Abstract

Upconversion Luminescence (UCL) of YVO4:Yb3+, Er3+ inverse opal photonic crystals (IOPCs) was investigated in contrast to the references under the excitation of a 980-nm laser diode. Besides the traditional modification on UCL and dynamics, it is significant to observe that in the IOPCs the temperature quenching and local thermal effect was greatly suppressed.

©2012 Optical Society of America

1. Introduction

Photonic crystals (PCs), as a kind of materials with a periodically varying refractive index, have attracted intense efforts, which can control the propagation of electromagnetic waves and is of practical significance for photonic devices, biological and chemical sensors, and tunable lasers [14]. The modification of PCs on spontaneous emission of embedded luminescent guests such as organic dyes, quantum dots and rare earth (RE) ions is of particular significance [57]. Up to now, a number of works have been performed on the field, and some interesting phenomena have been observed, such as the observation of Lamb shift, inhibited long-scale energy transfer (ET) and improvement of luminescent quantum yield in RE ions embedded IOPCs, and so on [810]. The UCL of RE ions, is attracting current interests due to its special nonlinear populating mechanism and application potential on the fields of color display, laser, biosensors, bio-imaging and etc [11,12]. Recently, Yan,s group and Zhao, group respectively, fabricated NaYF4:Yb3+, Er3+ IOPCs and observed the suppression of UCL and prolonged lifetime near the photonic stop band (PSB) [13,14]. Some other groups also studied the modification of photonic structure on UCL emission in IOPCs [15,16]. Despite, the work related to the modification of PCs on UCL of embedded RE ions is still rare and further work should be performed to fabricate more upconversion (UC) IOPCs and deeply understand its unique physical nature.

As an oxide compound, yttrium vanadate has much larger phonon energy (~890 cm−1) than the well-known and efficient UC host NaYF4 (~400 cm−1). However, the recent work indicated that the UC efficiency of YVO4:Yb3+, Er3+ nanocrystals in the solution is comparable to that of NaYF4:Yb3+, Er3+ [17]. In this letter, we present the fabrication, characterization, unique and modified UCL properties of the three-dimensional IOPCs, YVO4:Yb3+, Er3+.

2. Experimental

The YVO4:Yb3+, Er3+ (15% and 3% in molar ratio) IOPCs were prepared by a PMMA template-assisted method, similar to our previous work on the fabrication of YVO4:Eu3+ and YVO4:Dy3+ [8,9]. In order to control PSB, PMMA latex spheres were fabricated with controllable sizes of ~340, 350, 400, 420, 455 and 475 nm and the corresponding IOPCs samples were denoted as PC1-PC6, respectively. For comparison, the powder reference sample (REF) was prepared by grinding the PC3 to destroy the regular 3D order structure. The thin film reference sample was prepared with the same precursor solution, but directly put it on a plain glass substrate. The thicknesses of IOPCs and the thin film were both controlled to be ~15 μm. All the samples were determined to be pure tetragonal in phase.

3. Results and discussion

Figure 1 records the transmittance spectra of the IOPCs measured at the normal (θ=0°) and the UCL of Er3+ ions in the PC3 and the REF under the excitation of a continuous 980-nm laser diode. It is clear that the PCs have deep photonic stop bands (PSB) sweeping from the blue side of the green emission 2H11/2, 4S3/2-4I15/2 of Er3+ ions to red side. In PC3 and REF sample, the red emission 4I9/2-4I15/2 around 660 nm situated relatively far away from the PSB of PC3, thus was normalized for comparison. It can be obviously observed that the green emission 2H11/2,4S3/2-4I15/2 lines in PC3, are significantly suppressed in contrast to the REF sample. The inhibition of light emission near the centre of PSB is a traditional phenomenon for luminescent species embedded in PCs [18]. Note that the UCL of the other IOPCs samples were also measured, which showed that the intensity ratio of 4S3/2-4I15/2 to 4I9/2-4I15/2 varied considerably with the shift of PSB. Overall to say, the relative emission near the PSB was suppressed if one emission was near the PSB and the other was far away. As both the lines were far away from the PSB, the intensity ratio of 4S3/2-4I15/2 to 4I9/2-4I15/2 was close to that of the REF sample.

 figure: Fig. 1

Fig. 1 Transmittance spectra of the YVO4:Yb3+, Er3+ IOPCs and the UCL spectra of Er3+ ions in PC3 sample and REF samples (the 4I9/2-4I15/2 transition at 660 nm was normalized). Insert: SEM image of the PC3 sample.

