area heat source to generate multiple microbubbles.

Graphene oxide (GO) containing a mixture of electronically conducting sp2-hybridized carbon domains and insulating sp3-hybridized carbon matrix possesses extraordinary optoelectrical, thermal, and mechanical properties, and has potential applications in many fields such as photonics, optoelectronics, and biomedicine [23]. Studies showed that GO has strong photothermal effect in the near-infrared region, making GO a potential phototherapy agent [2428]. Zhang et al. improved the therapeutic efficacy of cancer treatment by using PEGylated GO as a photothermal therapy agent [27]. Moreover, Markovic et al. demonstrated that GO shows superior photothermal sensitivity to carbon nanotubes under the same irradiation conditions [28].

The present study examined the infrared absorption properties of GO nanosheets (GONs). GONs were trapped and deposited on the surface of the microfiber to form a non-homogenous linear heat source in a length of several hundred micrometers by injecting 1527−1566 nm CW light into an optical microfiber. Based on enhanced photothermal effect of GONs, various microbubbles can be produced easily under the GONs-deposited microfiber system.

2. Experimental section

Figure 1(a) shows the schematic illustration of the experimental setup. In the experiment, an inverted optical microscope with a charge-coupled device (CCD) camera (Mshot, MF51) performs real-time monitoring and recording data. To achieve fine positioning, a transparent liquid cell was mounted on an x-y manual translation stage of the microscope. A 1.8-μm diameter, 1.2-mm long microfiber was fabricated by drawing a single mode optical fiber using two stepper motors through the flame-heated technique [29]. Microfiber were fixed by two tunable microstages in the sample pool and immersed in the 0.05 mg/ml GONs dispersions in N,N-dimethylformamide (DMF). An amplified spontaneous emission (ASE) broadband light source (Golight, ASE-C light source, ~20 mW, 1527−1566 nm) was connected by an erbium-doped fiber amplifier (EDFA, Wuxi Zhongxing Optoelectronics Technology Co., Ltd., WZEDFA-SO-B-CW 16-16-1-1, 1546−1562 nm), and thus the output power was amplified to 40 mW within 1527−1566 nm. Light from the EDFA was launched into the microfiber, and output spectra were recorded by an optical spectrum analyzer (OSA, Yokogawa AQ 6370C) with a resolution of 0.02 nm.

 figure: Fig. 1

Fig. 1 (a) Schematic illustration of the experimental setup for microbubble generation. The red arrow indicates the direction of light propagation. (b) Effective diameters (Deff) (black line) and power ratio (η) outside the fiber core (blue line) of the fundamental modes (HE11) as functions of wavelength. The upper and lower insets show respectively the 3D and 2D field profiles of HE11 mode at wavelength of 1550 nm. (c) Absorption spectra of GONs dispersions in DMF at the concentration of 0, 0.05, 0.20, 0.50 mg/ml, at wavelength of 800−1600 nm.

Download Full Size | PPT Slide | PDF

The refractive index of DMF is set to be 1.428. The following Sellmeier-type dispersion formula (at room temperature) was used to obtain the refractive indices of fused silica (SiO2) [30]:

n21=0.6961663λ2λ2(0.0684043)2+0.4079426λ2λ2(0.1162414)2+0.8974794λ2λ2(9.896161)2
where the wavelength-unit of λ is μm. According to single mode conditions [30], a 1.8-μm-diameter DMF-clad silica fiber is a single-mode waveguide, i.e. only fundamental mode (HE11) exists at wavelength of 1527−1566 nm. A commercial software (Apollo Photonics Solution Suite 2.3) based on finite difference method (FDM) [31] was used to analyze the microfiber. In the simulation, a perfect matched layer (PML) with transparent boundary conditions (TBC) was considered [32]. The mode effective diameter (Deff) was defined as 1/e width of the field distribution of HE11 mode. The power ratio outside the microfiber was defined as η = 100% − PSilica for HE11 mode, where PSilica was the power ratio inside the fiber core. Figure 1(b) illustrates dependences of Deff and η on operating wavelength. The Deff and η of a 1.8-μm-diameter fiber are 18.6−22.1 μm and 91.3−92.8% respectively at the wavelength of 1527−1566 nm. Insets of Fig. 1(b) show the 3D and 2D field profiles of HE11 mode at wavelength of 1550 nm. In this case, the effective diameter of the light field (Deff) is 21.1 μm and the power ratio outside the microfiber η is 92.4%. It is clear that, for a 1.8-μm-diameter DMF-clad fiber, more than 90% optical power acting as evanescent field propagates outside the fiber, exhibiting a much tight field confinement within a certain diameter range.

Here GO was prepared by oxidizing natural graphite powder based on a modified Hummers method [33,34]. As-prepared GO was dialyzed to remove the residual salts and acids completely, and the resulting purified GO powder was collected by centrifugation and then air dried. GO powder was suspended in ultrapure water (0.5 mg/ml) and exfoliated through ultrasonication in a water bath (KQ218, Kun Shan Ultrasonic Instruments Co., Ltd, 60 W) for 3 hours. As a result, the bulk GO powder was transformed into GONs. The dried GONs were dispersed well in DMF through ultrasonication in a water bath, owing to the presence of oxygen-containing groups in GO [35,36]. Figure 1(c) illustrates the wavelength dependences of absorption spectra of GONs dispersions in DMF at the concentration of 0, 0.05, 0.20, 0.50 mg/ml at wavelength of 800−1600 nm. The absorbance increases as the concentration of GONs increases at 1527−1566 nm, exhibiting an enhanced photothermal effect with the increase of the concentration of GONs.

