Abstract

We provide a modified Fano resonance formula applicable to dissipative two-port resonance systems. Based on a generic coupled-resonator model, the formula embodies loss-related correction terms and fundamental resonance parameters that can be determined by an analytic method or experimentally as opposed to finding phenomenological parameters by fitting to numerical results. The theory applies physically meaningful resonance parameters including resonance frequency, total decay rates, and partial radiation probabilities. For example, it shows that the classic Fano shape parameter q is given directly in terms of the phase difference between the resonant and non-resonant transmission pathways. Our new resonance formula quantitatively expresses the resonance spectra pertaining to modal nanophotonic and surface-plasmonic thin-film structures as verified by comparing with exact numerical models.

©2013 Optical Society of America

1. Introduction

Fano resonance is a fundamental expression of wave interaction with a system supporting localized modes. The characteristically asymmetric Fano spectral profile is explained by the interference of light following two distinct scattering pathways. These pathways are the resonant pathway associated with a discrete state pertaining to a localized mode and the non-resonant pathway contributed by the continuum [1,2]. This interference picture, originally suggested to explain quantum-mechanical resonance effects, also applies to classical resonance phenomena. Currently, nanophotonic and nanoplasmonic systems are of high global interest stimulated by discoveries such as extraordinary optical transmission through metallic nano apertures [3,4], plasmonic metamaterials [58], and guided-mode resonance effects [911] in periodic thin films. In these systems, and many others, Fano resonance signatures appear.

In dissipative resonant systems, the conventional Fano resonance formula is not strictly valid because the probability flux is taken as conserved in the original formulation [1]. Clearly, material absorption and scattering loss can play significant roles in nanostructured optical systems as widely noted in the literature [12,13]. Recently, the effect of dissipation on asymmetric Fano profiles has been studied to precisely describe resonance spectra in nanophotonic and nanoplasmonic systems [6,1416]. Coupled-mode theory of light scattering by subwavelength particles [14] and generalized electromagnetic formulation of plasmonic metamaterials [6,15] showed loss-induced degradation of resonance contrast. A linear systems approach was used to classify Fano resonance profiles in the presence of dissipation [16].

In this paper, we provide a Fano resonance formula applicable to lossy two-port systems. Included in this formula are explicit analytic interpretations of fundamental interference parameters and formal corrections to the conventional lossless Fano resonance expression. In our approach, time reversibility dictates the phase difference between the two interfering pathways to be determined by the relative strength of the non-resonant pathway to the resonant pathway. Using this general phase relation, the Fano resonance expression in the presence of dissipation is reformulated with correction terms including a linear decrease of the contribution arising from the lossless Fano term as a function of the absorption probability and peak efficiency degradation due to resonance-enhanced absorption. On this basis, we provide a comprehensive picture of the resonant transmission and reflection in lossy two-port systems where the resonance-enhanced absorption induces transmission peak suppression and nonreciprocal behavior in reflection [17,18]. We also present rigorous numerical calculations pertaining to guided-mode resonance effects in a semiconductor grating structure as well as surface-plasmonic resonance effects in a metallic nanocavity. The modified Fano resonance formula shows quantitative agreement with the numerical calculations for both of these representative device classes.

2. Fano resonance formula for dissipative two-port systems

The classical Fano resonance is described by the conventional formula [1,3]

TFano(δ)=|tD|2(q+δ)21+δ2,
where tD is the non-resonant transfer amplitude via the continuum, δ = (ωω0)/γ is the reduced frequency of a discrete state at ω0, and q is the shape factor describing the interference between the resonant and non-resonant scattering pathways. Equation (1) has been widely used to describe transmission spectra associated with classical resonances with ω0, γ, q, and tD determined by curve fitting to numerical or experimental results.