Download Full Size | PPT Slide | PDF

The room temperature UCL dynamics of the 4S3/2-4I15/2 transitions monitoring at 556 nm in all the IOPCs and REF samples were measured, under the pumping of a 980-nm OPO pulsed laser with a duration of 10 ns, as shown in Fig. 2 . The exponential lifetimes of PC1 to PC6 samples were determined, to be 4.70, 4.70, 4.63, 4.60, 4.76, 4.76 μs, respectively (insert of Fig. 2), while that of REF to be 3.37μs. The lifetime of 4S3/2-4I15/2 in the IOPCs fluctuated insignificantly (less than 4%) with varied PSB, which was inconsistent with our previous experimental results in PMMA:Eu complex opals, YVO4:Eu3+ and YVO4:Dy3+ IOPCs. Previously, we also calculated the density of photon states (DOS) by the theory of H-field plane wave expansion and deduced that the DOS in a certain direction was modified from that of the free-space in weakly-coupled PCs, however, angular-averaged DOS varied little from that of free space [19]. In the YVO4 IOPCs, the lifetime of 4S3/2-4I15/2 for Er3+ was prolonged ~30% in comparison to that of the REF, while that of 5D0-7FJ for Eu3+ and of 4F9/2-6HJ for Dy3+ was prolonged as large as 2.5 times. In the former case, the lifetime for 4S3/2 depends on both the radiative rate of 4S3/2-4I15/2 and the nonradiative relaxation rate of 4S3/2-4F9/2, the variation of the lifetime is very complex. In the latter case, the lifetime is dominated by the radiative rate of 5D0-7FJ or 4F9/2-6HJ due to large energy gap from 5D0, 4F9/2 to the nearest down level and the negligible nonradiative transition rate from 5D0, 4F9/2 [8,20]. The modification of effective refractive index in the IOPCs on radiative rate leads to the large variation of the lifetime.

 figure: Fig. 2

Fig. 2 UCL decay curves of 4S3/2-4I15/2 the transition (λem = 556 nm) under the 980 nm excitation. Inset: dependence of decay time constants on PSB positions.

Download Full Size | PPT Slide | PDF

Figure 3 displays the total emission intensity of Er3+ ions as a function of the temperature in IOPCs, REF and the thin film samples under 980-nm excitation. Following the increase of temperature, a rapid decrease of UCL intensity in the REF and the thin film was observed, while the UCL rarely changed with elevated temperature in IOPCs. This implies that the temperature-quenching of Er3+ UCL can be suppressed considerably in the IOPCs. It is suggested that in the traditional phosphors, the long-term energy transfer (ET) is very effective. Inevitably, the quenching of UCL will happen due to the ET from luminescent centers to defect states, which randomly distribute in the lattices of the phosphors. This process is strongly dependent of temperature. In the IOPCs, the long-term ET should be restrained largely because of thin thickness of each YVO4:Yb, Er layer (~20 nm) [21] and the existence of long periodic and connected air cavity between two layers. In this case, the ET among Er3+ and defect states can happen only within one YVO4:Yb, Er layer and then the emitted photons are scattered into air cavity rather than largely captured by the defect states through further long-range ET. To further reveal this piont, the UCL dynamics of the 4S3/2-4I15/2 transition in IOPCs, REF and the thin film samples as a function of temperature were shown in the inset of Fig. 3. Based on the multi-phonon-relaxation theory the total decay rate for 4S3/2, WTotal can be roughly written as,

WTotal=WR+WET+WNR(0)(1eω/kT)ΔE/ω
where, WR is the radiative transition rate of 4S3/2-4I15/2, WET the ET rate including cross relaxation from 4S3/2 of Er3+ and ET from 4S3/2 of Er3+ to Yb3+, WNR(0) the nonradiative relaxation rate from 4S3/2 at 0 K. By fitting, we deduced that in the IOPCs, WR + WET = 39.9ms−1, WNR(0) = 135.6 ms−1, while in the thin film WR + WET = 55.7ms−1, WNR(0) = 159.6 ms−1, and REF samples, WR + WET = 58.9ms−1, WNR(0) = 232.1ms−1, respectively. It is obvious that in the IOPCs, the WNR(0) is considerably inhabited in contrast to the thin film and REF samples, accordingly, the theoretical nonradiative transition rates for Er3+ as a function of temperature were drawn in Fig. 4 , which further implies that in the IOPCs, the temperature quenching was considerably restrained.

 figure: Fig. 3

Fig. 3 The overall UCL intensity of 2H11/2/4S3/2-4I15/2 for Er3+ ions as a function of temperature in different samples. Insert: Dependence of decay time constants of the Er3+ ions on temperature (dots) and the fitting function (line).

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 The theoretical nonradiative transitions rates for Er3+ ions as a function of temperature in different samples.