3. Results and discussion

When the light was turned off, GONs were randomly dispersed in the DMF. After the light was turned on, the evanescent field outside the fiber was absorbed to form a thermal gradient at wavelength of 1527−1566 nm, owing to the photothermal effect of GONs. And then a weak convective flow was generated, driving the adjacent GONs to swim into the evanescent field near the microfiber [37,38]. Subsequently, the GONs near the microfiber were trapped and deposited on the microfiber by an optical gradient force. After a few seconds, the microfiber was coated with a film of GONs. Figures 2(a) and 2(b) show optical microscope images of the deposition at t = 0'00” and 0'30”, respectively. The overall length and maximum thickness of the GONs-deposition were 69 μm and 28 μm, respectively, at t = 0'30”, as shown in the red circle (Fig. 2(b)). As more and more GONs were assembled, the strengthening optical absorption gave rise to the increasing heat energy at microfiber surface. Consequently, the superheat limit of DMF was reached, leading to a violent phase explosion. As a result, a vapor microbubble was generated at the interface between DMF and deposition. As shown in Figs. 2(c) and 2(d), the diameters of microbubble were 59 μm and 102 μm at t = 1'46” and t = 2'06”, respectively. Under the same condition, we didn’t find any microbubble when a 1.8-μm-diameter microfiber was immersed in pure DMF. It is concluded that the microbubble generation is linked closely with the photothermal effect of GONs.

 figure: Fig. 2

Fig. 2 Optical microscope images for GONs-deposition (a, b) and microbubbles (c, d) after light was launched into the 1.8-μm-diameter microfiber for t = 0'00” (a), t = 0'30” (b), t = 1'46” (c), and t = 2'06” (d).

Download Full Size | PPT Slide | PDF

Nanoparticles aggregation with high efficiency induced by microbubble has been reported previously [3942]. The temperature gradient of surface tension around microbubble induced fluidic convection, namely, Marangoni convection [37,41], which drove GONs to swim towards higher temperature region. Accordingly, more and more GONs were trapped and deposited on the microfiber, and the deposition region was gradually expanded, both vertically and horizontally. The physics mechanism will be illuminated in detail later on. As an example, Figs. 3(a) and 3(b) show the optical microscope images of GONs-deposition at t = 12'00” and t = 15'00”, respectively. Compared with the small deposition at t = 0'30” (Fig. 2(b)), the overall length and the maximum thickness of deposition are 858 μm and 100 μm at t = 12'00” (Fig. 3(a)), respectively. Compared with Figs. 3(a) and 3(b), the GONs-deposition was expanded from point A2 to A1 along the microfiber. The thicknesses of GONs-deposition at point A1−A6 were 0, 0, 55, 54, 85, 102 μm at t = 12'00”, respectively, and increased to 26, 36, 81, 74, 103, 112 μm at t = 15'00”. The results showed that different deposition quantities of GONs along the microfiber were formed, inducing different absorption of light energy. Consequently, an expanded non-homogeneous linear heat source was obtained. Thus it was possible to produce various microbubbles at different locations of the GONs-deposition. Media 1 illustrates the detailed process of deposition and microbubble generation from t = 12'00” (Fig. 3(a)) to t = 15'00” (Fig. 3(b)). As is shown in the growth process of microbubbles, each microbubble emerged from the deposition, and then grew continuously until reaching its maximum size. Different microbubbles performed differently in the growth process. Some microbubbles exploded at the growth locations while others moved away. For instance, Fig. 3(c) shows optical images of two microbubbles B1 and B2. Microbubble-B1 generated at t = 16'40”, and didn’t stop growing until reaching the maximum diameter of 335 μm at t = 18'10” (Fig. 3(c)), and it was moving away from the original position at t = 19'40” (Fig. 3(d)). Microbubble-B2 generated on the left side of the deposition at t = 16'40”, and exploded at t = 18'10” with the final diameter of 200 μm (Fig. 3(c)). Afterwards, a new microbubble-B3 generated at t = 19'40” with the diameter of 133 μm (Fig. 3(d)).

 figure: Fig. 3

Fig. 3 Optical microscope images for GONs-deposition and microbubbles after light was launched into 1.8-μm-diameter fiber for t = 12'00” (a), t = 15'00” (b), t = 18'10” (c), and t = 19'40” (d). Media 1 illustrates the detailed process of deposition and microbubble generation from t = 12'00” (Fig. 3(a)) to t = 15'00” (Fig. 3(b)).

Download Full Size | PPT Slide | PDF

In the experiment, the growth process of the microbubble was described through microbubble diameters, which were measured from the recording video images. The diameter of the first microbubble (in Figs. 2(c) and 2(d)) as a function of time (t') is shown in Fig. 4(a), where t' = 0s represents the emergence time point of the microbubble. After the microbubble generated on the deposition, the microbubble kept on growing through two stages. Firstly, a relatively rapid growth at an average velocity of 7.5 μm/s lasted for approximately 20s, till the microbubble grew up to 150 μm. Secondly, the microbubble kept expanding with an approximately constant radial velocity (v) of 1.4 μm/s from t' = 20s to 100s. For the overall growth process, the dynamic change of diameter can be fitted based on a nonlinear equationD=at'3, where a is a constant. It can be distinctly seen that the fitted result (red curve in Fig. 4(a)) is well consistent with the experimental result. As shown in the insets of Fig. 4(a), the diameters of the microbubble were 38, 103, 150, 209, 237 and 261 μm, at t' = 1s, 10s, 20s, 50s, 70s and 100s, respectively. To further describe the growth process of the microbubbles, the diameters of microbubble B1, B2, and B3 (Fig. 3) versus time (t') were also illustrated in Fig. 4(b). It can be concluded that their growth tendency is similar, and the growth velocity (v) of microbubble B1, B2, and B3 satisfies the relation of vB1 > vB2 > vB3. This is contributed to the different optical absorptions (A) of GONs-deposition (AB1 > AB2 > AB3), which are corresponding to the thicknesses (d) of GONs located at microbubble-B1, -B2, and -B3 (dB1 > dB2 > dB3).

 figure: Fig. 4

Fig. 4 Diameters of microbubbles as functions of time (t') for (a) microbubble shown in Figs. 2(c) and 2(d), and (b) microbubbles B1, B2, and B3 in Figs. 3(c) and 3(d), where t' = 0s represents the emergence time point of every microbubble. The insets of bottom right in Fig. 4(a) show optical microscope images of the microbubble at various growing time points. Scale bars represent 50 μm.