Fano resonance can be visualized using the coupling configuration schematically depicted in Fig. 1. The resonant scattering pathway is governed by the radiation probability ηn quantifying the fraction of radiation that the localized mode emits to the reflection (n = 1) and transmission (n = 2) sides. The non-resonant pathway is described by the amplitude rD and tD. The absorption probability ηabs of the localized mode parameterizes dissipative loss due to material absorption and random scattering. Using this model, the transmittance is expressed as [19]

T(δ)=|tD|2+4η1η21+δ2+4|tD|η1η2(δsinΔ+cosΔ)1+δ2interference,
where Δ is the phase difference between the non-resonant and resonant transmission pathways at exact resonance (δ = 0). In Eq. (2), the first and second terms separately represent the non-resonant and resonant contributions, respectively, and the last term corresponds to the interference between them.

 figure: Fig. 1

Fig. 1 Coupled-resonator model of Fano resonance. Here, η1 and η2 denote the fraction of radiation that the localized mode emits to the reflection and transmission sides, respectively. Symbols rD and tD denote the non-resonant reflection and transmission amplitudes, respectively. ηabs represents the absorption probability associated with the localized mode.

Download Full Size | PPT Slide | PDF

A fundamental property of Fano interference is inferred by applying time reversibility. Time reversibility constrains the interference to occur in a specific way as discussed by Yoon et al. [19], i.e., the phase difference Δ is not a free, independent parameter. It is given in terms of |tD| and ηn by

Δ=pcos1(|tD|/β1/2),
where β = 4η1η2/(η1 + η2)2 is the coupling-symmetry factor and the parity factor p takes p = + 1 for the even-like mode or p = –1 for the odd-like mode [19]. Obviously from Eq. (2), the coupling-symmetry factor β corresponds to the intensity of the resonant transmission at δ = 0 for lossless cases where η1 + η2 = 1. Therefore, the phase difference is determined by the relative strength of the non-resonant pathway to the resonant pathway. The shape factor q in Eq. (1) is then simply expressed in terms of the phase difference Δ by
q=tanΔ.
We note here that for given ηn and |tD|, the interference is completely deterministic, not requiring any further knowledge of the system’s geometrical and parametric details.

Using Eqs. (3) and (4), Eq. (2) can be re-written in terms of the conventional Fano resonance formula and correction terms as

T(δ)=ηradTFano(δ)βηradηabs1+δ2+ηabs|tD|2,
where ηrad = η1 + η2 = 1–ηabs is the total radiation probability of the localized mode. The reflectance is then given by
R(δ)=1T(δ)4η1ηabs1+δ2,
where the last term on the right-hand side represents resonance-enhanced absorbance [19,20].

For lossless systems (ηrad = 1 and ηabs = 0), T(δ) = TFano(δ). As the absorption probability ηabs increases, the contribution from TFano decreases linearly with the factor ηrad = 1–ηabs. The second term on the right-hand side of Eq. (5) further degrades the resonance peak intensity. In particular, this Lorentzian correction term is maximized to β/4 at the critical coupling condition ηrad = ηabs = 1/2 where the resonance-enhanced absorption becomes maximal [20]. Note that β corresponds to the peak value of TFano, i.e., [TFano]max = TFano(1/q) = β. These dependences are summarized in Figs. 2(a) and 2(b) for β = 0.7 and |tD|2 = 0.1. Figure 2(c) shows the coupling-symmetry factor β as a function of the normalized difference |η1η2|/ηrad in the radiation probabilities.

 figure: Fig. 2

Fig. 2 Dependence of (a) the transmittance T(δ) and (b) the Lorentzian correction term βηradηabs/(1 + δ2) on the absorption probability ηabs. (c) The coupling-symmetry factor β versus normalized difference in ηn.

Download Full Size | PPT Slide | PDF

3. Consistency of the lossy Fano resonance formula with rigorous calculation

We present the following numerical results to demonstrate the validity and general applicability of our model. We treat two completely different Fano resonance systems: the first system pertains to guided-mode resonance (GMR) in a periodic semiconductor thin film, and the second refers to surface-plasmon (SP) resonance in a metallic nanocavity. Consistent with the formulation, we limit our study to a two-port system supporting a single resonance mode. Accordingly, the two exemplary systems are chosen so that the resonance bandwidth is relatively narrow and the resonance center wavelength is longer than the first-order Rayleigh wavelength where additional radiation ports emerge with higher diffraction orders.