Download Full Size | PPT Slide | PDF

As excitation power density is too strong, local thermal effect induced by laser exposure and the corresponding UCL quenching usually happens for UC phosphors [22]. Here, we highlight that in the UCL of YVO4:Yb,Er IOPCs the local thermal effect can be suppressed considerably. Figure 5 shows UCL intensity of the green emissions as a function of excitation power in different samples. In the IOPCs, a strongest power-dependence of UCL was obtained (IUCL∝In, slope n = 1.73) in contrast to the other two samples (n = 1.40 for the thin film, n = 0.56 for the REF). And more, in the IOPCs the UCL intensity increased continuously in the studied power range, while in the other samples, the quenching of UCL was observed at a certain power density. The fact above indicates that the IOPCs is a very helpful device for the improvement of UCL and its nature is due to thin layer structure and connected air cavity, which is useful of thermal diffusion. The irradiation of strong excitation light will induce the temperature increase of the samples and the intensity ratio (RHS) of 2H11/2-4I15/2 to 4S3/2-4I15/2 is a decisive factor for the sample temperature [23]. Based on the well-known thermal activation equation, RHS = RHS(0)exp-ΔE/kT, we deduced the practical sample temperatures under the 980-nm laser exposure of different power densities, as shown in the inset of Fig. 5. It can be seen that in the thin film and REF samples, the temperature increases rapidly with the increase of excitation power, while changes fractionally in the IOPCs due to better thermal diffusion of the sample. Similar result was also observed in the other IOPCs samples, which indicated that the inhibited local thermal effect is induced by three-dimensional ordered porous structure of IOPCs, rather than overlapped effect between PSB and UC emission.

 figure: Fig. 5

Fig. 5 Ln-ln plot of the green UCL intensity (2H11/2, 4S3/2-4I15/2) of the PC3, thin film sample and REF samples. Insert: The temperature versus the excitation power in the samples.

Download Full Size | PPT Slide | PDF

In conclusion, we not only observed highly modified UCL and dynamics in YVO4:Yb3+, Er3+ IOPCs, but also observed effective suppression of temperature quenching and local thermal effect in the IOPCs. This observation may be significant for realizing effective UCL in oxide with relatively large phonon energy.

Acknowledgments

This work was supported by National Talent Youth Science Foundation of China (Grant no. 60925018), the National Natural Science Foundation of China (Grant no. 10974071, 61204015, 51002062, 11174111, and 61177042). The China Postdoctoral Science Foundation Funded Project (2012M511337).

References and links

1. M. M. Baksh, M. Jaros, and J. T. Groves, “Detection of molecular interactions at membrane surfaces through colloid phase transitions,” Nature 427(6970), 139–141 (2004). [CrossRef]   [PubMed]  

2. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004). [CrossRef]   [PubMed]  

3. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008). [CrossRef]   [PubMed]  

4. O. B. Ayyub, J. W. Sekowski, T. I. Yang, X. Zhang, R. M. Briber, and P. Kofinas, “Color changing block copolymer films for chemical sensing of simple sugars,” Biosens. Bioelectron. 28(1), 349–354 (2011). [CrossRef]   [PubMed]  

5. I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence Lifetime of Emitters with Broad Homogeneous Linewidths Modified in Opal Photonic Crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008). [CrossRef]  

6. J. Y. Zhang, X. Y. Wang, M. Xiao, and Y. H. Ye, “Modified spontaneous emission of CdTe quantum dots inside a photonic crystal,” Opt. Lett. 28(16), 1430–1432 (2003). [CrossRef]   [PubMed]  

7. A. Oertel, C. Lengler, T. Walther, and M. Haase, “Photonic Properties of Inverse Opals Fabricated from Lanthanide-Doped LaPO4 Nanocrystals,” Chem. Mater. 21(16), 3883–3888 (2009). [CrossRef]  

8. Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, “Inhibited Long-Scale Energy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal,” J. Phys. Chem. C 116(3), 2297–2302 (2012). [CrossRef]  

9. Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett. 100(8), 081104 (2012). [CrossRef]  

10. Q. Liu, H. W. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, and W. Han, “Observation of Lamb shift and modified spontaneous emission dynamics in the YBO3:Eu3+ inverse opal,” Opt. Lett. 35(17), 2898–2900 (2010). [CrossRef]   [PubMed]  

11. S. J. Zeng, G. Z. Ren, and Q. B. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010). [CrossRef]  

12. H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater. 31(10), 1483–1487 (2009). [CrossRef]  

13. F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluorid nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010). [CrossRef]  

14. Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystalw,” Chem. Commun. (Camb.) (43): 6616–6618 (2009). [CrossRef]   [PubMed]  

15. D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012). [CrossRef]  

16. Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012). [CrossRef]  

17. G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010). [CrossRef]  

18. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3526–3530 (2009). [CrossRef]  

