Abstract

We demonstrate that a two-layer shape-engineered nanostructure exhibits asymmetric polarization conversion efficiency thanks to near-field interactions. We present a rigorous theoretical foundation based on an angular-spectrum representation of optical near-fields that takes account of the geometrical features of the proposed device architecture and gives results that agree well with electromagnetic numerical simulations. The principle used here exploits the unique intrinsic optical near-field processes associated with nanostructured matter, while eliminating the need for conventional scanning optical fiber probing tips, paving the way to novel nanophotonic devices and systems.

© 2013 Optical Society of America

1. Introduction

Nanophotonics has been extensively studied with the aim of unveiling and exploiting optical near-field interactions associated with nanostructured matter [1]. The technologies used for characterizing optical near-field processes [2,3] and related materials technologies [4] have been rapidly advancing. In addition, investigations based on information physics have been revealing some unique and emergent attributes of nanophotonics that are useful for various applications [5]; examples include, but are not limited to, basic logic circuits [6,7], computing paradigms that go beyond the von Neumann architecture [8,9], and applications related to information security [10].

What we particularly address in this paper stems from advancements in shape-engineered nanostructures and some technological concerns in conventional near-field optics that necessitate precision mechanical control, for example, in controlling optical fiber probing tips. Advances in electron-beam lithography, nano-imprinting, and other areas allow the fabrication of well-controlled reliable nanostructures [1114], and interesting information applications, such as information security, have been made possible. For instance, we have demonstrated a “hierarchical hologram” that works in both optical far-fields and near-fields, the former being associated with conventional holographic images, and the latter being associated with the optical intensity distribution originating from a nanometric structure embedded in the hologram, which is accessible only via optical near-fields [12,15]. In other words, information hiding can be realized by using optical near-fields and nanofabrication technologies. Also, authentication functions can be implemented by using two shape-engineered nanostructures and their associated optical near-fields [11]. In this system, the two nanostructures respectively work as a lock and key, where authenticity is guaranteed by the nanoscale-precision shapes of the structures.

The physical principles of nano-optics can contribute to the development of novel functionalities. The common feature across these demonstrations is that they are based on high-precision mutual relations between nanostructured matter, mediated by optical near-fields. Technologically, in turn, they require high-precision alignment between nanostructured matter, such as an optical near-field fiber probe tip and the device under study. Although this attribute is one fundamentally superior aspect in terms of increased security, at the same time it is a severe technological difficulty in terms of stability and practical use.

Therefore, in this paper, we demonstrate a two-layer united nanostructure in which the layers interact via optical near-fields and which exhibits unique optical properties that are observable in the optical far-field. More concretely, the proposed device architecture exhibits “asymmetry” in its associated polarization properties; specifically, the polarization conversion efficiency from x-polarized input light to y-polarized output light (XY) and that from y-polarized input light to x-polarized output light (YX) results in different values. We demonstrate its rigorous theoretical foundation based on an angular spectrum representation of optical near-fields that takes account of the geometries of the two-layer nanostructure, and in which representative features are characterized by electromagnetic numerical calculations. With such an architecture, we are able to exploit optical near-field processes occurring at the subwavelength scale, while at the same time allowing them to be retrieved by a macro-scale optical measurement, thus considerably relaxing the stringent requirements of precision alignment in conventional optical near-field setups.

The asymmetric polarization property discussed in this paper, defined as described above, is not related to the magneto-optical chiral effects [16], chiral plasmonic structures [13,1721]. Although it may be possible to achieve equivalent asymmetric optical responses by combinations of conventional optical elements or anisotropic materials, the focus of this paper is to accomplish the asymmetric polarization properties defined above by using shape-engineered two-layer nanostructures formed of isotropic matter via their associated optical near-fields. We consider that such an approach will pave the way to new functional nanophotonic devices and optical security applications based on near-field processes, without the need for technologically difficult demands, such as those required in scanning probe-based measurements. That is to say, the asymmetric polarization properties, which can be associated with information, are implemented with the built-in shape of the nanostructures themselves. The asymmetric transmission of linearly polarized light in optical metamaterials was demonstrated by Menzel et al. [22]. The findings of our study, emphasizing the role of optical near-fields associated with nanostructures, will give greater physical insights regarding asymmetric polarization, provide a systematic approach for designing designated functions, and offer fundamentals for novel applications, such as information security.

This paper is organized as follows. First, Section 2 characterizes one fundamental feature of precision alignment requirements involving optical near-field processes via a rigorous theory based on an angular-spectrum representation of electromagnetic fields on the nanoscale. Section 3 introduces asymmetry of polarization conversion efficiency in a two-layer nanostructure. Section 4 describes the theoretical background based on the angular spectrum framework introduced in Section 2. Section 5 demonstrates some representative features based on electromagnetic calculations and presents methods of characterizing devices via some figures-of-merit that correspond to the theoretical framework discussed in Section 4. Section 6 concludes the paper.

2. Theoretical foundations for describing precision mutual relations via optical near-fields

First, we characterize the fundamental properties of precision mutual relations required in order to retrieve a proper signal via optical near-fields with a simple but rigorous theoretical approach. These theoretical elements will be used in discussing the asymmetry of polarization conversion to be discussed in Section 3 and later sections.

Optical near-fields are the localized, non-propagating components of electromagnetic fields in the vicinity of materials [23]. We need to locate certain kinds of reader to induce interactions with the device under study. In order to characterize the structure of the system, we denote the entities of the system as follows. Let the device under study be denoted by D, and the reader by R. One of the characteristic consequences of nano-optical systems is that the output signal depends precisely on both D and R, a relationship which is represented by v = g(D,R). In order to theoretically represent the fundamental characters of the output signal we take the following approach.

The device under study is regarded as an oscillating electric dipole D with frequency K placed in a vacuum at the origin of a Cartesian space in which the velocity of light is taken as unity (c = 1). To deal with scattering problems based on assumed planar boundary conditions, as well as offering a physically intuitive understanding, it is convenient to represent the complex amplitude E of the electric dipole radiation as a superposition of plane waves having complex wave vectors—an approach called the angular spectrum representation [2426]. In this representation, E is defined by

E(r)=(iK38π2ε0)μ=TETM02πdβ0ds||s||sz[ε(s(±),μ)D]ε(s(±),μ)exp(iKs(±)r),
where the unit wavevector and the TE- and TM-polarization vectors are respectively given by
s(±)=(s||cosβ,s||sinβ,±sz)ε(s(+),TE)=(sinβ,cosβ,0)ε(s(+),TM)=(±szcosβ,±szsinβ,s||),
and the parameter sz of the unit wavevector s(±), which satisfies s||2+sz2=1, is represented by
sz={1s||2for0s||<1is||21for1s||<+.
We denote the complex wavevector as s(+) for z>0 and s() for z<0. One of the remarkable attributes of the angular spectrum representation is that the value of s|| specifies the property of a plane wave as a homogeneous wave (0s||<1) or an evanescent wave (1s||<+). Since we wish to investigate optical interactions in the subwavelength regime where evanescent components dominate and homogeneous ones are negligible, in this paper, we focus on the region 1s||<+, where s|| indicates the spatial frequency of an evanescent wave propagating in the assumed planar boundary plane, namely, the xy plane.