We treat a silicon-on-insulator structure with the top Si layer partially etched to form a periodically modulated surface as shown in the inset of Fig. 3 (see figure caption for geometrical parameters). The GMR occurs in this structure under phase-matching of incident light to a leaky waveguide mode [911]. We assume Si refractive index nSi = 3.5 and use rigorous coupled-wave analysis (RCWA) [21] for numerical calculations.

 figure: Fig. 3

Fig. 3 (a) Zero-order transmittance (blue solid curve) and reflectance (red dotted curve) of a thin-film Si grating under surface-normal incidence of TE-polarized light. The thin-film Si grating has thickness 220 nm, grating depth 20 nm, period 450 nm, and fill factor 0.7. The cover medium is air, and the substrate is SiO2. The inset shows electric field distribution of a resonant mode at 0.912 μm.

Download Full Size | PPT Slide | PDF

Figure 3 shows the calculated zero-order transmission (T0) and reflection (R0) spectra for TE-polarized light at normal incidence. Sharp resonance features are evident in the spectra. This GMR is induced by a TE1 mode at 0.912 μm as confirmed by the associated electric field distribution in the inset.

We model material dissipation by introducing the extinction coefficient k in the Si layer. We apply complex refractive index of Si ñSi = 3.5 + ik with k varying from 0 to 5 × 10−3 in the RCWA calculation. To estimate basic resonance parameters such as decay rate γ and radiation probabilities to the cover (air) ηcov and substrate (SiO2) ηsub for use in the analytic theory calculation by Eqs. (5) and (6), we use the absorbance analysis method suggested in [19,20,22] as opposed to parametric determination by fitting to numerical data. We obtain the resonance parameters listed in Table 1. In the absorbance analysis method, the resonance frequency ω0 and total decay rate γ are directly obtained from the maximum position and width at half maximum of the absorption peak, respectively. Using peak absorbances Acov and Asub for light incidence from the cover and substrate, the radiation probabilities are determined by ηcov = ηradAcov/(Acov + Asub), ηsub = ηradAsub/(Acov + Asub), and ηrad = 0.5[1 ± (1–AcovAsub)1/2], where we take the ( + ) sign for the under-damped case or the (–) sign for the over-damped case. The method fully determines the resonance parameters from the peak value, position, and bandwidth of two absorption peaks, which can readily be implemented in an experiment.

Tables Icon

Table 1. Resonance Parameters for the TE1 Mode at 0.912 μm

A recent paper by Gallinet and Martin [6] provides a generalized Fano formula describing electromagnetic resonance properties of dispersive and lossy media. Both the final expression and the model parameters differ markedly from our results presented above. Gallinet and Martin extract their model parameters by fitting to results generated by full numerical simulations. In our approach, direct numerical fitting is not necessary.

Figure 4 shows the RCWA calculation results (symbols) and the corresponding analytic-theory curves for the transmittance T0 and reflectance under the light incidence from cover R0(cov) and substrate R0(sub). Note that η1 = ηcov and η2 = ηsub for R0(cov) or η1 = ηsub and η2 = ηcov for R0(sub). The amplitude |tD| is obtained by computing the reflection and transmission coefficients of an equivalent unpatterned structure with the top grating layer replaced by an effective planar film with refractive index neff = [FñSi2 + (1–F)]1/2, where F is the Si fill factor. We confirm excellent agreement of our theory with the numerical calculation.

 figure: Fig. 4

Fig. 4 Comparison of transmission and reflection spectra calculated by the RCWA (symbols) and our analytic theory (solid curves) for a GMR device. (a) Transmittance. (b) Reflectance under cover-side (air) incidence. (c) Reflectance under substrate-side (SiO2) incidence.