19. W. Wang, H. W. Song, X. Bai, Q. Liu, and Y. S. Zhu, “Modified spontaneous emissions of europium complex in weak PMMA opals,” Phys. Chem. Chem. Phys. 13(40), 18023–18030 (2011). [CrossRef]   [PubMed]  

20. K. Riwotzki and M. Haase, “Colloidal YVO4:Eu and YP0.95V0.05O4:Eu Nanoparticles: Luminescence and Energy Transfer Processes,” J. Phys. Chem. B 105(51), 12709–12713 (2001). [CrossRef]  

21. X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, and R. F. Qin, “Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008). [CrossRef]   [PubMed]  

22. F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011). [CrossRef]   [PubMed]  

23. X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. M. Baksh, M. Jaros, and J. T. Groves, “Detection of molecular interactions at membrane surfaces through colloid phase transitions,” Nature 427(6970), 139–141 (2004).
    [Crossref] [PubMed]
  2. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
    [Crossref] [PubMed]
  3. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
    [Crossref] [PubMed]
  4. O. B. Ayyub, J. W. Sekowski, T. I. Yang, X. Zhang, R. M. Briber, and P. Kofinas, “Color changing block copolymer films for chemical sensing of simple sugars,” Biosens. Bioelectron. 28(1), 349–354 (2011).
    [Crossref] [PubMed]
  5. I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence Lifetime of Emitters with Broad Homogeneous Linewidths Modified in Opal Photonic Crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008).
    [Crossref]
  6. J. Y. Zhang, X. Y. Wang, M. Xiao, and Y. H. Ye, “Modified spontaneous emission of CdTe quantum dots inside a photonic crystal,” Opt. Lett. 28(16), 1430–1432 (2003).
    [Crossref] [PubMed]
  7. A. Oertel, C. Lengler, T. Walther, and M. Haase, “Photonic Properties of Inverse Opals Fabricated from Lanthanide-Doped LaPO4 Nanocrystals,” Chem. Mater. 21(16), 3883–3888 (2009).
    [Crossref]
  8. Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, “Inhibited Long-Scale Energy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal,” J. Phys. Chem. C 116(3), 2297–2302 (2012).
    [Crossref]
  9. Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett. 100(8), 081104 (2012).
    [Crossref]
  10. Q. Liu, H. W. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, and W. Han, “Observation of Lamb shift and modified spontaneous emission dynamics in the YBO3:Eu3+ inverse opal,” Opt. Lett. 35(17), 2898–2900 (2010).
    [Crossref] [PubMed]
  11. S. J. Zeng, G. Z. Ren, and Q. B. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010).
    [Crossref]
  12. H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater. 31(10), 1483–1487 (2009).
    [Crossref]
  13. F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluorid nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
    [Crossref]
  14. Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystalw,” Chem. Commun. (Camb.) (43): 6616–6618 (2009).
    [Crossref] [PubMed]
  15. D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
    [Crossref]
  16. Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
    [Crossref]
  17. G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
    [Crossref]
  18. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3526–3530 (2009).
    [Crossref]
  19. W. Wang, H. W. Song, X. Bai, Q. Liu, and Y. S. Zhu, “Modified spontaneous emissions of europium complex in weak PMMA opals,” Phys. Chem. Chem. Phys. 13(40), 18023–18030 (2011).
    [Crossref] [PubMed]
  20. K. Riwotzki and M. Haase, “Colloidal YVO4:Eu and YP0.95V0.05O4:Eu Nanoparticles: Luminescence and Energy Transfer Processes,” J. Phys. Chem. B 105(51), 12709–12713 (2001).
    [Crossref]
  21. X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, and R. F. Qin, “Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008).
    [Crossref] [PubMed]
  22. F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
    [Crossref] [PubMed]
  23. X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
    [Crossref]

2012 (4)

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, “Inhibited Long-Scale Energy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal,” J. Phys. Chem. C 116(3), 2297–2302 (2012).
[Crossref]

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett. 100(8), 081104 (2012).
[Crossref]

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

2011 (3)

O. B. Ayyub, J. W. Sekowski, T. I. Yang, X. Zhang, R. M. Briber, and P. Kofinas, “Color changing block copolymer films for chemical sensing of simple sugars,” Biosens. Bioelectron. 28(1), 349–354 (2011).
[Crossref] [PubMed]

W. Wang, H. W. Song, X. Bai, Q. Liu, and Y. S. Zhu, “Modified spontaneous emissions of europium complex in weak PMMA opals,” Phys. Chem. Chem. Phys. 13(40), 18023–18030 (2011).
[Crossref] [PubMed]

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

2010 (4)