Download Full Size | PPT Slide | PDF

As mentioned above, more than 90% power acting as evanescent field propagated outside the microfiber. Thus light was scattered and absorbed when GONs-deposition was expanding on the microfiber, resulting in the increase of optical loss and the decrease of output power. Figure 5 shows the output spectra monitored by OSA when the infrared light was launched into the microfiber. When the fiber was in air (see black line in Fig. 5), the total integrated output power was 31.00 mW at wavelength of 1527−1566 nm. When it was immersed in 0.05 mg/ml GONs dispersions, the integrated output power was reduced to 15.39 mW (see red line in Fig. 5), indicating that 15.61 mW light was lost due to absorption and scattering. From t = 0'0” to t = 0'30”, GONs were trapped and deposited on the microfiber without microbubble generation, and the integrated output power was reduced to 7.86 mW (see green line in Fig. 5). From t = 0'30” to 30'00”, the deposition was constantly expanding due to fluidic convection induced by multiple microbubbles, leading to a gradual decrease of the output power. The output power were 768.5 μW, 24.5 μW, and 0.2 μW at t = 7'30”, t = 15'00”, and t = 30'00”, respectively. The insets of Fig. 5 are the corresponding images of the deposition. Based on the above results, we investigated the mechanism of microbubble generation and GONs-deposition as well as their inter-relationships. On one hand, microbubble generation had a positive influence on deposition expansion. On the other hand, the expanding deposition would provide additional positions for microbubble generation.

 figure: Fig. 5

Fig. 5 The output spectra at t = 0'00”, 0'30”, 7'30”, 15'00”, and 30'00”. The insets show the corresponding optical microscope images.

Download Full Size | PPT Slide | PDF

In theory, we further discuss the mechanism of the former experimental phenomena. Firstly, according to the extended Fick’s law [43], in steady state with fluid at rest, the movement of the GONs far away from the microfiber can be described by

j=DcDTcT
where c is the particle concentration in liquid, ∇c and ∇T are the concentration and temperature gradients, D is the diffusion coefficient, and DT is the thermal diffusion coefficient. It is seen that the movement of the GONs far away from the microfiber depends upon two factors. One is free diffusion, carrying particle along concentration gradients, typically from a high concentration to a low one. The other is thermophoresis, driving GONs along temperature gradients, ordinarily from hot zone to cold zone. When the light was injected into the microfiber, the evanescent field was mainly absorbed by the deposited GONs based on photothermal effect, which drove convective flow. After that, there were a total of three factors acting on the GONs far away from the microfiber, as described by [43].
j=vcDcDTcT
As illustrated in Fig. 6(a), the direction of the particle movement induced by the convection was contrary to that of induced by the diffusion and thermophoretic effect. The force by the convection was much stronger than two other forces, so that the movement of GONs was predominated by the convection. Therefore, GONs would be dragged to the microfiber by the convection (Fig. 6(a)). After a few seconds, the microfiber was coated with a film of GONs. Afterwards, a microbubble was produced as soon as the superheat limit of the liquid was reached. It was accompanied by a surface tension gradient on microbubble surface. And the resulting shear stress drives thermocapillary flow around the microbubble, which was stronger than the convective flow at the very beginning, as presented by red arrow in Fig. 6(b). In Newtonian fluid, the shear stress τs and resultant fluid velocities on a surface is proportional to the temperature gradient ∇Ts, as described by

 figure: Fig. 6

Fig. 6 Schematic illustration of the mechanism of GONs-deposition and microbubble formation on the microfiber. (a) GONs are initially deposited without microbubble formation. (b) Microbubble is formed and induces thermocapillary flow. (c) Quantities of GONs are dragged to the microfiber by the convection around the microbubble. (d) GONs-deposition is expanded under optical gradient force and van der Waals force.

Download Full Size | PPT Slide | PDF

τs=μdusdN=σTTs

where μ is the dynamics viscosity of DMF, μsis the tangential surface velocity vector, Nis the surface normal vector, σT is the surface tension temperature coefficient [4145]. Therefore, more and more GONs would be dragged to the microfiber by the convection (Fig. 6(c)). It should be pointed out that these three forces were long-range forces. In the experiment, when the GONs were dragged near the microfiber, there were two short-range forces predominately acting on the GONs: an optical gradient force induced by the evanescent field and a van der Waals force induced by the deposition. Some GONs were attracted by the gradient force, and then deposited on the microfiber, resulting in the vertical expansion of the deposition. And some GONs were attracted by the van der Waals force of deposition resulting in the horizontal expansion of the deposition (Fig. 6(d)). As a whole, continuous expansion of GONs-deposition leaded to the increasing absorbing heat and the vigorous microbubble generation, which induced strengthening convective flow and the ongoing deposition.

Note that, even if the output power decreased to zero, the thermophoresis and convection was existed. It is observed that the microbubbles were only produced at the left side of the deposition (indicated in Fig. 7). This is because the light was almost completely absorbed at the left side of the depositions when the light progagated from left to right along the microfiber. For example, Figs. 7(a)7(c) show the optical microscope images of many microbubbles at different time. Microbubble-C1 grew rapidly from 105 μm to 213 μm within 6s at an average growth rate of 18 μm/s, while microbubble-C3, -C4, and -C5 were stationary on the deposition with constant diameters of 336 μm, 75 μm, and 33 μm, respectively. The most interesting thing was, once a certain diameter was reached, some microbubbles would detach from the deposition and float in the liquid suspensions, such as microbubble-C2 with diameter of 239 μm. Owing to the fact that the buoyancy acting on microbubble-B2 was stronger than the viscous force between the deposition and microbubble-C2. After the microbubble detached from the deposition, a new microbubble-C6 was generated and grew continuously with an average growth rate of 17.5 μm/s. After a while, an amount of microbubbles detached away from the deposition. Media 2 demonstrates the process of 11 detaching microbubbles in 3′27”, where the diameter of detaching microbubbles ranged from 200 μm to 336 μm.

 figure: Fig. 7

Fig. 7 Further observation about microbubble generation after spectra disappeared. (a)–(c) Microbubble generation at the left side of the deposition. (d)–(f) Small microbubbles circled by the blue dotted lines were formed and revolved around a stationary big microbubble. Media 2 demonstrates the process of 11 detaching microbubbles in 3′27”, where the diameter of detaching microbubbles ranged from 200 μm to 336 μm. Media 3 demonstrates the moving process from t = 66'30” to 67'50”.