Download Full Size | PPT Slide | PDF

The effect of dissipation on resonance spectra is exemplified well in Fig. 4. In Fig. 4(a), material loss simply degrades the resonance character of the transmission spectrum. Both the resonance peak and dip approach the non-resonant spectral background level. In contrast, the reflection spectrum exhibits more drastic changes. For example, R0(cov) and R0(sub) exhibit highly non-reciprocal behavior with increasing k. The non-reciprocal reflection is induced by asymmetric radiation probabilities as confirmed in Table 1. In Eq. (6), the last term representing resonance-enhanced absorbance is associated with the reflection dip and it scales with the radiation probability of the reflection side η1. Thus, the reflection dip becomes more prominent for light incidence on the side with higher radiation probability as in Fig. 4(c). The theory quantitatively captures these particular properties of resonance in the presence of material dissipation.

We now consider a surface-plasmon (SP) resonance in a metallic nanocavity structure. The nanocavity consists of an SiO2 thin film sandwiched by 15-nm-thick Au films as shown in the inset of Fig. 5. The top Au film is modulated by a sinusoidal profile with period 450 nm and depth 100 nm. The thickness of the SiO2 thin film is 70 nm on the average and 20 nm at the minimum. For this example, we use a coordinate transformation method, the Chandezon method (C-method), for the numerical calculations [23]. The Au film is modeled as a Drude metal [22,24] with plasma and collision frequencies 1.37 × 1016 rad/s and fabs × 0.407 × 1014 rad/s, respectively. The absorption factor fabs adjusts the ohmic damping rate directly proportional to the material absorption of the structure.

 figure: Fig. 5

Fig. 5 Zero-order transmittance spectrum calculated by the C-method for absorption factor fabs = 0. The inset shows the magnetic field distribution associated with the resonance at 1.124 μm.

Download Full Size | PPT Slide | PDF

Figure 5 shows the zero-order transmittance (T0) for the lossless case (fabs = 0). A resonance feature at 1.124 μm is caused by SP excitation inside the cavity. The SP mode is strongly localized at the deep subwavelength features, mostly in a 20-nm-thick gap area, as shown in the inset. This tightly localized excitation of the metal-gap SP mode is of special interest in nanoplasmonics on account of its nanofocusing properties and associated ultrahigh nonlinear effects [25,26].

We now verify Eqs. (5) and (6) with numerical calculations for the SP excitation at 1.124 μm. Again, the basic resonance parameters with increasing fabs are obtained by the absorbance analysis method and listed in Table 2. We estimate |tD|2 by interpolating the numerical T0 spectrum from off-resonant wavelength ranges. Figure 6 shows the numerical results compared with the corresponding analytic curves. Degraded resonance characteristics in transmission as well as absorption-induced nonreciprocity in reflection are clearly observed. Again we confirm excellent quantitative agreement of the analytic theory with full numerical modeling. Interestingly, the minimum of R0(sub) in Fig. 6(c) is almost zero for the particular level of absorption (fabs = 0.2). This property can be understood as a general aspect of a system with small non-resonant transmission (|tD|2 << 1). It is readily derived from Eq. (6) under light incidence from the substrate that R(δ = 0) ≈1–4ηsub + 4ηsub2 for |tD|2 << 1, implying R(δ = 0) ≈0 when ηsub = 1/2. We confirm ηsub = 0.489 ≈1/2 in Table 2. Therefore, the reflection dip is strongest if the critical coupling condition is satisfied at the incident port; i.e., the radiation probability of the resonance mode to the incident port is close to 1/2.

Tables Icon

Table 2. Resonance Parameters for the SP Mode at 1.124 μm

 figure: Fig. 6

Fig. 6 Comparison of transmission and reflection spectra found with numerical C-method calculations (symbols) with our analytic theory (solid curves) for an SP resonance. (a) Transmittance. (b) Reflectance under cover-side (air) incidence. (c) Reflectance under substrate-side (SiO2) incidence.