Q. Liu, H. W. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, and W. Han, “Observation of Lamb shift and modified spontaneous emission dynamics in the YBO3:Eu3+ inverse opal,” Opt. Lett. 35(17), 2898–2900 (2010).
[Crossref] [PubMed]

S. J. Zeng, G. Z. Ren, and Q. B. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010).
[Crossref]

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluorid nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

2009 (4)

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystalw,” Chem. Commun. (Camb.) (43): 6616–6618 (2009).
[Crossref] [PubMed]

A. Oertel, C. Lengler, T. Walther, and M. Haase, “Photonic Properties of Inverse Opals Fabricated from Lanthanide-Doped LaPO4 Nanocrystals,” Chem. Mater. 21(16), 3883–3888 (2009).
[Crossref]

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3526–3530 (2009).
[Crossref]

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater. 31(10), 1483–1487 (2009).
[Crossref]

2008 (3)

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence Lifetime of Emitters with Broad Homogeneous Linewidths Modified in Opal Photonic Crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008).
[Crossref]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, and R. F. Qin, “Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008).
[Crossref] [PubMed]

2007 (1)

X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
[Crossref]

2004 (2)

M. M. Baksh, M. Jaros, and J. T. Groves, “Detection of molecular interactions at membrane surfaces through colloid phase transitions,” Nature 427(6970), 139–141 (2004).
[Crossref] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

2003 (1)

2001 (1)

K. Riwotzki and M. Haase, “Colloidal YVO4:Eu and YP0.95V0.05O4:Eu Nanoparticles: Luminescence and Energy Transfer Processes,” J. Phys. Chem. B 105(51), 12709–12713 (2001).
[Crossref]

Alexandrou, A.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Ayyub, O. B.

O. B. Ayyub, J. W. Sekowski, T. I. Yang, X. Zhang, R. M. Briber, and P. Kofinas, “Color changing block copolymer films for chemical sensing of simple sugars,” Biosens. Bioelectron. 28(1), 349–354 (2011).
[Crossref] [PubMed]

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Bai, X.

W. Wang, H. W. Song, X. Bai, Q. Liu, and Y. S. Zhu, “Modified spontaneous emissions of europium complex in weak PMMA opals,” Phys. Chem. Chem. Phys. 13(40), 18023–18030 (2011).
[Crossref] [PubMed]

Q. Liu, H. W. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, and W. Han, “Observation of Lamb shift and modified spontaneous emission dynamics in the YBO3:Eu3+ inverse opal,” Opt. Lett. 35(17), 2898–2900 (2010).
[Crossref] [PubMed]

X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, and R. F. Qin, “Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008).
[Crossref] [PubMed]

X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
[Crossref]

Baksh, M. M.

M. M. Baksh, M. Jaros, and J. T. Groves, “Detection of molecular interactions at membrane surfaces through colloid phase transitions,” Nature 427(6970), 139–141 (2004).
[Crossref] [PubMed]

Boilot, J. P.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Briber, R. M.

O. B. Ayyub, J. W. Sekowski, T. I. Yang, X. Zhang, R. M. Briber, and P. Kofinas, “Color changing block copolymer films for chemical sensing of simple sugars,” Biosens. Bioelectron. 28(1), 349–354 (2011).
[Crossref] [PubMed]

Chen, C.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystalw,” Chem. Commun. (Camb.) (43): 6616–6618 (2009).
[Crossref] [PubMed]

Chen, X. Y.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Collins, D. P.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Dai, Q. L.

X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
[Crossref]

Dantelle, G.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Deng, R. R.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Deng, Y. H.

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluorid nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Dong, B.

Q. Liu, H. W. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, and W. Han, “Observation of Lamb shift and modified spontaneous emission dynamics in the YBO3:Eu3+ inverse opal,” Opt. Lett. 35(17), 2898–2900 (2010).
[Crossref] [PubMed]

X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, and R. F. Qin, “Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008).
[Crossref] [PubMed]

X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
[Crossref]

Fan, L. B.

X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
[Crossref]

Gacoin, T.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Gong, Z. R.

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

Groves, J. T.

M. M. Baksh, M. Jaros, and J. T. Groves, “Detection of molecular interactions at membrane surfaces through colloid phase transitions,” Nature 427(6970), 139–141 (2004).
[Crossref] [PubMed]

Gu, M.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3526–3530 (2009).
[Crossref]

Haase, M.

A. Oertel, C. Lengler, T. Walther, and M. Haase, “Photonic Properties of Inverse Opals Fabricated from Lanthanide-Doped LaPO4 Nanocrystals,” Chem. Mater. 21(16), 3883–3888 (2009).
[Crossref]

K. Riwotzki and M. Haase, “Colloidal YVO4:Eu and YP0.95V0.05O4:Eu Nanoparticles: Luminescence and Energy Transfer Processes,” J. Phys. Chem. B 105(51), 12709–12713 (2001).
[Crossref]

Hadjipanayi, M.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Han, W.