Suppose that the dipole D is oriented at an angle θ with respect to the z axis and at an angle ϕ in the xy plane, that is, D=d(sinθcosϕ,sinθsinϕ,cosθ), as schematically shown in Fig. 1(a). Suppose also that we observe the radiation from the electric dipole at a position displaced from the dipole by R=(r||cosφ,r||sinφ,Z); that is to say, we assume that the reader is placed at R. The angular spectrum representation of the z component of the electric field for evanescent waves (namely, 1s||<+) from the dipole D is given by

Ez(R)=(iK34πε0)1ds||s||szfz(s||,D,R),
where
fz(s||,D,R)=ds||s||21sinθcos(ϕφ)J1(Kr||s||)exp(KZs||21)+ds||2cosθJ0(Kr||s||)exp(KZs||21).
Here, Jn(x) represents a Bessel function of the first kind, where n is an integer, and the term fz(s||,D,R) is called the angular spectrum of the electric field.

 figure: Fig. 1

Fig. 1 Fundamental characterization of mutual relation between a device (D) and a reader (R) via optical near-fields based on angular-spectrum representation. (a) Schematic illustration of a point dipole (D) and an evaluation point (R). (b,c) The “output signal” is equated with the angular spectrum, which is the near-field component of the electromagnetic field in the subwavelength regime. The Z- and X-dependent signals are respectively shown in (b) and (c). (d,e) Correlation coefficient of the output signal as a function of minute differences in Z and X. A tiny difference strongly affects the output signal, which is a manifestation of the precision dependence of nanostructured matter via optical near-fields.

Download Full Size | PPT Slide | PDF

Now, we consider that fz(s||,D,R) is equivalent to the signal v = g(D,R) characterized in the system model. Assuming that the dipole is oriented parallel to the x-axis, we have ϕ = 0 and θ = π/2. Also, assuming that the reader R is located on the xz-plane, we have φ = 0. In such a model, letting r|| be denoted by X, we characterize the horizontal (X) and vertical (Z) dependences. Note that X and Z are given in units of wavelength.

The solid curve in Fig. 1(b) shows the angular spectrum when X = 1/20 and Z = 1/20. We consider that this corresponds to a genuine device D and a genuine reader R. Differences of the reader R are equivalent to differences of Z; for instance, when Z is shifted by distance ΔΖ = −1/100, the angular spectrum is given by the dotted curve in Fig. 1(b). Similarly, when ΔΖ = 1/100, the angular spectrum is given by the dashed curve in Fig. 1(b). (As described below, Fig. 1(c) is for the horizontal (X) direction.) As shown by the changes of the curve in Fig. 1(b), a slight difference with respect to Z results in a different output signal from the system. In order to quantitatively evaluate the Z-dependence, the correlation coefficient of the angular spectrum is calculated as a function of ΔΖ, as summarized in Fig. 1(d). More specifically, let the angular spectrum of the genuine device D and genuine reader R be given by fa(s||), and let the angular spectrum of the genuine device D and a reader displaced from the genuine reader by an amount of ΔΖ be given by fΔZ(s||); hence, the correlation coefficient is defined by (fΔZ(s||)fΔZ(s||)¯)(fa(s||)fa(s||)¯)ds||/(fΔZ(s||)fΔZ(s||)¯)2ds||(fa(s||)fa(s||)¯)2ds||, where f(s||)¯ indicates the average value of f(s||). If we determine that a genuine signal should yield a correlation coefficient larger than 0.9, ΔΖ should be between −1/37 and 1/34, which would be an extremely small absolute value in real dimensions. This indicates that nano-optics exhibits a strong reader-dependence, in agreement with reports on near-field scanning optical microscopy [27,28]. Similarly, by considering the horizontal position of the dipole as the identity of the device, a different X provides a different angular spectrum. The solid, dotted, and dashed curves in Fig. 1(c) indicate the angular spectra when ΔX is given by 0, −1/100, and + 1/100, respectively. The correlation coefficient is evaluated as shown in Fig. 1(e); it is larger than 0.9 when ΔX is between −1/77 and 1/91, indicating that the output signal is sensitive to subtle differences of the device D.

3. Polarization asymmetry induced by a two-layer nanostructure

As demonstrated in the simple model shown Section 2, tiny mutual differences between D and R result in large differences in the output signal via optical near-fields. The fundamental idea of this paper is to combine, or unite, D and R in the first place; that is to say, we consider a device architecture where two nanostructures are located in close proximity.

The basic architecture of the proposed structure is schematically shown in Fig. 2(a), where the first layer is composed of square shapes, whereas the second layer is composed of rectangular shapes located at the lower right corners of the square shapes in the first layer. In other words, the first layer has a symmetric shape, and the second layer has an asymmetric shape and is placed at an asymmetric position with respect to the first layer.

 figure: Fig. 2

Fig. 2 (a) Two-layer nanostructure: the first layer is composed of an array of square-shaped structures, and the second layer is an array of rectangular-shaped structures which is aligned at the lower right corner with respect to the first layer. (b) This structure yields differences in polarization conversion efficiencies between x-polarized input light to y-polarized output and y-polarized input light to x-polarized output light, what is defined as “asymmetry” discussed in this paper (v). Other representative shapes (i–iv and vi) do not provide such asymmetric polarization conversion efficiencies. (c) Difference of polarization conversion efficiency in (b).

Download Full Size | PPT Slide | PDF

The square and circular marks in Fig. 2(b) respectively denote the polarization conversion efficiency from x-polarized input light to y-polarized output light (denoted by EXY) and from y-polarized input light to x-polarized output light (EYX), calculated by a finite-difference time-domain (FDTD) simulation. The absolute value of the difference between the polarization conversion efficiencies is denoted by triangular marks in Fig. 2(c). The horizontal axes in Figs. 2(b) and 2(c) are accompanied by schematic illustrations of the elemental nanostructures to be evaluated.