Download Full Size | PPT Slide | PDF

3. Conclusion

In conclusion, we developed a general theory of Fano resonance in dissipative two-port systems. Using a coupled-resonator model with minimal assumptions, the Fano resonance formula is expressed in terms of the resonance frequency, total decay rate, and radiation probabilities that are experimentally measurable parameters. This expression provides formal corrections to the lossless Fano resonance formula. We show that the corrected lossy Fano resonance formula quantitatively captures the effects of material dissipation on the resonant transmission and reflection spectra pertaining to guided-mode resonance in a thin-film semiconductor grating and deep subwavelength surface-plasmon excitation in a metallic nanocavity structure.

In the previous literature, Fano profiles in lossy systems are described by the general form

F(δ)=a(q+δ)2+b1+δ2.
Avrusky et al. recently obtained this expression with a linear systems approach that treats a resonant scattering amplitude as a function of simple pole and zero [16]. Using Eq. (7), they built a parametric classification scheme for various resonance profiles; Eq. (5) for the transmission and Eq. (6) for the reflection basically take this form. As revealed in Figs. 4 and 6, Eqs. (5) and (6) generally describe various resonance profiles such as symmetric peaks, highly asymmetric profiles, and symmetric dips with more physically transparent definitions of the profile amplitude a, shape factor q, and damping parameter b. Therefore, our formula supports intuitive physical interpretations to the parametric classification scheme in [16]. Gallinet and Martin also derived Eq. (7) by adopting the original quantum-mechanical formalism to classical electromagnetic equations [6,15]. They found analytic expressions for the shape factor q and damping parameter b. In contrast to parametric definitions based on radiation decay probabilities, their expressions are based on coupling constants, center frequencies, and bandwidths of the two interfering states. We believe that the two different interpretations must be consistent with each other because our approach is based on time-reversibility that is also a fundamental property of electromagnetic fields. Our theory is based on the phenomenological coupled-mode formalism as opposed to the more rigorous electromagnetic formalism by Gallinet and Martin. Therefore, the general model parameters in our approach must be found by additional mathematical treatment for any given materials and resonance system geometry. However, the approach by Gallinet and Martin also includes phenomenological aspects in defining fields associated with discrete and continuum states. To the best of our knowledge, there is no known analytic method that defines exact field configurations associated with leaky, quasi-bound states. We emphasize that the phenomenological coupled-mode formalism has been successfully used to describe various electromagnetic resonance effects [14,19,20], and our model parameters all have straightforward physical interpretation.

We apply absorption analysis for parametric extraction and thereby avoid the tedium and possible ambiguity of direct numerical fitting. The theory reveals the essential physics of Fano resonance in lossy systems in a general manner and is not limited to particular materials and geometries. We find that the spectral contrast of a Fano-resonance feature in transmission simply degrades with increasing material dissipation while the resonance contrast in the reflection spectrum is maximized when the critical coupling condition is satisfied at the incident port. The coupling symmetry of a localized mode determines the lossless peak transmittance and the loss-induced resonance degradation. The classic Fano shape parameter q is given directly in terms of the phase difference between the resonant and non-resonant transmission pathways. The theory is generally applicable to various classical resonance systems such as narrowband filters based on thin-film gratings and photonic crystals, high-quality-factor ring and disc microresonators, and devices containing plasmonic metamaterials.

Acknowledgments

This work is supported by the Texas Instruments Distinguished University Chair in Nanoelectronics endowment.

References and links

1. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010). [CrossRef]  

2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]  

3. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003). [CrossRef]  

4. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef]   [PubMed]  

5. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011). [CrossRef]   [PubMed]  

6. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011). [CrossRef]  

7. M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7(3), 329–349 (2013). [CrossRef]  

8. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011). [CrossRef]   [PubMed]  

9. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992). [CrossRef]  

10. J. M. Pottage, E. Silvestre, and P. St. J. Russell, “Vertical-cavity surface-emitting resonances in photonic crystal films,” J. Opt. Soc. Am. A 18(2), 442–447 (2001). [CrossRef]   [PubMed]  

11. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009). [CrossRef]  

12. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef]   [PubMed]  

13. R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010). [CrossRef]  

14. Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010). [CrossRef]  

15. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011). [CrossRef]   [PubMed]  