Han, Y.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Jaque, D.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3526–3530 (2009).
[Crossref]

Jaros, M.

M. M. Baksh, M. Jaros, and J. T. Groves, “Detection of molecular interactions at membrane surfaces through colloid phase transitions,” Nature 427(6970), 139–141 (2004).
[Crossref] [PubMed]

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kofinas, P.

O. B. Ayyub, J. W. Sekowski, T. I. Yang, X. Zhang, R. M. Briber, and P. Kofinas, “Color changing block copolymer films for chemical sensing of simple sugars,” Biosens. Bioelectron. 28(1), 349–354 (2011).
[Crossref] [PubMed]

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Lee, Y. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Lei, Y. Q.

X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
[Crossref]

Lengler, C.

A. Oertel, C. Lengler, T. Walther, and M. Haase, “Photonic Properties of Inverse Opals Fabricated from Lanthanide-Doped LaPO4 Nanocrystals,” Chem. Mater. 21(16), 3883–3888 (2009).
[Crossref]

Li, L. L.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystalw,” Chem. Commun. (Camb.) (43): 6616–6618 (2009).
[Crossref] [PubMed]

Li, Z. X.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystalw,” Chem. Commun. (Camb.) (43): 6616–6618 (2009).
[Crossref] [PubMed]

Liu, Q.

W. Wang, H. W. Song, X. Bai, Q. Liu, and Y. S. Zhu, “Modified spontaneous emissions of europium complex in weak PMMA opals,” Phys. Chem. Chem. Phys. 13(40), 18023–18030 (2011).
[Crossref] [PubMed]

Q. Liu, H. W. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, and W. Han, “Observation of Lamb shift and modified spontaneous emission dynamics in the YBO3:Eu3+ inverse opal,” Opt. Lett. 35(17), 2898–2900 (2010).
[Crossref] [PubMed]

Liu, X. G.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Liu, Y. X.

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

Lodahl, P.

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence Lifetime of Emitters with Broad Homogeneous Linewidths Modified in Opal Photonic Crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008).
[Crossref]

Lu, S. Z.

X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
[Crossref]

Mialon, G.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Mori, T.

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater. 31(10), 1483–1487 (2009).
[Crossref]

Naruke, H.

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater. 31(10), 1483–1487 (2009).
[Crossref]

Nikolaev, I. S.

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence Lifetime of Emitters with Broad Homogeneous Linewidths Modified in Opal Photonic Crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008).
[Crossref]

Nori, F.

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

Oertel, A.

A. Oertel, C. Lengler, T. Walther, and M. Haase, “Photonic Properties of Inverse Opals Fabricated from Lanthanide-Doped LaPO4 Nanocrystals,” Chem. Mater. 21(16), 3883–3888 (2009).
[Crossref]

Pan, G. H.

X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, and R. F. Qin, “Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008).
[Crossref] [PubMed]

X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
[Crossref]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Qin, R. F.

X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, and R. F. Qin, “Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008).
[Crossref] [PubMed]

Qiu, J. B.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Qu, X. S.

X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, and R. F. Qin, “Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008).
[Crossref] [PubMed]

Ren, G. Z.

S. J. Zeng, G. Z. Ren, and Q. B. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010).
[Crossref]

Ren, X. G.

X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
[Crossref]

Riwotzki, K.

K. Riwotzki and M. Haase, “Colloidal YVO4:Eu and YP0.95V0.05O4:Eu Nanoparticles: Luminescence and Energy Transfer Processes,” J. Phys. Chem. B 105(51), 12709–12713 (2001).
[Crossref]

Ródenas, A.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3526–3530 (2009).
[Crossref]

Sekowski, J. W.

O. B. Ayyub, J. W. Sekowski, T. I. Yang, X. Zhang, R. M. Briber, and P. Kofinas, “Color changing block copolymer films for chemical sensing of simple sugars,” Biosens. Bioelectron. 28(1), 349–354 (2011).
[Crossref] [PubMed]

Shi, Y. F.

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluorid nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Song, H. W.

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett. 100(8), 081104 (2012).
[Crossref]

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, “Inhibited Long-Scale Energy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal,” J. Phys. Chem. C 116(3), 2297–2302 (2012).
[Crossref]

W. Wang, H. W. Song, X. Bai, Q. Liu, and Y. S. Zhu, “Modified spontaneous emissions of europium complex in weak PMMA opals,” Phys. Chem. Chem. Phys. 13(40), 18023–18030 (2011).
[Crossref] [PubMed]

Q. Liu, H. W. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, and W. Han, “Observation of Lamb shift and modified spontaneous emission dynamics in the YBO3:Eu3+ inverse opal,” Opt. Lett. 35(17), 2898–2900 (2010).
[Crossref] [PubMed]

X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, and R. F. Qin, “Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008).
[Crossref] [PubMed]

X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
[Crossref]

Song, Z. G.