The operating wavelength used was 688 nm. As the material, we assumed gold, which has a refractive index of 0.16 and an extinction ratio of 3.8 at a wavelength of 688 nm [29]. The dimensions of each square in the first layer were 300 nm × 300 nm, and the dimensions of each rectangle in the second layer were 75 nm (x) × 150 nm (y), which are respectively 1/4 and 1/2 the sizes of the squares in the first layer. These shapes are periodically arranged at regular intervals. (In the calculation, the interval between the neighboring units was 200 nm.) The thicknesses of the first and second layers were 100 nm. The gap between the two layers was 10 nm.

The nanostructures shown in Figs. 2(b,i) and 2(b,ii) were used to evaluate the polarization conversion efficiency of the first layer only and the second layer only, respectively, resulting in nearly no asymmetry. The nanostructures shown in Figs. 2(b,iii) and 2(b,iv) have a single-layer shape that mimics the letter “Z”. With such a shape, although polarization conversion efficiencies (EXY and EYX) appeared [30], these efficiencies had almost the same value, and so the difference of the polarization conversion efficiency, which is the definition of polarization asymmetry in this paper, as summarized in Fig. 2(c), was negligible.

The nanostructure shown in Fig. 2(a), corresponding to Fig. 2(b,v), exhibits asymmetry in the polarization conversion efficiencies. The nanostructure shown in Fig. 2(b,vi) consisted of the same-sized elements and the same inter-layer gap as those in Fig. 2(b,v), but the second-layer rectangles were placed at the centers with respect to the first-layer squares. This led to significantly reduced polarization conversion efficiencies, and the corresponding difference was calculated to be nearly zero; that is, there was no asymmetry.

Before discussing the theoretical background behind such asymmetry in Section 4 based on optical near-fields, here we make a few remarks on related work in the literature. Regarding the Jones matrix of a polarization rotation θ, the polarization conversion efficiencies EXY and EYX are respectively given by the (2,1) and (1,2) elements of the Jones matrix, which are sin θ and -sin θ, respectively. The difference of their absolute values results in zero, meaning that the polarization asymmetry discussed in this paper, i.e., EXYEYX, does not appear. A polarizer extracting polarized light oriented at angle θ with respect to the x-axis exhibits polarization conversion efficiencies EXY and EYX having the same value, given by sin θ cos θ; that is to say, there is no asymmetry, as defined in this paper.

In the field of metamaterials, classification of periodic metamaterials regarding their polarization properties has been studied [31]. The asymmetric polarization conversion efficiencies discussed in this paper correspond to the “fifth” group in the context discussed in [31]. In a more general context, the relevance to general optical activity [32,33] could be considered. Optical activity is described in its most general form by a Jones matrix, given by

Jo.a.=(A+BcosθBsinθBsinθABcosθ)+(0iγiγ0)
where γ is called the gyromagnetic coefficient [33]. The first term is related to a mirror symmetry, and the second is related to pure optical rotation. A difference in the absolute value of the non-diagonal elements of the matrix Jo.a., corresponding to the “asymmetry” discussed in this paper, could give a non-zero result if B and γ are given by non-zero, complex numbers. Further insights regarding the relation between these generalized schemes [31,33] and the effects offered by near-field interactions may be interesting topics of future work.

4. Theory of asymmetry by two-layer nanostructures based on angular spectrum representation

Here we give a theoretical description of the asymmetry induced by a two-layer nanostructure based on the angular spectrum representation of optical near-fields introduced in Section 2. With x-polarized input light irradiating the square-shaped first-layer nanostructure, we consider that electron charges are concentrated in the corners of the nanostructure due to the so-called plasmon resonance effect [34,35]. Also, the phases of the oscillating electron charges differ by π between the right-hand and left-hand sides. In Fig. 3(a), this is represented by four dipoles, two on the right and two on the left, with opposite orientations. The side length of the first-layer shape is assumed to be λ/4, where λ is the operating wavelength.

 figure: Fig. 3

Fig. 3 Theoretical model for the polarization conversion asymmetry in the two-layer nanostructure, (a) with x-polarized input light, and (b) y-polarized input light.

Download Full Size | PPT Slide | PDF

Now we turn our attention to the induced electric fields and their associated induced electron charges in the second layer. Since the y-polarized component is of primary concern, we focus our attention on points A and B in Fig. 3(a), which correspond to the upper and lower center edges of the second layer, respectively. Note that the side length of the second-layer structure is λ/16 along the x-axis and λ/8 along the y-axis, and the second layer is located at the bottom right corner with respect to the first layer. Also, the inter-layer distance between the first and the second layer is assumed to be λ/20.

Similarly, with y-polarized input light, we assume that four oscillating dipoles are induced in the corners of the first layer, with the upper two and lower two being reversed in phase. In order to characterize the x-to-y polarization conversion, this time we focus on points C and D in Fig. 3(b), which are the centers of the right and left edges of the second layer, respectively.

Concerning the relative phase arrangements of the dipoles, we derive the angular spectrum corresponding to points A, B, C, and D, as shown in Fig. 4(a,i), based on Eq. (5). We observe that the difference of the angular spectrum at points A and B is more significant compared with that at points C and D.

 figure: Fig. 4

Fig. 4 (a) Angular spectra corresponding to different device architectures. The first layer is composed of square shapes. (i) The second layer is composed of rectangles placed at the lower right corners with respect to the squares in the first layer. The inter-layer distance is λ/20. (ii) The second-layer rectangles are placed in the centers with respect to the squares in the first layer. (iii) The second layer is composed of squares placed at the lower right corners of those in the first layer. (iv) The second-layer structure is the same as that in (i) but the inter-layer distance is λ/2. (b) The structure in (i) exhibits significant asymmetric properties.

Download Full Size | PPT Slide | PDF

Second, we locate the second layer at the center with respect to the first layer. In this case, as demonstrated in Fig. 4(a,ii), the angular spectra at points A and B exhibit exactly the same profile, as do those at points C and D. That is, via Eq. (5), the geometrical features of an array of dipoles and the relative evaluation positions give rise to identical angular spectra. Therefore, the difference between points A and B (and also points C and D) is zero, which indicates that such a configuration exhibits no polarization conversion from x to y or y to x. This agrees with the numerical calculations shown in Fig. 2(b,vi).