16. I. Avrusky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 128118 (2013).

17. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Nonreciprocal reflection of a subwavelength hole array,” Opt. Lett. 28(20), 1906–1908 (2003). [CrossRef]   [PubMed]  

18. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004). [CrossRef]   [PubMed]  

19. J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012). [CrossRef]  

20. J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18(25), 25702–25711 (2010). [CrossRef]   [PubMed]  

21. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981). [CrossRef]  

22. J. Yoon, S. H. Song, and J.-H. Kim, “Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: an upper limit,” Opt. Express 16(2), 1269–1279 (2008). [CrossRef]   [PubMed]  

23. J. Chandezon, M. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982). [CrossRef]  

24. E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1998).

25. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006). [CrossRef]  

26. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef]   [PubMed]  

References

  • View by:

  1. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  3. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
    [Crossref]
  4. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  5. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
    [Crossref] [PubMed]
  6. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
    [Crossref]
  7. M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7(3), 329–349 (2013).
    [Crossref]
  8. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [Crossref] [PubMed]
  9. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [Crossref]
  10. J. M. Pottage, E. Silvestre, and P. St. J. Russell, “Vertical-cavity surface-emitting resonances in photonic crystal films,” J. Opt. Soc. Am. A 18(2), 442–447 (2001).
    [Crossref] [PubMed]
  11. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
    [Crossref]
  12. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  13. R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010).
    [Crossref]
  14. Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
    [Crossref]
  15. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
    [Crossref] [PubMed]
  16. I. Avrusky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 128118 (2013).
  17. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Nonreciprocal reflection of a subwavelength hole array,” Opt. Lett. 28(20), 1906–1908 (2003).
    [Crossref] [PubMed]
  18. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
    [Crossref] [PubMed]
  19. J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
    [Crossref]
  20. J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18(25), 25702–25711 (2010).
    [Crossref] [PubMed]
  21. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  22. J. Yoon, S. H. Song, and J.-H. Kim, “Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: an upper limit,” Opt. Express 16(2), 1269–1279 (2008).
    [Crossref] [PubMed]
  23. J. Chandezon, M. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
    [Crossref]
  24. E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1998).
  25. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
    [Crossref]
  26. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref] [PubMed]

2013 (2)

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7(3), 329–349 (2013).
[Crossref]

I. Avrusky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 128118 (2013).

2012 (1)

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

2011 (4)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

2010 (4)

Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010).
[Crossref]

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18(25), 25702–25711 (2010).
[Crossref] [PubMed]

2009 (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

2008 (3)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

J. Yoon, S. H. Song, and J.-H. Kim, “Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: an upper limit,” Opt. Express 16(2), 1269–1279 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2006 (1)

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[Crossref]

2004 (1)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

2003 (2)

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Nonreciprocal reflection of a subwavelength hole array,” Opt. Lett. 28(20), 1906–1908 (2003).
[Crossref] [PubMed]

2001 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

1982 (1)

1981 (1)

Altewischer, E.

Amrania, H.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Avrusky, I.

I. Avrusky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 128118 (2013).

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Chandezon, J.

Chang, W. S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

Chase, C.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

Cornet, G.

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Dupuis, M.

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Esteban, R.

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010).
[Crossref]

Fan, S.

Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Francescato, Y.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Gaylord, T. K.

Genet, C.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giannini, V.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Gibbs, H. M.

I. Avrusky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 128118 (2013).

Gibson, R.

I. Avrusky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 128118 (2013).

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gramotnev, D. K.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[Crossref]

Greffet, J. J.

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010).
[Crossref]

Halas, N. J.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Hendrickson, J.

I. Avrusky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 128118 (2013).

Hong, M.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7(3), 329–349 (2013).
[Crossref]

Huang, M. C. Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Jung, M. J.

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

Karagodsky, V.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Khitrova, G.

I. Avrusky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 128118 (2013).

Kim, J.-H.

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Lal, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Laroche, M.

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Link, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Luk’yanchuk, B.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7(3), 329–349 (2013).
[Crossref]

Magnusson, R.