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

Sun, C. P.

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

Sun, L. D.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystalw,” Chem. Commun. (Camb.) (43): 6616–6618 (2009).
[Crossref] [PubMed]

Sun, Z. P.

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett. 100(8), 081104 (2012).
[Crossref]

Taylor, R. A.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Tong, L.

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett. 100(8), 081104 (2012).
[Crossref]

Türkcan, S.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Vos, W. L.

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence Lifetime of Emitters with Broad Homogeneous Linewidths Modified in Opal Photonic Crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008).
[Crossref]

Walther, T.

A. Oertel, C. Lengler, T. Walther, and M. Haase, “Photonic Properties of Inverse Opals Fabricated from Lanthanide-Doped LaPO4 Nanocrystals,” Chem. Mater. 21(16), 3883–3888 (2009).
[Crossref]

Wang, F.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, and R. F. Qin, “Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008).
[Crossref] [PubMed]

Wang, J.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Wang, Q. X.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Wang, R. F.

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Wang, T.

X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
[Crossref]

Wang, W.

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, “Inhibited Long-Scale Energy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal,” J. Phys. Chem. C 116(3), 2297–2302 (2012).
[Crossref]

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett. 100(8), 081104 (2012).
[Crossref]

W. Wang, H. W. Song, X. Bai, Q. Liu, and Y. S. Zhu, “Modified spontaneous emissions of europium complex in weak PMMA opals,” Phys. Chem. Chem. Phys. 13(40), 18023–18030 (2011).
[Crossref] [PubMed]

Q. Liu, H. W. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, and W. Han, “Observation of Lamb shift and modified spontaneous emission dynamics in the YBO3:Eu3+ inverse opal,” Opt. Lett. 35(17), 2898–2900 (2010).
[Crossref] [PubMed]

Wang, X. Y.

Wang, Y.

Wu, H. J.

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Xiao, M.

Xu, L.

Xu, S.

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, “Inhibited Long-Scale Energy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal,” J. Phys. Chem. C 116(3), 2297–2302 (2012).
[Crossref]

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett. 100(8), 081104 (2012).
[Crossref]

Xu, W.

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett. 100(8), 081104 (2012).
[Crossref]

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, “Inhibited Long-Scale Energy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal,” J. Phys. Chem. C 116(3), 2297–2302 (2012).
[Crossref]

Yamase, T.

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater. 31(10), 1483–1487 (2009).
[Crossref]

Yan, C. H.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystalw,” Chem. Commun. (Camb.) (43): 6616–6618 (2009).
[Crossref] [PubMed]

Yan, D.

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Yang, Q. B.

S. J. Zeng, G. Z. Ren, and Q. B. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010).
[Crossref]

Yang, T. I.

O. B. Ayyub, J. W. Sekowski, T. I. Yang, X. Zhang, R. M. Briber, and P. Kofinas, “Color changing block copolymer films for chemical sensing of simple sugars,” Biosens. Bioelectron. 28(1), 349–354 (2011).
[Crossref] [PubMed]

Yang, Y.

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Yang, Z. W.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Ye, Y. H.

Yin, Z. Y.

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

Yu, X.

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

Yuan, Q.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystalw,” Chem. Commun. (Camb.) (43): 6616–6618 (2009).
[Crossref] [PubMed]

Zeng, S. J.

S. J. Zeng, G. Z. Ren, and Q. B. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010).
[Crossref]

Zhang, F.

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluorid nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Zhang, H. Z.

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett. 100(8), 081104 (2012).
[Crossref]

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, “Inhibited Long-Scale Energy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal,” J. Phys. Chem. C 116(3), 2297–2302 (2012).
[Crossref]

Zhang, J. Y.

Zhang, R. Y.

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluorid nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Zhang, X.

O. B. Ayyub, J. W. Sekowski, T. I. Yang, X. Zhang, R. M. Briber, and P. Kofinas, “Color changing block copolymer films for chemical sensing of simple sugars,” Biosens. Bioelectron. 28(1), 349–354 (2011).
[Crossref] [PubMed]

Zhao, D. Y.

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluorid nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Zhao, H. F.

X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, and R. F. Qin, “Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008).
[Crossref] [PubMed]

Zhou, D. C.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Zhou, G.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3526–3530 (2009).
[Crossref]

Zhou, H. P.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystalw,” Chem. Commun. (Camb.) (43): 6616–6618 (2009).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

Zhu, H. M.