Third, we assume a square shape, that is, a symmetric structure, in the second layer, located at the lower right corner with respect to the first layer, as schematically shown in Fig. 4(a,iii). The side length of the second-layer squares is half that of the first-layer squares, namely, λ/8. The angular spectra at points A, B, C, and D behave differently; however, the “difference” of the curves between points A and B and between points C and D is not as significant as in the case of Fig. 4(a,i), as will be evaluated numerically below. Finally, we assume the same rectangular second-layer structure as in Fig. 4(a,i) but with an increased inter-layer distance of λ/2 (Fig. 4(a,iv)). The angular spectra at points A and B, as well as those at points C and D, exhibit nearly the same profiles, and the high-frequency components disappear. This is purely due to the increased inter-layer distance, causing the spectra to exponentially decay from the first layer, which is a manifestation of Eq. (5).

Here, we define the following metric for the asymmetry of polarization conversion predicted by the theory based on the angular spectrum representation:

|[f(s||,A,XIN)f(s||,B,XIN)]ds||||[f(s||,C,YIN)f(s||,D,YIN)]ds|||
where f(s||,P,XIN) and f(s||,P,YIN) denote the angular spectra with x- and y-polarized input light evaluated at point P, respectively. The first term of Eq. (7) represents the X to Y polarization conversion, and the second describes the Y to X conversion; we consider that the difference between the two represents the asymmetry of the polarization conversion. As summarized in Fig. 4(b), which contains the numerical values based on Eq. (7), the two-layer nanostructure in which the asymmetric second layer is placed at an asymmetric position with respect to the first layer and in close proximity to it yields a significantly larger value. This is a clear manifestation that the asymmetric polarization conversion stems from the two-layer shape-engineered nanostructure in which the layers interact via optical near-fields.

5. Electromagnetic calculation and multi-polar analysis

In order to characterize some basic features, we first evaluate the inter-layer-distance dependences. Figures 5(a) and 5(b) show cross-sectional profiles of the electric field intensity |Ey|2 when two-layer nanostructures with inter-layer distances of 10 nm and 50 nm, respectively, are irradiated with x-polarized input light. As is clearly observed from the images, the increased inter-layer distance decreases the inter-layer interactions. The square and circular marks in Fig. 5(c) represent the calculated polarization conversion efficiencies EXY and EYX, respectively, whose difference diminishes as the inter-layer distance increases.

 figure: Fig. 5

Fig. 5 (a,b) Electromagnetic simulations for the inter-layer distance dependence. (c) Inter-layer-distance-dependent polarization conversion efficiencies. (d) Induced charge distributions in the second layer and their decomposition, representing the vertical and horizontal non-uniformity corresponding to the x-to-y polarization conversion efficiency and the y-to-x polarization conversion efficiency. (e) Induced-charge-based figure-of-merit (FoM) for the asymmetry in polarization conversion. The disappearance of asymmetry with larger inter-layer distances agrees with (c).

Download Full Size | PPT Slide | PDF

Based on the theory discussed in Section 4, for instance with x-polarized input light, we focus on the differences of the angular spectrum of the second layer in the vertical direction through an analytical scheme concerning the geometries. Numerically, we can discuss the induced charge distribution by calculating the divergence of the electric fields in the numerical simulations. As schematically shown in Fig. 5(d), we can decompose the induced charge distribution in the second layer into representative components corresponding to a constant value, a vertically different component, a horizontally different component, and higher-order components. In other words, we can factorize the charge distribution on an orthogonal basis, like a multi-polar expansion. We consider that the vertically different component corresponds to y-polarized output light (denoted by “XY” in Fig. 5(d)), and the horizontally different component corresponds to x-polarized output light (denoted by “YX”). More specifically, let the difference between the sum of the induced charge in the upper half and the sum of the induced charge in the lower half of the surface of the second layer facing the first layer with the x-polarized input light be pXY. Also, with the y-polarized input light, the difference between the sum of the induced charge in the left-hand half and the sum of the induced charge in the right-hand half of the surface of the second layer facing the first layer is pYX. Here we consider that the figure-of-merit (FoM) representing the asymmetric polarization conversion originating from the charge induced in individual elements is given by

FoMintrinsic=||pXY||pYX||.
The triangular marks in Fig. 5(e) indicate calculated value of the FoMintrinsic for the charge distribution in the second layer, which show good agreement with the calculated polarization conversion efficiencies.

Additionally, we discuss some related concerns regarding structural attributes and asymmetry in polarization conversion. The first is related to the dependencies on inter-element-distances or the arrangement of elemental two-layer structures. (This is also referred to as the coupling between meta-atoms or the meta-atom arrangement [36,37].) While keeping the dimensions of the elemental two-layer structure the same as the one shown in Fig. 2(b,v), the circular marks in Fig. 6(a) represent the difference of the polarization conversion efficiencies as a function of the inter-element distance. The inter-element distances are the same for both vertical and horizontal directions. The asymmetry is maximized with an inter-element distance of 200 nm, which is actually the case shown in Fig. 2(b,v), indicating that inter-element distances that are too small or too large eliminate the asymmetry.

 figure: Fig. 6

Fig. 6 (a) Inter-element-distance dependent asymmetry in polarization conversion. The asymmetry calculated by electromagnetic simulations and induced-charge-based FoM based on an intuitive physical picture exhibit similar behavior. (b) The spectra of polarization conversion efficiencies. The dependencies on the thicknesses of elemental structures are also shown.

Download Full Size | PPT Slide | PDF

A presumable physical reason for this is as follows. With x-polarized input light, a vertically uniform charge distribution is induced in each of the second-layer rectangular elements, which is introduced above as pXY. The effect originating from vertically adjacent elements can be represented by pXY×Ly/(Ly+Ly(G)), where Ly is the vertical length of the second-layer rectangular elements (150 nm), and Ly(G) is the distance between the vertically adjacent second-layer elements (Fig. 6(a)). The coefficient Ly/(Ly+Ly(G)) indicates that the greater the inter-element distance, manifested by Ly(G), the lower the impact on the polarization, and the minus sign means that the electron charge density in the upper half of an element and that in the lower half of an element located above and adjacent to the former are in an opposite relation with respect to the polarity of the element-intrinsic attribute (pXY), as schematically shown in Fig. 6(a). Similarly, the inter-element-dependent x-polarization with y-polarized input light is represented by pYX×Lx/(Lx+Lx(G)), where Lx is the horizontal length of the second-layer rectangular element (75 nm), and Lx(G) is the distance between the horizontally adjacent second-layer elements. The net figure-of-merit concerning both the element-intrinsic attribute and the inter-element-distance-dependent component is given by

FoMintrinsic+inter=||pXY(1Ly/(Ly+Ly(G)))||pYX(1Lx/(Lx+Lx(G)))||
which is shown by the triangular marks in Fig. 6(a), exhibiting a similar tendency to the electromagnetic simulations, and the inter-element distances that provide the maximum asymmetry agree with each other.