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18(25), 25702–25711 (2010).
[Crossref] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Maier, S. A.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Martin, O. J. F.

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Maystre, D.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Moewe, M.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

Moharam, M. G.

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Nordlander, P.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Park, I.-Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Pesala, B.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Phillips, C. C.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Pile, D. F. P.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[Crossref]

Pottage, J. M.

Rahmani, M.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7(3), 329–349 (2013).
[Crossref]

Ruan, Z.

Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
[Crossref]

Russell, P. St. J.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sears, J.

I. Avrusky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 128118 (2013).

Sedgwick, F. G.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

Seol, K. H.

Silvestre, E.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, S. H.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

van Exter, M. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Nonreciprocal reflection of a subwavelength hole array,” Opt. Lett. 28(20), 1906–1908 (2003).
[Crossref] [PubMed]

Wang, S. S.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Woerdman, J. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Nonreciprocal reflection of a subwavelength hole array,” Opt. Lett. 28(20), 1906–1908 (2003).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Yoon, J.

Yoon, J. W.

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

Zhou, Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

ACS Nano (1)

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010).
[Crossref]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[Crossref]

Chem. Rev. (1)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
[Crossref]

Laser Photon. Rev. (1)

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7(3), 329–349 (2013).
[Crossref]

Nano Lett. (1)

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

I. Avrusky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 128118 (2013).

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1998).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Coupled-resonator model of Fano resonance. Here, η1 and η2 denote the fraction of radiation that the localized mode emits to the reflection and transmission sides, respectively. Symbols rD and tD denote the non-resonant reflection and transmission amplitudes, respectively. ηabs represents the absorption probability associated with the localized mode.
Fig. 2
Fig. 2 Dependence of (a) the transmittance T(δ) and (b) the Lorentzian correction term βηradηabs/(1 + δ2) on the absorption probability ηabs. (c) The coupling-symmetry factor β versus normalized difference in ηn.
Fig. 3
Fig. 3 (a) Zero-order transmittance (blue solid curve) and reflectance (red dotted curve) of a thin-film Si grating under surface-normal incidence of TE-polarized light. The thin-film Si grating has thickness 220 nm, grating depth 20 nm, period 450 nm, and fill factor 0.7. The cover medium is air, and the substrate is SiO2. The inset shows electric field distribution of a resonant mode at 0.912 μm.
Fig. 4
Fig. 4 Comparison of transmission and reflection spectra calculated by the RCWA (symbols) and our analytic theory (solid curves) for a GMR device. (a) Transmittance. (b) Reflectance under cover-side (air) incidence. (c) Reflectance under substrate-side (SiO2) incidence.
Fig. 5
Fig. 5 Zero-order transmittance spectrum calculated by the C-method for absorption factor fabs = 0. The inset shows the magnetic field distribution associated with the resonance at 1.124 μm.
Fig. 6
Fig. 6 Comparison of transmission and reflection spectra found with numerical C-method calculations (symbols) with our analytic theory (solid curves) for an SP resonance. (a) Transmittance. (b) Reflectance under cover-side (air) incidence. (c) Reflectance under substrate-side (SiO2) incidence.

Tables (2)

Tables Icon

Table 1 Resonance Parameters for the TE1 Mode at 0.912 μm

Tables Icon

Table 2 Resonance Parameters for the SP Mode at 1.124 μm

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T Fano (δ)=| t D | 2 (q+δ) 2 1+ δ 2 ,
T(δ)=| t D | 2 + 4 η 1 η 2 1+ δ 2 + 4| t D | η 1 η 2 ( δsinΔ+cosΔ ) 1+ δ 2 interference ,
Δ=p cos 1 (| t D |/ β 1/2 ),
q= tanΔ.
T(δ)= η rad T Fano (δ)β η rad η abs 1+ δ 2 + η abs | t D | 2 ,
R(δ)=1T(δ) 4 η 1 η abs 1+ δ 2 ,
F(δ)=a (q+δ) 2 +b 1+ δ 2 .

Metrics