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Zhu, J. L.

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

Zhu, K.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

Zhu, Y. S.

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, “Inhibited Long-Scale Energy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal,” J. Phys. Chem. C 116(3), 2297–2302 (2012).
[Crossref]

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett. 100(8), 081104 (2012).
[Crossref]

W. Wang, H. W. Song, X. Bai, Q. Liu, and Y. S. Zhu, “Modified spontaneous emissions of europium complex in weak PMMA opals,” Phys. Chem. Chem. Phys. 13(40), 18023–18030 (2011).
[Crossref] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3526–3530 (2009).
[Crossref]

Appl. Phys. Lett. (1)

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett. 100(8), 081104 (2012).
[Crossref]

Biosens. Bioelectron. (1)

O. B. Ayyub, J. W. Sekowski, T. I. Yang, X. Zhang, R. M. Briber, and P. Kofinas, “Color changing block copolymer films for chemical sensing of simple sugars,” Biosens. Bioelectron. 28(1), 349–354 (2011).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystalw,” Chem. Commun. (Camb.) (43): 6616–6618 (2009).
[Crossref] [PubMed]

Chem. Mater. (1)

A. Oertel, C. Lengler, T. Walther, and M. Haase, “Photonic Properties of Inverse Opals Fabricated from Lanthanide-Doped LaPO4 Nanocrystals,” Chem. Mater. 21(16), 3883–3888 (2009).
[Crossref]

Inorg. Chem. (1)

X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang, and R. F. Qin, “Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008).
[Crossref] [PubMed]

J. Mater. Chem. (3)

D. Yan, J. L. Zhu, H. J. Wu, Z. W. Yang, J. B. Qiu, Z. G. Song, X. Yu, Y. Yang, D. C. Zhou, Z. Y. Yin, and R. F. Wang, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” J. Mater. Chem. 22(35), 18558–18563 (2012).
[Crossref]

S. J. Zeng, G. Z. Ren, and Q. B. Yang, “Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes,” J. Mater. Chem. 20(11), 2152–2156 (2010).
[Crossref]

F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluorid nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

J. Phys. Chem. B (1)

K. Riwotzki and M. Haase, “Colloidal YVO4:Eu and YP0.95V0.05O4:Eu Nanoparticles: Luminescence and Energy Transfer Processes,” J. Phys. Chem. B 105(51), 12709–12713 (2001).
[Crossref]

J. Phys. Chem. C (4)

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. B. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007).
[Crossref]

Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, “Inhibited Long-Scale Energy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal,” J. Phys. Chem. C 116(3), 2297–2302 (2012).
[Crossref]

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence Lifetime of Emitters with Broad Homogeneous Linewidths Modified in Opal Photonic Crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008).
[Crossref]

Mater. Chem. Phys. (1)

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys. 133(2-3), 584–587 (2012).
[Crossref]

Nat. Mater. (1)

F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Nature (1)

M. M. Baksh, M. Jaros, and J. T. Groves, “Detection of molecular interactions at membrane surfaces through colloid phase transitions,” Nature 427(6970), 139–141 (2004).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. (1)

H. Naruke, T. Mori, and T. Yamase, “Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor,” Opt. Mater. 31(10), 1483–1487 (2009).
[Crossref]

Phys. Chem. Chem. Phys. (1)

W. Wang, H. W. Song, X. Bai, Q. Liu, and Y. S. Zhu, “Modified spontaneous emissions of europium complex in weak PMMA opals,” Phys. Chem. Chem. Phys. 13(40), 18023–18030 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

Science (1)

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Transmittance spectra of the YVO4:Yb3+, Er3+ IOPCs and the UCL spectra of Er3+ ions in PC3 sample and REF samples (the 4I9/2-4I15/2 transition at 660 nm was normalized). Insert: SEM image of the PC3 sample.
Fig. 2
Fig. 2 UCL decay curves of 4S3/2-4I15/2 the transition (λem = 556 nm) under the 980 nm excitation. Inset: dependence of decay time constants on PSB positions.
Fig. 3
Fig. 3 The overall UCL intensity of 2H11/2/4S3/2-4I15/2 for Er3+ ions as a function of temperature in different samples. Insert: Dependence of decay time constants of the Er3+ ions on temperature (dots) and the fitting function (line).
Fig. 4
Fig. 4 The theoretical nonradiative transitions rates for Er3+ ions as a function of temperature in different samples.
Fig. 5
Fig. 5 Ln-ln plot of the green UCL intensity (2H11/2, 4S3/2-4I15/2) of the PC3, thin film sample and REF samples. Insert: The temperature versus the excitation power in the samples.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W Total = W R + W ET + W NR (0) (1 e ω/kT ) ΔE/ω

Metrics