Another concern is the spectral dependency and the thickness dependency. The solid and dashed blue curves in Fig. 6(b) show the spectrum of the y-polarized output light with x-polarized input light and that of the x-polarized output light with y-polarized input light, respectively. Here, we assume an input optical pulse with a differential Gaussian form whose width is 0.9 fs, corresponding to a bandwidth of around 200–1300 THz. The conversion efficiency is given by calculating the Fourier transform of the output electric field evaluated at a point 2 μm away from the output surface of the second layer. Similarly, the solid and dashed red curves show the spectra for the nanostructures whose thicknesses and inter-layer gap are reduced by half (50%). The solid and dashed green curves, on the other hand, are the spectra for the nanostructure whose thicknesses and inter-layer gap are doubled (200%). The particular nanostructures investigated in earlier sections (blue curves) exhibit larger polarization conversion efficiencies (and strong asymmetric properties) around 680 nm. In any case, the asymmetric property exhibits wavelength and thickness dependencies. Detailed studies regarding these inter-element couplings (or meta-atom couplings) and spectra will be interesting topics of future work.

6. Conclusion

In summary, we demonstrate an asymmetry in polarization conversion induced by a two-layer shape-engineered nanostructure formed of isotropic materials that interact via optical near-fields. By using an angular spectrum representation of electric fields in the subwavelength regime, we first characterize the stringent alignment requirements in the conventional setup in which the device and reader are separated. With a view to achieving responses that can be detected in the far-field while at the same time exploiting the intrinsic optical near-fields associated with nanostructured matter, we propose a two-layer unified device architecture consisting of a square-shaped (or symmetric) first layer and a rectangular-shaped (or asymmetric) second layer located in an asymmetric position with respect to the first layer. The geometrical features of the nanostructure are systematically taken into account in a theoretical framework based on the angular-spectrum representation of optical near-fields, giving an asymmetric polarization conversion which agrees well with numerical calculations. The dependence on the inter-layer distance also clearly indicates the involvement of near-field interactions between the two layers.

Finally, we make a few additional remarks about future work regarding applications. In Sections 1 and 2, we addressed the precision alignment requirements required between the “device” and the “reader”. With the two-layer unified nanostructures, the inter-layer precisions are still important, as indicated for instance in Figs. 4(a,i) and 4(a,ii). We have to emphasize that the stringent alignment requirements addressed in the introduction are for the case where optical near-field probing tips are used. On the other hand, while alignment is indeed crucial in the manufacturing process in the case of the two-layer nanostructures proposed here, the device can be implemented in a fixed configuration, without any further alignment needed, in the form of a module together with some other optical elements, such as emitters and detectors. We should note that the intrinsic optical near-field processes associated with nanostructured matter are still utilized. The precision shape- and layout-dependencies of the polarization properties can then be exploited, for example, as the identity of the devices, as in the application known as “artifact-metrics” for anti-counterfeit technologies proposed by Matsumoto et al. [38]. Indeed, Matsumoto et al. succeeded in demonstrating “nano artifact-metrics” by utilizing randomly formed silicon nanostructures by leveraging resist collapse in electron beam lithography [39]. A discussion of such applications, as well as physical insights into the optical properties made possible by nanostructures [40], is an interesting topic for future work. Also, the theoretical approach based on optical near-field processes demonstrated in Section 4 will be applicable to various metamaterial structures aimed at, for instance, environmental applications [41] and telecommunications [42], among others.

Acknowledgments

The authors would like to thank many collaborators for illuminating discussions over several years, in particular T. Kawazoe, T. Yatsui, and W. Nomura. This work was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and the Strategic Information and Communications R&D Promotion Programme (SCOPE) of the Ministry of Internal Affairs and Communications.

References and links

1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8(4), 839–862 (2002). [CrossRef]  

2. A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express 17(22), 19969–19980 (2009). [CrossRef]   [PubMed]  

3. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007). [CrossRef]   [PubMed]  

4. K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008). [CrossRef]  

5. M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys. 76(5), 056401 (2013). [CrossRef]   [PubMed]  

6. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007). [CrossRef]  

7. C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro 28(6), 7–18 (2008). [CrossRef]  

8. M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B 86(12), 125407 (2012). [CrossRef]  

9. M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir 29(24), 7557–7564 (2013). [CrossRef]   [PubMed]  

10. M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012). [CrossRef]  

11. N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17(13), 11113–11121 (2009). [CrossRef]   [PubMed]  

12. N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express 18(7), 7497–7505 (2010). [CrossRef]   [PubMed]  

13. A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express 16(17), 12559–12570 (2008). [CrossRef]   [PubMed]  

14. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]  

15. N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express 16(2), 607–612 (2008). [CrossRef]   [PubMed]  

16. G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature 390(6659), 493–494 (1997). [CrossRef]  

17. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003). [CrossRef]   [PubMed]  

18. T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003). [CrossRef]  

19. W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86(23), 231905 (2005). [CrossRef]  

20. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006). [CrossRef]   [PubMed]  

21. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef]   [PubMed]  

22. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010). [CrossRef]   [PubMed]  

23. D. W. Pohl and D. Courjon, Near Field Optics, (Kluwer Academic, 1993).

24. E. Wolf and M. Nieto-Vesperinas, “Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences,” J. Opt. Soc. Am. A 2(6), 886–889 (1985). [CrossRef]  

25. T. Inoue and H. Hori, “Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode,” in Progress in Nano-Electro-Optics IV, M. Ohtsu ed. (Springer, 2005), pp. 127–199.

26. M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46(9A), 6095–6103 (2007). [CrossRef]  

27. M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64(5), 634–640 (2003). [CrossRef]  

28. A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun. 284(5), 1444–1450 (2011). [CrossRef]  

29. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik ed. (Academic, 1985), pp. 275–367.

30. M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008). [CrossRef]  

31. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010). [CrossRef]  

32. G. R. Fowles, Introduction to Modern Optics (Dover Publications, 1989).

33. A. Drezet and C. Genet, “Reciprocity and optical chirality,” in Singular and Chiral Nanoplasmonics, N. Zheludev and S. V. Boriskina, eds. (Pan Stanford Publishing), in press.

34. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef]   [PubMed]  

35. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012). [CrossRef]  

36. S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett. 36(12), 2278–2280 (2011). [CrossRef]   [PubMed]  

37. D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B 105(1), 81–97 (2011). [CrossRef]  

38. H. Matsumoto and T. Matsumoto, “Clone match rate evaluation for an artifact-metric system,” IPSJ J. 44, 1991–2001 (2003).

39. T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

40. N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012). [CrossRef]  

41. Y. Tomaru, S. Hakuta, T. Tani, and M. Naya, “Optical properties of nano silver pavement,” in Extended Abstracts of the 73rd Autumn Meeting,2012 (The Japan Society of Applied Physics, 2012), p. 03–152.

42. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005). [CrossRef]   [PubMed]  

References

  • View by:

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8(4), 839–862 (2002).
    [Crossref]
  2. A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express 17(22), 19969–19980 (2009).
    [Crossref] [PubMed]
  3. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
    [Crossref] [PubMed]
  4. K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
    [Crossref]
  5. M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys. 76(5), 056401 (2013).
    [Crossref] [PubMed]
  6. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
    [Crossref]
  7. C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro 28(6), 7–18 (2008).
    [Crossref]
  8. M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B 86(12), 125407 (2012).
    [Crossref]
  9. M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir 29(24), 7557–7564 (2013).
    [Crossref] [PubMed]
  10. M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012).
    [Crossref]
  11. N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17(13), 11113–11121 (2009).
    [Crossref] [PubMed]
  12. N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express 18(7), 7497–7505 (2010).
    [Crossref] [PubMed]
  13. A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express 16(17), 12559–12570 (2008).
    [Crossref] [PubMed]
  14. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  15. N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express 16(2), 607–612 (2008).
    [Crossref] [PubMed]
  16. G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature 390(6659), 493–494 (1997).
    [Crossref]
  17. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
    [Crossref] [PubMed]
  18. T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
    [Crossref]
  19. W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86(23), 231905 (2005).
    [Crossref]
  20. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref] [PubMed]
  21. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  22. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  23. D. W. Pohl and D. Courjon, Near Field Optics, (Kluwer Academic, 1993).
  24. E. Wolf and M. Nieto-Vesperinas, “Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences,” J. Opt. Soc. Am. A 2(6), 886–889 (1985).
    [Crossref]
  25. T. Inoue and H. Hori, “Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode,” in Progress in Nano-Electro-Optics IV, M. Ohtsu ed. (Springer, 2005), pp. 127–199.
  26. M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46(9A), 6095–6103 (2007).
    [Crossref]
  27. M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64(5), 634–640 (2003).
    [Crossref]
  28. A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun. 284(5), 1444–1450 (2011).
    [Crossref]
  29. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik ed. (Academic, 1985), pp. 275–367.
  30. M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
    [Crossref]
  31. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
    [Crossref]
  32. G. R. Fowles, Introduction to Modern Optics (Dover Publications, 1989).
  33. A. Drezet and C. Genet, “Reciprocity and optical chirality,” in Singular and Chiral Nanoplasmonics, N. Zheludev and S. V. Boriskina, eds. (Pan Stanford Publishing), in press.
  34. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  35. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  36. S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett. 36(12), 2278–2280 (2011).
    [Crossref] [PubMed]
  37. D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B 105(1), 81–97 (2011).
    [Crossref]
  38. H. Matsumoto and T. Matsumoto, “Clone match rate evaluation for an artifact-metric system,” IPSJ J. 44, 1991–2001 (2003).
  39. T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.
  40. N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012).
    [Crossref]
  41. Y. Tomaru, S. Hakuta, T. Tani, and M. Naya, “Optical properties of nano silver pavement,” in Extended Abstracts of the 73rd Autumn Meeting,2012 (The Japan Society of Applied Physics, 2012), p. 03–152.
  42. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
    [Crossref] [PubMed]

2013 (2)

M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys. 76(5), 056401 (2013).
[Crossref] [PubMed]

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir 29(24), 7557–7564 (2013).
[Crossref] [PubMed]

2012 (4)

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012).
[Crossref]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B 86(12), 125407 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012).
[Crossref]

2011 (3)

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett. 36(12), 2278–2280 (2011).
[Crossref] [PubMed]

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B 105(1), 81–97 (2011).
[Crossref]

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun. 284(5), 1444–1450 (2011).
[Crossref]

2010 (4)

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express 18(7), 7497–7505 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (5)

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[Crossref]

C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro 28(6), 7–18 (2008).
[Crossref]

A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express 16(17), 12559–12570 (2008).
[Crossref] [PubMed]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express 16(2), 607–612 (2008).
[Crossref] [PubMed]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[Crossref]

2007 (3)

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46(9A), 6095–6103 (2007).
[Crossref]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[Crossref] [PubMed]

2006 (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

2005 (2)

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86(23), 231905 (2005).
[Crossref]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

2003 (5)

H. Matsumoto and T. Matsumoto, “Clone match rate evaluation for an artifact-metric system,” IPSJ J. 44, 1991–2001 (2003).

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64(5), 634–640 (2003).
[Crossref]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

2002 (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8(4), 839–862 (2002).
[Crossref]

1997 (1)

G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature 390(6659), 493–494 (1997).
[Crossref]

1985 (1)

Abdeddaim, R.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012).
[Crossref]

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[Crossref] [PubMed]

Akahane, K.

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[Crossref]

An, S. J.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[Crossref]

Aono, M.

M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys. 76(5), 056401 (2013).
[Crossref] [PubMed]

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir 29(24), 7557–7564 (2013).
[Crossref] [PubMed]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B 86(12), 125407 (2012).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Bagnall, D. M.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86(23), 231905 (2005).
[Crossref]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[Crossref] [PubMed]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[Crossref] [PubMed]

Brixner, T.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Brun, M.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64(5), 634–640 (2003).
[Crossref]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Chen, Y.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Chevalier, N.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64(5), 634–640 (2003).
[Crossref]

Chigrin, D. N.

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett. 36(12), 2278–2280 (2011).
[Crossref] [PubMed]

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B 105(1), 81–97 (2011).
[Crossref]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Cuche, A.

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun. 284(5), 1444–1450 (2011).
[Crossref]

A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express 17(22), 19969–19980 (2009).
[Crossref] [PubMed]

de Rosny, J.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Drezet, A.