Download Full Size | PPT Slide | PDF

As shown in Figs. 7(d)7(f), a cloud of microbubbles circled by the pink dotted lines were observed. The diameters ranged from 10 μm to 30 μm, which were relatively smaller than former described ones. There were 17 microbubbles emerged near two microbubbles-D1 and -D2 with the same diameter of 190 μm at t = 52'00” (Fig. 7(d)), 17 ones ejected near microbubble-D3 with diameter of 343 μm at t = 56'00” (Fig. 7(e)), and 16 ones ejected aside microbubble-D4 with diameter of 375 μm at t = 67'00” (Fig. 7(f)). Based on the results of the previous studies [40,41], a possible explanation is as follows. As mentioned above, the big microbubbles stationary on the deposition provided a flow of DMF under the influence of thermocapillary effect. When the GONs-deposition became hot enough, the local flow velocity would become so fast that it can continually launch a series of small-diameter microbubbles. Many small-diameter microbubbles could be found moving around a big-diameter microbubble for a few minutes and then vanishing away. Media 3 demonstrates the moving process from t = 66'30” to 67'50”.

4. Conclusion

In conclusion, we have developed a simple and effective method for generating various microbubbles by depositing GONs on the microfiber. It was found that the absorbance of GONs dispersions increases with the increasing of concentration of GONs at wavelength of 800−1600 nm. Due to the enhanced photothermal effect of GONs, the evanescent field was heavily absorbed by deposited GONs to produce a thermal gradient when a low power CW infrared light was injected into the microfiber at wavelength of 1527−1566 nm. Before the formation of the microbubbles, the assembly mechanism of GONs was based on convective flow and optical gradient force when the light was injected into the microfiber. The expansion of GONs-deposition induced an increase of heat. As soon as the superheat limit of the liquid was reached, a microbubble was produced. With the help of the thermocapillary flow around the microbubble, GONs were further deposited on the microfiber to form a non-homogeneous linear heat source with a length of several hundred micrometers. As a result, multiple big microbubbles with diameters of 100−400 μm and a cloud of small microbubbles with diameters of 10−30 μm were generated. The results demonstrated that assembling GONs on the microfiber can produce multiple microbubbles. This method makes it possible to assembling other photothermal materials (such as carbon nanotubes, gold and silver nanoparticles). Owing to broad spectrum absorption at wavelength 800−1600 nm, it can be adapted to other optical sources. Moreover, this technique also has prospective applications in sensing, microfluidics, virus detection, and other biochip techniques.

Acknowledgments

The work thanks Prof. Da Xing from Education Ministry’s Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University for his guidance and support, Prof. Wencheng Xu and Dr. ZhiChao Luo from School of Information and Optoelectronic Science and Engineering, South China Normal University for their support in the experiment, and Prof. Chongjun Jin from State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University for his support in the experiment. This work was supported by National Natural Science Foundation of China (61177077, 61107029, 21006038, 81371877, 81071790), Postdoctoral Science Foundation Funded Project of China (201003359), Guangdong Excelent Doctoral Dissertation Funded Project (SYBZZM201126), Key Project of Chinese Ministry of Education (211131).

References and links

1. J. R. Lindner, “Microbubbles in medical imaging: current applications and future directions,” Nat. Rev. Drug Discov. 3(6), 527–533 (2004). [CrossRef]   [PubMed]  

2. P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005). [CrossRef]  

3. J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound 2(1), 23 (2004). [CrossRef]   [PubMed]  

4. T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008). [CrossRef]  

5. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007). [CrossRef]   [PubMed]  

6. D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009). [CrossRef]  

7. P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U. S. A. 101(26), 9523–9527 (2004). [CrossRef]   [PubMed]  

8. L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett. 100(17), 173701 (2012). [CrossRef]  

9. A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007). [PubMed]  

10. Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett. 96(3), 034505 (2006). [CrossRef]   [PubMed]  

11. E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science 320(5880), 1198–1201 (2008). [CrossRef]   [PubMed]  

12. R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express 20(8), 8732–8740 (2012). [CrossRef]   [PubMed]  

13. W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011). [CrossRef]  

14. K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett. 95(5), 051107 (2009). [CrossRef]  

15. P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett. 104(1), 014501 (2010). [CrossRef]   [PubMed]  

16. K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(1), 016308 (2010). [CrossRef]   [PubMed]  

17. Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011). [CrossRef]   [PubMed]  

18. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011). [CrossRef]   [PubMed]  

19. Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology 21(10), 105304 (2010). [CrossRef]   [PubMed]  

20. D. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express 17(4), 2538–2556 (2009). [CrossRef]   [PubMed]  

21. R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett. 101(5), 054103 (2012). [CrossRef]  

22. G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008). [CrossRef]  

23. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010). [CrossRef]   [PubMed]  

24. K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010). [CrossRef]   [PubMed]  

25. J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011). [CrossRef]   [PubMed]  

26. B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano 5(9), 7000–7009 (2011). [CrossRef]   [PubMed]  

27. W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials 32(33), 8555–8561 (2011). [CrossRef]   [PubMed]  

28. Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011). [CrossRef]   [PubMed]  

29. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef]   [PubMed]  

30. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004). [CrossRef]   [PubMed]  

31. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron. 141(5), 281–286 (1994). [CrossRef]  

32. W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8(5), 649–651 (1996). [CrossRef]  

33. W. S. Hummers Jr and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958). [CrossRef]  

34. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999). [CrossRef]  

35. X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011). [CrossRef]   [PubMed]  

36. X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J. 7(7), 1664–1670 (2012). [CrossRef]   [PubMed]  

37. O. A. Louchev, S. Juodkazis, N. Murazawa, S. Wada, and H. Misawa, “Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection,” Opt. Express 16(8), 5673–5680 (2008). [CrossRef]   [PubMed]  

38. B. K. Wilson, M. Hegg, X. Miao, G. Cao, and L. Y. Lin, “Scalable nano-particle assembly by efficient light-induced concentration and fusion,” Opt. Express 16(22), 17276–17281 (2008). [CrossRef]   [PubMed]  

39. P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011). [CrossRef]   [PubMed]  

40. Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett. 101(5), 053118 (2012). [CrossRef]  

41. S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011). [CrossRef]   [PubMed]  

42. D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).

43. S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97(3), 038103 (2006). [CrossRef]   [PubMed]  

44. W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluid. Nanofluid. 11(3), 307–316 (2011). [CrossRef]  

45. A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng. 18(11), 115031 (2008). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lindner, “Microbubbles in medical imaging: current applications and future directions,” Nat. Rev. Drug Discov. 3(6), 527–533 (2004).
    [Crossref] [PubMed]
  2. P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
    [Crossref]
  3. J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound 2(1), 23 (2004).
    [Crossref] [PubMed]
  4. T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
    [Crossref]
  5. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
    [Crossref] [PubMed]
  6. D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
    [Crossref]
  7. P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U. S. A. 101(26), 9523–9527 (2004).
    [Crossref] [PubMed]
  8. L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett. 100(17), 173701 (2012).
    [Crossref]
  9. A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
    [PubMed]
  10. Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett. 96(3), 034505 (2006).
    [Crossref] [PubMed]
  11. E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science 320(5880), 1198–1201 (2008).
    [Crossref] [PubMed]
  12. R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express 20(8), 8732–8740 (2012).
    [Crossref] [PubMed]
  13. W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011).
    [Crossref]
  14. K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett. 95(5), 051107 (2009).
    [Crossref]
  15. P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett. 104(1), 014501 (2010).
    [Crossref] [PubMed]
  16. K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(1), 016308 (2010).
    [Crossref] [PubMed]
  17. Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
    [Crossref] [PubMed]
  18. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
    [Crossref] [PubMed]
  19. Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology 21(10), 105304 (2010).
    [Crossref] [PubMed]
  20. D. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express 17(4), 2538–2556 (2009).
    [Crossref] [PubMed]
  21. R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett. 101(5), 054103 (2012).
    [Crossref]
  22. G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
    [Crossref]
  23. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
    [Crossref] [PubMed]
  24. K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
    [Crossref] [PubMed]
  25. J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
    [Crossref] [PubMed]
  26. B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano 5(9), 7000–7009 (2011).
    [Crossref] [PubMed]
  27. W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials 32(33), 8555–8561 (2011).
    [Crossref] [PubMed]
  28. Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011).
    [Crossref] [PubMed]
  29. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  30. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref] [PubMed]
  31. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron. 141(5), 281–286 (1994).
    [Crossref]
  32. W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8(5), 649–651 (1996).
    [Crossref]
  33. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
    [Crossref]
  34. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
    [Crossref]
  35. X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011).
    [Crossref] [PubMed]
  36. X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J. 7(7), 1664–1670 (2012).
    [Crossref] [PubMed]
  37. O. A. Louchev, S. Juodkazis, N. Murazawa, S. Wada, and H. Misawa, “Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection,” Opt. Express 16(8), 5673–5680 (2008).
    [Crossref] [PubMed]
  38. B. K. Wilson, M. Hegg, X. Miao, G. Cao, and L. Y. Lin, “Scalable nano-particle assembly by efficient light-induced concentration and fusion,” Opt. Express 16(22), 17276–17281 (2008).
    [Crossref] [PubMed]
  39. P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
    [Crossref] [PubMed]
  40. Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett. 101(5), 053118 (2012).
    [Crossref]
  41. S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
    [Crossref] [PubMed]
  42. D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).
  43. S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97(3), 038103 (2006).
    [Crossref] [PubMed]
  44. W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluid. Nanofluid. 11(3), 307–316 (2011).
    [Crossref]
  45. A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng. 18(11), 115031 (2008).
    [Crossref]

2012 (5)

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett. 100(17), 173701 (2012).
[Crossref]

R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express 20(8), 8732–8740 (2012).
[Crossref] [PubMed]

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett. 101(5), 054103 (2012).
[Crossref]

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J. 7(7), 1664–1670 (2012).
[Crossref] [PubMed]

Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett. 101(5), 053118 (2012).
[Crossref]

2011 (11)

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref] [PubMed]

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref] [PubMed]

W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluid. Nanofluid. 11(3), 307–316 (2011).
[Crossref]

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano 5(9), 7000–7009 (2011).
[Crossref] [PubMed]

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials 32(33), 8555–8561 (2011).
[Crossref] [PubMed]

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011).
[Crossref] [PubMed]

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011).
[Crossref] [PubMed]

W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011).
[Crossref]

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

2010 (5)

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology 21(10), 105304 (2010).
[Crossref] [PubMed]

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett. 104(1), 014501 (2010).
[Crossref] [PubMed]

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

2009 (3)

D. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express 17(4), 2538–2556 (2009).
[Crossref] [PubMed]

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett. 95(5), 051107 (2009).
[Crossref]

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
[Crossref]

2008 (6)

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science 320(5880), 1198–1201 (2008).
[Crossref] [PubMed]

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
[Crossref]

A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng. 18(11), 115031 (2008).
[Crossref]