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun. 284(5), 1444–1450 (2011).
[Crossref]

A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express 17(22), 19969–19980 (2009).
[Crossref] [PubMed]

A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express 16(17), 12559–12570 (2008).
[Crossref] [PubMed]

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64(5), 634–640 (2003).
[Crossref]

Dwyer, C.

C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro 28(6), 7–18 (2008).
[Crossref]

Ebbesen, T. W.

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Faklaris, O.

Fedotov, V. A.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Fukuyama, T.

Gallas, B.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

García de Abajo, F. J.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[Crossref] [PubMed]

Genet, C.

Grand, J.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012).
[Crossref]

Guida, G.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012).
[Crossref]

Guth, N.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012).
[Crossref]

Hanaki, K.

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Hara, M.

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir 29(24), 7557–7564 (2013).
[Crossref] [PubMed]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B 86(12), 125407 (2012).
[Crossref]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Hoga, M.

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express 18(7), 7497–7505 (2010).
[Crossref] [PubMed]

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Hori, H.

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir 29(24), 7557–7564 (2013).
[Crossref] [PubMed]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B 86(12), 125407 (2012).
[Crossref]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[Crossref]

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46(9A), 6095–6103 (2007).
[Crossref]

Huant, S.

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun. 284(5), 1444–1450 (2011).
[Crossref]

A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express 17(22), 19969–19980 (2009).
[Crossref] [PubMed]

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64(5), 634–640 (2003).
[Crossref]

Inoue, T.

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46(9A), 6095–6103 (2007).
[Crossref]

Jeffimovs, K.

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[Crossref]

Jouvaud, C.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kawazoe, T.

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B 86(12), 125407 (2012).
[Crossref]

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express 18(7), 7497–7505 (2010).
[Crossref] [PubMed]

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17(13), 11113–11121 (2009).
[Crossref] [PubMed]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[Crossref]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8(4), 839–862 (2002).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kim, S.-J.

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir 29(24), 7557–7564 (2013).
[Crossref] [PubMed]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B 86(12), 125407 (2012).
[Crossref]

Kitamura, M.

Kley, E.-B.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Kobayashi, K.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8(4), 839–862 (2002).
[Crossref]

Koschny, Th.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Kremers, C.

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B 105(1), 81–97 (2011).
[Crossref]

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett. 36(12), 2278–2280 (2011).
[Crossref] [PubMed]

Laluet, J. Y.

Lebeck, A. R.

C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro 28(6), 7–18 (2008).
[Crossref]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Mariette, H.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64(5), 634–640 (2003).
[Crossref]

Matsumoto, H.

H. Matsumoto and T. Matsumoto, “Clone match rate evaluation for an artifact-metric system,” IPSJ J. 44, 1991–2001 (2003).

Matsumoto, T.

H. Matsumoto and T. Matsumoto, “Clone match rate evaluation for an artifact-metric system,” IPSJ J. 44, 1991–2001 (2003).

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Menzel, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Naruse, M.

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir 29(24), 7557–7564 (2013).
[Crossref] [PubMed]

M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys. 76(5), 056401 (2013).
[Crossref] [PubMed]

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012).
[Crossref]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B 86(12), 125407 (2012).
[Crossref]

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express 18(7), 7497–7505 (2010).
[Crossref] [PubMed]

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17(13), 11113–11121 (2009).
[Crossref] [PubMed]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express 16(2), 607–612 (2008).
[Crossref] [PubMed]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[Crossref]

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46(9A), 6095–6103 (2007).
[Crossref]

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Nieto-Vesperinas, M.

Nomura, W.

Ohtsu, M.

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir 29(24), 7557–7564 (2013).
[Crossref] [PubMed]

M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys. 76(5), 056401 (2013).
[Crossref] [PubMed]

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B 86(12), 125407 (2012).
[Crossref]

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012).
[Crossref]

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express 18(7), 7497–7505 (2010).
[Crossref] [PubMed]

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17(13), 11113–11121 (2009).
[Crossref] [PubMed]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express 16(2), 607–612 (2008).
[Crossref] [PubMed]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[Crossref]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[Crossref]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8(4), 839–862 (2002).
[Crossref]

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Ohyagi, Y.

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express 18(7), 7497–7505 (2010).
[Crossref] [PubMed]

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Ourir, A.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012).
[Crossref]

Papakostas, A.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86(23), 231905 (2005).
[Crossref]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[Crossref] [PubMed]

Pistol, C.

C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro 28(6), 7–18 (2008).
[Crossref]

Potts, A.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86(23), 231905 (2005).
[Crossref]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Raupach, E.

G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature 390(6659), 493–494 (1997).
[Crossref]

Rikken, G. L. J. A.

G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature 390(6659), 493–494 (1997).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rivory, J.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012).
[Crossref]

Roch, J.-F.

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Sangu, S.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[Crossref]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8(4), 839–862 (2002).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sekiguchi, D.

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Sonnefraud, Y.

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[Crossref] [PubMed]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[Crossref] [PubMed]

Sugiyama, H.

Suzuki, R.

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Svirko, Y.

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[Crossref]

Tate, N.

M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys. 76(5), 056401 (2013).
[Crossref] [PubMed]

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012).
[Crossref]

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express 18(7), 7497–7505 (2010).
[Crossref] [PubMed]

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17(13), 11113–11121 (2009).
[Crossref] [PubMed]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express 16(2), 607–612 (2008).
[Crossref] [PubMed]

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Treussart, F.

Tsuchiya, M.

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[Crossref]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Turunen, J.

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[Crossref]

Vahimaa, P.

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[Crossref]

Vallius, T.

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wakabayashi, M.

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir 29(24), 7557–7564 (2013).
[Crossref] [PubMed]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Woehl, J. C.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64(5), 634–640 (2003).
[Crossref]

Wolf, E.

Yamamoto, N.

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[Crossref]

Yasui, M.

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[Crossref]

Yatsui, T.

N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express 18(7), 7497–7505 (2010).
[Crossref] [PubMed]

N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express 17(13), 11113–11121 (2009).
[Crossref] [PubMed]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[Crossref]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express 16(2), 607–612 (2008).
[Crossref] [PubMed]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[Crossref]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8(4), 839–862 (2002).
[Crossref]

Yi, G.-C.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[Crossref]

Yoo, J.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhang, W.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86(23), 231905 (2005).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zheludev, N. I.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Zhukovsky, S. V.