O. A. Louchev, S. Juodkazis, N. Murazawa, S. Wada, and H. Misawa, “Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection,” Opt. Express 16(8), 5673–5680 (2008).
[Crossref] [PubMed]

B. K. Wilson, M. Hegg, X. Miao, G. Cao, and L. Y. Lin, “Scalable nano-particle assembly by efficient light-induced concentration and fusion,” Opt. Express 16(22), 17276–17281 (2008).
[Crossref] [PubMed]

2007 (2)

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[Crossref] [PubMed]

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

2006 (2)

Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett. 96(3), 034505 (2006).
[Crossref] [PubMed]

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97(3), 038103 (2006).
[Crossref] [PubMed]

2005 (1)

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

2004 (4)

J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound 2(1), 23 (2004).
[Crossref] [PubMed]

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U. S. A. 101(26), 9523–9527 (2004).
[Crossref] [PubMed]

J. R. Lindner, “Microbubbles in medical imaging: current applications and future directions,” Nat. Rev. Drug Discov. 3(6), 527–533 (2004).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

2000 (1)

D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).

1999 (1)

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

1996 (1)

W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8(5), 649–651 (1996).
[Crossref]

1994 (1)

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron. 141(5), 281–286 (1994).
[Crossref]

1958 (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Ahmed, D.

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
[Crossref]

Arsikin, K. M.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011).
[Crossref] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Aykol, M.

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology 21(10), 105304 (2010).
[Crossref] [PubMed]

Bao, Q.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Basu, A. S.

A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng. 18(11), 115031 (2008).
[Crossref]

Bee, R.

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science 320(5880), 1198–1201 (2008).
[Crossref] [PubMed]

Bell, D. C.

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science 320(5880), 1198–1201 (2008).
[Crossref] [PubMed]

Berry, D. W.

D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).

Brambilla, G.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
[Crossref]

Braun, D.

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97(3), 038103 (2006).
[Crossref] [PubMed]

Buzaneva, E. V.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Cai, F.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett. 100(17), 173701 (2012).
[Crossref]

Cai, X.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J. 7(7), 1664–1670 (2012).
[Crossref] [PubMed]

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011).
[Crossref] [PubMed]

Campbell, P.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

Cao, G.

Cao, J.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Casalongue, H. S.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Chaudhuri, S. K.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron. 141(5), 281–286 (1994).
[Crossref]

Chen, H.

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett. 101(5), 054103 (2012).
[Crossref]

Chen, J.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett. 100(17), 173701 (2012).
[Crossref]

Chen, Y.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Chen, Y.-H.

Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett. 96(3), 034505 (2006).
[Crossref] [PubMed]

Chhowalla, M.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Chiou, P.-Y.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Chizhik, S. A.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Chu, H.-Y.

Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett. 96(3), 034505 (2006).
[Crossref] [PubMed]

Cronin, S. B.

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology 21(10), 105304 (2010).
[Crossref] [PubMed]

Cuschieri, A.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

Dai, H.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Deng, C. X.

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett. 95(5), 051107 (2009).
[Crossref]

Dholakia, K.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

Dramicanin, M. D.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011).
[Crossref] [PubMed]

Dressaire, E.

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science 320(5880), 1198–1201 (2008).
[Crossref] [PubMed]

Duhr, S.

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97(3), 038103 (2006).
[Crossref] [PubMed]

Eda, G.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Feng, L.

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano 5(9), 7000–7009 (2011).
[Crossref] [PubMed]

Fujii, S.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref] [PubMed]

Gao, L.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Gershenfeld, N.

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[Crossref] [PubMed]

Gianchandani, Y. B.

A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng. 18(11), 115031 (2008).
[Crossref]

Gonzalez-Avila, S. R.

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett. 104(1), 014501 (2010).
[Crossref] [PubMed]

Gorchinskiy, A. D.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Guo, X.

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials 32(33), 8555–8561 (2011).
[Crossref] [PubMed]

Guo, Z.

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials 32(33), 8555–8561 (2011).
[Crossref] [PubMed]

Haga, M. A.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref] [PubMed]

Harhaji-Trajkovic, L. M.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011).
[Crossref] [PubMed]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Heckenberg, N. R.

D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).

Hegg, M.

Hernández-Cordero, J.

Hilgenfeldt, S.

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U. S. A. 101(26), 9523–9527 (2004).
[Crossref] [PubMed]

Hsu, H.-Y.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

Hu, W.

W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011).
[Crossref]

W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluid. Nanofluid. 11(3), 307–316 (2011).
[Crossref]

Huang, D.

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials 32(33), 8555–8561 (2011).
[Crossref] [PubMed]

Huang, T. J.

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
[Crossref]

Huang, W. P.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron. 141(5), 281–286 (1994).
[Crossref]

Huang, W.-P.

W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8(5), 649–651 (1996).
[Crossref]

Huang, X. H.

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett. 104(1), 014501 (2010).
[Crossref] [PubMed]

Hummers, W. S.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Hung, W. H.

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology 21(10), 105304 (2010).
[Crossref] [PubMed]

i, L.

Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett. 96(3), 034505 (2006).
[Crossref] [PubMed]

Ishii, K. S.

W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011).
[Crossref]

Jamshidi, A.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

Jian, A.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Jiang, Z.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J. 7(7), 1664–1670 (2012).
[Crossref] [PubMed]

Jovanovic, S. P.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011).
[Crossref] [PubMed]

Juluri, B. K.

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
[Crossref]

Juodkazis, S.

Kanaizuka, K.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref] [PubMed]

Kepic, D. P.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011).
[Crossref] [PubMed]

Khoo, B. C.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

Klaseboer, E.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

Kobayashi, K.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref] [PubMed]

Kovtyukhova, N. I.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Lapotko, D.

Lee, S.-T.

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Li, B.

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett. 101(5), 054103 (2012).
[Crossref]

Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett. 101(5), 053118 (2012).
[Crossref]

Li, Q.

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett. 101(5), 054103 (2012).
[Crossref]

Li, Y.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett. 100(17), 173701 (2012).
[Crossref]

Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett. 101(5), 053118 (2012).
[Crossref]

Li, Z.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Liang, Y.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Lim, K. Y.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

Lin, L. Y.

Lin, M.

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011).
[Crossref] [PubMed]

Lin, Z.

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011).
[Crossref] [PubMed]

Lindner, J. R.

J. R. Lindner, “Microbubbles in medical imaging: current applications and future directions,” Nat. Rev. Drug Discov. 3(6), 527–533 (2004).
[Crossref] [PubMed]

Lips, A.

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science 320(5880), 1198–1201 (2008).
[Crossref] [PubMed]

Liu, H.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Liu, J.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J. 7(7), 1664–1670 (2012).
[Crossref] [PubMed]

Liu, Y.

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011).
[Crossref] [PubMed]

Liu, Z.

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials 32(33), 8555–8561 (2011).
[Crossref] [PubMed]

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano 5(9), 7000–7009 (2011).
[Crossref] [PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology 21(10), 105304 (2010).
[Crossref] [PubMed]

Loh, K. P.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Lou, J.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Louchev, O. A.

Lui, W.

W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8(5), 649–651 (1996).
[Crossref]

Mai, W.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J. 7(7), 1664–1670 (2012).
[Crossref] [PubMed]

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011).
[Crossref] [PubMed]

Mallouk, T. E.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Mao, X.

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
[Crossref]

Markovic, Z. M.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011).
[Crossref] [PubMed]

Marmottant, P.

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U. S. A. 101(26), 9523–9527 (2004).
[Crossref] [PubMed]

Martin, B. R.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Meng, L.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett. 100(17), 173701 (2012).
[Crossref]

Miao, X.

Misawa, H.

Muneyuki, E.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref] [PubMed]

Murazawa, N.

Murugan, G. S.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
[Crossref]

Neild, A.

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref] [PubMed]

Niu, L.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett. 100(17), 173701 (2012).
[Crossref]

Offeman, R. E.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Ohl, C. D.

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett. 104(1), 014501 (2010).
[Crossref] [PubMed]

Ohl, C.-D.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

Ohta, A. T.

W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011).
[Crossref]

W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluid. Nanofluid. 11(3), 307–316 (2011).
[Crossref]

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

Ollivier, P. J.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Pantovic, A. C.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011).
[Crossref] [PubMed]

Pimentel-Domínguez, R.

Porter, R. T.

J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound 2(1), 23 (2004).
[Crossref] [PubMed]

Prakash, M.

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[Crossref] [PubMed]

Prausnitz, M.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

Prentice, P.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

Quinto-Su, P. A.

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett. 104(1), 014501 (2010).
[Crossref] [PubMed]

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

Ren, Q.

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett. 95(5), 051107 (2009).
[Crossref]

Richardson, D. J.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
[Crossref]

Robinson, J. T.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Rogers, P.

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref] [PubMed]

Rubinszteindunlop, H.

D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Stern, M. S.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron. 141(5), 281–286 (1994).
[Crossref]

Stone, H. A.

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science 320(5880), 1198–1201 (2008).
[Crossref] [PubMed]

Sun, X.

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Tabakman, S. M.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Tam, H.-Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Tan, S.

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011).
[Crossref] [PubMed]

Tan, S. Z.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J. 7(7), 1664–1670 (2012).
[Crossref] [PubMed]

Tian, B.

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano 5(9), 7000–7009 (2011).
[Crossref] [PubMed]

Todorovic-Markovic, B. M.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011).
[Crossref] [PubMed]

Tong, L.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Toyabe, S.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref] [PubMed]

Trajkovic, V. S.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011).
[Crossref] [PubMed]

Tsutsui, J. M.

J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound 2(1), 23 (2004).
[Crossref] [PubMed]

Valley, D.

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology 21(10), 105304 (2010).
[Crossref] [PubMed]

Valley, J. K.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

Venugopalan, V.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

Vinh, D.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Wada, S.

Wang, C.

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano 5(9), 7000–7009 (2011).
[Crossref] [PubMed]

Wang, H.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

Wang, S.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Wang, Y.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Wei, K.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Wilkinson, J. S.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
[Crossref]

Wilson, B. K.

Wu, J.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett. 100(17), 173701 (2012).
[Crossref]

Wu, M. C.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

Wu, T.

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011).
[Crossref] [PubMed]

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett. 104(1), 014501 (2010).
[Crossref] [PubMed]

Wu, T.-H.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Xie, A.

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011).
[Crossref] [PubMed]

Xie, F.

J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound 2(1), 23 (2004).
[Crossref] [PubMed]

Xin, H.

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett. 101(5), 054103 (2012).
[Crossref]

Xu, C. L.

W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8(5), 649–651 (1996).
[Crossref]

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron. 141(5), 281–286 (1994).
[Crossref]

Xu, L.

Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett. 101(5), 053118 (2012).
[Crossref]

Xu, R.

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett. 101(5), 054103 (2012).
[Crossref]

Yang, K.

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett. 95(5), 051107 (2009).
[Crossref]

Yang, X.

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett. 101(5), 054103 (2012).
[Crossref]

Ye, J. Y.

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett. 95(5), 051107 (2009).
[Crossref]

Yokoyama, K.

W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8(5), 649–651 (1996).
[Crossref]

Yu, A. L.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J. 7(7), 1664–1670 (2012).
[Crossref] [PubMed]

Zenit, R.

Zhang, G.

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Zhang, J.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J. 7(7), 1664–1670 (2012).
[Crossref] [PubMed]

Zhang, K.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Zhang, S.

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano 5(9), 7000–7009 (2011).
[Crossref] [PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials 32(33), 8555–8561 (2011).
[Crossref] [PubMed]

Zhang, X.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011).
[Crossref] [PubMed]

Zheng, H.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett. 100(17), 173701 (2012).
[Crossref]

Zheng, Y.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Zhong, H.