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett. 36(12), 2278–2280 (2011).
[Crossref] [PubMed]

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B 105(1), 81–97 (2011).
[Crossref]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Appl. Phys. B (1)

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B 105(1), 81–97 (2011).
[Crossref]

Appl. Phys. Lett. (4)

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[Crossref]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[Crossref]

T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[Crossref]

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett. 86(23), 231905 (2005).
[Crossref]

Europhys. Lett. (1)

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64(5), 634–640 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8(4), 839–862 (2002).
[Crossref]

IEEE Micro (1)

C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro 28(6), 7–18 (2008).
[Crossref]

IPSJ J. (1)

H. Matsumoto and T. Matsumoto, “Clone match rate evaluation for an artifact-metric system,” IPSJ J. 44, 1991–2001 (2003).

J. Appl. Phys. (1)

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[Crossref]

J. Opt. (1)

M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt. 14(9), 094002 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys. 46(9A), 6095–6103 (2007).
[Crossref]

Langmuir (1)

M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir 29(24), 7557–7564 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Nature (2)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[Crossref] [PubMed]

G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature 390(6659), 493–494 (1997).
[Crossref]

Opt. Commun. (1)

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun. 284(5), 1444–1450 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Phys. Rev. B (2)

M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B 86(12), 125407 (2012).
[Crossref]

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B 85(11), 115138 (2012).
[Crossref]

Phys. Rev. Lett. (4)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys. 76(5), 056401 (2013).
[Crossref] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Other (7)

D. W. Pohl and D. Courjon, Near Field Optics, (Kluwer Academic, 1993).

T. Inoue and H. Hori, “Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode,” in Progress in Nano-Electro-Optics IV, M. Ohtsu ed. (Springer, 2005), pp. 127–199.

G. R. Fowles, Introduction to Modern Optics (Dover Publications, 1989).

A. Drezet and C. Genet, “Reciprocity and optical chirality,” in Singular and Chiral Nanoplasmonics, N. Zheludev and S. V. Boriskina, eds. (Pan Stanford Publishing), in press.

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik ed. (Academic, 1985), pp. 275–367.

Y. Tomaru, S. Hakuta, T. Tani, and M. Naya, “Optical properties of nano silver pavement,” in Extended Abstracts of the 73rd Autumn Meeting,2012 (The Japan Society of Applied Physics, 2012), p. 03–152.

T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Fundamental characterization of mutual relation between a device (D) and a reader (R) via optical near-fields based on angular-spectrum representation. (a) Schematic illustration of a point dipole (D) and an evaluation point (R). (b,c) The “output signal” is equated with the angular spectrum, which is the near-field component of the electromagnetic field in the subwavelength regime. The Z- and X-dependent signals are respectively shown in (b) and (c). (d,e) Correlation coefficient of the output signal as a function of minute differences in Z and X. A tiny difference strongly affects the output signal, which is a manifestation of the precision dependence of nanostructured matter via optical near-fields.
Fig. 2
Fig. 2 (a) Two-layer nanostructure: the first layer is composed of an array of square-shaped structures, and the second layer is an array of rectangular-shaped structures which is aligned at the lower right corner with respect to the first layer. (b) This structure yields differences in polarization conversion efficiencies between x-polarized input light to y-polarized output and y-polarized input light to x-polarized output light, what is defined as “asymmetry” discussed in this paper (v). Other representative shapes (i–iv and vi) do not provide such asymmetric polarization conversion efficiencies. (c) Difference of polarization conversion efficiency in (b).
Fig. 3
Fig. 3 Theoretical model for the polarization conversion asymmetry in the two-layer nanostructure, (a) with x-polarized input light, and (b) y-polarized input light.
Fig. 4
Fig. 4 (a) Angular spectra corresponding to different device architectures. The first layer is composed of square shapes. (i) The second layer is composed of rectangles placed at the lower right corners with respect to the squares in the first layer. The inter-layer distance is λ/20. (ii) The second-layer rectangles are placed in the centers with respect to the squares in the first layer. (iii) The second layer is composed of squares placed at the lower right corners of those in the first layer. (iv) The second-layer structure is the same as that in (i) but the inter-layer distance is λ/2. (b) The structure in (i) exhibits significant asymmetric properties.
Fig. 5
Fig. 5 (a,b) Electromagnetic simulations for the inter-layer distance dependence. (c) Inter-layer-distance-dependent polarization conversion efficiencies. (d) Induced charge distributions in the second layer and their decomposition, representing the vertical and horizontal non-uniformity corresponding to the x-to-y polarization conversion efficiency and the y-to-x polarization conversion efficiency. (e) Induced-charge-based figure-of-merit (FoM) for the asymmetry in polarization conversion. The disappearance of asymmetry with larger inter-layer distances agrees with (c).
Fig. 6
Fig. 6 (a) Inter-element-distance dependent asymmetry in polarization conversion. The asymmetry calculated by electromagnetic simulations and induced-charge-based FoM based on an intuitive physical picture exhibit similar behavior. (b) The spectra of polarization conversion efficiencies. The dependencies on the thicknesses of elemental structures are also shown.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E(r)=( i K 3 8 π 2 ε 0 ) μ=TE TM 0 2π dβ 0 d s || s || s z [ ε( s (±) ,μ)D ]ε( s (±) ,μ) exp(iK s (±) r) ,
s (±) =( s || cosβ, s || sinβ,± s z ) ε( s (+) ,TE)=( sinβ,cosβ,0 ) ε( s (+) ,TM)=( ± s z cosβ,± s z sinβ, s || ),
s z ={ 1 s || 2 for 0 s || <1 i s || 2 1 for 1 s || <+.
E z (R)=( i K 3 4π ε 0 ) 1 d s || s || s z f z ( s || ,D,R) ,
f z ( s || ,D,R)=d s || s || 2 1 sinθcos(ϕφ) J 1 ( K r || s || )exp( KZ s || 2 1 ) +d s || 2 cosθ J 0 ( K r || s || )exp( KZ s || 2 1 ).
J o.a. =( A+Bcosθ Bsinθ Bsinθ ABcosθ )+( 0 iγ iγ 0 )
| [f( s || ,A, X IN ) f( s || ,B, X IN )]d s || || [f( s || ,C, Y IN ) f( s || ,D, Y IN )]d s || |
FoM intrinsic =| | p XY || p YX | |.
FoM intrinsic+inter =| | p XY (1 L y /( L y + L y (G) ))|| p YX (1 L x /( L x + L x (G) ))| |

Metrics