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials 32(33), 8555–8561 (2011).
[Crossref] [PubMed]

Zhou, Y.

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett. 95(5), 051107 (2009).
[Crossref]

Zhu, C.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Zhu, S.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

ACS Nano (1)

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano 5(9), 7000–7009 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011).
[Crossref]

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett. 95(5), 051107 (2009).
[Crossref]

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett. 101(5), 054103 (2012).
[Crossref]

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett. 100(17), 173701 (2012).
[Crossref]

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91(91), a130823 (2007).
[PubMed]

Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett. 101(5), 053118 (2012).
[Crossref]

Biomaterials (2)

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials 32(33), 8555–8561 (2011).
[Crossref] [PubMed]

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials 32(4), 1121–1129 (2011).
[Crossref] [PubMed]

Cardiovasc. Ultrasound (1)

J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound 2(1), 23 (2004).
[Crossref] [PubMed]

Chem. Asian J. (1)

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J. 7(7), 1664–1670 (2012).
[Crossref] [PubMed]

Chem. Mater. (1)

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

IEE Proc. Optoelectron. (1)

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron. 141(5), 281–286 (1994).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett. 8(5), 649–651 (1996).
[Crossref]

J. Am. Chem. Soc. (2)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc. 133(17), 6825–6831 (2011).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng. 18(11), 115031 (2008).
[Crossref]

J. Mod. Opt. (1)

D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).

Jpn. J. Appl. Phys. (1)

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
[Crossref]

Lab Chip (3)

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref] [PubMed]

Langmuir (2)

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref] [PubMed]

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir 27(12), 7828–7835 (2011).
[Crossref] [PubMed]

Microfluid. Nanofluid. (2)

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
[Crossref]

W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluid. Nanofluid. 11(3), 307–316 (2011).
[Crossref]

Nano Lett. (1)

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology 21(10), 105304 (2010).
[Crossref] [PubMed]

Nat. Chem. (1)

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys. 1(2), 107–110 (2005).
[Crossref]

Nat. Rev. Drug Discov. (1)

J. R. Lindner, “Microbubbles in medical imaging: current applications and future directions,” Nat. Rev. Drug Discov. 3(6), 527–533 (2004).
[Crossref] [PubMed]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Rev. E Stat. Nonlinear Soft Matter Phys. (1)

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett. 104(1), 014501 (2010).
[Crossref] [PubMed]

Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett. 96(3), 034505 (2006).
[Crossref] [PubMed]

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97(3), 038103 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U. S. A. 101(26), 9523–9527 (2004).
[Crossref] [PubMed]

Science (2)

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science 320(5880), 1198–1201 (2008).
[Crossref] [PubMed]

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[Crossref] [PubMed]

Supplementary Material (3)

» Media 1: MOV (1911 KB)     
» Media 2: MOV (1981 KB)     
» Media 3: MOV (758 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic illustration of the experimental setup for microbubble generation. The red arrow indicates the direction of light propagation. (b) Effective diameters (Deff) (black line) and power ratio (η) outside the fiber core (blue line) of the fundamental modes (HE11) as functions of wavelength. The upper and lower insets show respectively the 3D and 2D field profiles of HE11 mode at wavelength of 1550 nm. (c) Absorption spectra of GONs dispersions in DMF at the concentration of 0, 0.05, 0.20, 0.50 mg/ml, at wavelength of 800−1600 nm.
Fig. 2
Fig. 2 Optical microscope images for GONs-deposition (a, b) and microbubbles (c, d) after light was launched into the 1.8-μm-diameter microfiber for t = 0'00” (a), t = 0'30” (b), t = 1'46” (c), and t = 2'06” (d).
Fig. 3
Fig. 3 Optical microscope images for GONs-deposition and microbubbles after light was launched into 1.8-μm-diameter fiber for t = 12'00” (a), t = 15'00” (b), t = 18'10” (c), and t = 19'40” (d). Media 1 illustrates the detailed process of deposition and microbubble generation from t = 12'00” (Fig. 3(a)) to t = 15'00” (Fig. 3(b)).
Fig. 4
Fig. 4 Diameters of microbubbles as functions of time (t') for (a) microbubble shown in Figs. 2(c) and 2(d), and (b) microbubbles B1, B2, and B3 in Figs. 3(c) and 3(d), where t' = 0s represents the emergence time point of every microbubble. The insets of bottom right in Fig. 4(a) show optical microscope images of the microbubble at various growing time points. Scale bars represent 50 μm.
Fig. 5
Fig. 5 The output spectra at t = 0'00”, 0'30”, 7'30”, 15'00”, and 30'00”. The insets show the corresponding optical microscope images.
Fig. 6
Fig. 6 Schematic illustration of the mechanism of GONs-deposition and microbubble formation on the microfiber. (a) GONs are initially deposited without microbubble formation. (b) Microbubble is formed and induces thermocapillary flow. (c) Quantities of GONs are dragged to the microfiber by the convection around the microbubble. (d) GONs-deposition is expanded under optical gradient force and van der Waals force.
Fig. 7
Fig. 7 Further observation about microbubble generation after spectra disappeared. (a)–(c) Microbubble generation at the left side of the deposition. (d)–(f) Small microbubbles circled by the blue dotted lines were formed and revolved around a stationary big microbubble. Media 2 demonstrates the process of 11 detaching microbubbles in 3′27”, where the diameter of detaching microbubbles ranged from 200 μm to 336 μm. Media 3 demonstrates the moving process from t = 66'30” to 67'50”.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n 2 1= 0.6961663 λ 2 λ 2 (0.0684043) 2 + 0.4079426 λ 2 λ 2 (0.1162414) 2 + 0.8974794 λ 2 λ 2 (9.896161) 2
j = D c D T c T
j = v c D c D T c T
τ s =μ d u s d N = σ T T s

Metrics