Abstract

A modified selective area growth (SAG) technique, in which the effective index of only the upper separate confinement heterostructure (SCH) layer are modulated to obtain different emission wavelengths, is reported for the fabrication of dense wavelength division multiplexing (DWDM) multi-wavelength laser arrays (MWLAs). InP based 1.5 μm distributed feedback (DFB) laser arrays with 0.8 nm, 0.42 nm, and 0.19 nm channel separations are demonstrated, all showing highly uniform wavelength spacings. The standard deviation of the distribution of the wavelength residues with respect to the corresponding linear fitting values is 0.0672nm, which is a lot smaller than those of the MWLAs fabricated by other techniques including electron beam lithography. These results indicate that our SAG technique which needs only a simple procedure is promising for the fabrication of low cost DWDM MWLAs.

©2012 Optical Society of America

1. Introduction

Monolithically integrated multi-wavelength laser arrays (MWLAs) are promising light sources for modern dense wavelength division multiplexing (DWDM) systems. Compared with multiple discrete lasers, MWLAs have many advantages such as lower packaging cost, lower power consuming and compact sizes and thus have aroused great interest for years [13]. For MWLAs, different laser emissions have to be defined side by side on the wafer and must match a series of wavelengths that are typically uniformly spaced. The uniformity of the wavelength spacing determines the applicability of a laser array and is the most critical factor related to array yield [1].

Up to now, several techniques have been proposed for the fabrication of MWLAs such as electron beam lithography (EBL) [1], ridge width variation [4], and multiple holographic exposures [5]. Among them EBL is the most widely used technique, which is very flexible in defining gratings. However, the EBL equipment is expensive and because gratings are written in a line by line manner, the EBL process is rather time consuming. These aspects lead to high costs and low throughput of fabricated devices. What is more important, the resolution of typical EBL makes it a challenge for the fabrication of laser arrays with channel spacings less than one nanometer through adjusting pitches of laser gratings.

MWLAs have also been fabricated by selective area growth (SAG) technique [6]. Compared with EBL, SAG technique needs only a simple procedure and has the benefits of low cost and fitting for mass production. In such a case, the effective index (neff) of the laser material is tuned by pairs of dielectric mask strips. By applying distributed feedback (DFB) gratings with uniform pitches (Λ) the wavelength of each element in a laser array can be varied by SAG according to λ = 2neffΛ. However, in the conventional approach [7], the SAG layers include both the two separate confinement heterostructure (SCH) layers and the multi-quantum wells (MQWs), which induces several problems. First, the photoluminescence (PL) peak wavelengths of the SAG MQWs change much rapidly than the emission wavelengths of DFB lasers which are determined by neff of the laser material. Then, because of the SAG, the thickness, composition and state of strain of the thick SAG materials vary from element to element in an array [7]. This will inevitably lead to the deviation of the material parameters from the optimized values, causing the deterioration of material quality for some elements. These aspects may result in varying device performance. What is more, the ability of controlling the wavelength spacing may also be damaged. The uniformity of wavelength spacings of the laser arrays fabricated by the conventional SAG technique is not enough for practical applications [6].

In this paper, we report a modified SAG technique, in which only the upper SCH layer is modulated to obtain different emission wavelengths. DFB laser arrays with 0.8 nm, 0.42 nm, and 0.19 nm channel spacings are presented, all showing excellent wavelength uniformity. The results indicate that the SAG technique is promising for the fabrication of MWLAs with low cost and high quality.

2. Experimental procedure

Different from the conventional SAG procedure [7], in which dielectric masks are formed on the buffered substrates, to fabricate MWLAs with our modified SAG technique, a buffer layer, a lower SCH layer and a MQW layer are first grown on the substrates. Then mask strip pairs with gradually changed dimensions are formed on the MQW layer. In the following SAG run, just an upper SCH layer is grown and the thickness of only the layer is changed by the SAG masks to obtain different Bragg wavelengths, as shown schematically in Fig. 1(a) . The materials including the lower SCH layer and especially the MQW layer whose properties are sensitive to different growth conditions are left untouched, which results in a precise control of wavelength spacing as confirmed by the following experiment results.

 figure: Fig. 1

Fig. 1 (a) Schematic structure of the laser material obtained by our modified SAG technique. (b) Schematic ridge waveguide structure of the fabricated lasers.

Download Full Size | PPT Slide | PDF

InP based 1.5 μm InGaAsP MQW laser arrays were fabricated. The devices have a 500 nm InP buffer layer, an 80 nm InGaAsP lower SCH layer lattice matched to InP with 1.2 μm PL peak wavelength (λPL = 1.2 μm), and a MQW layer which consists of 6 compressively strained InGaAsP wells ( + 1.1 × 10−2, λPL = 1.59 μm) and 7 tensile strained InGaAsP barriers(−3 × 10−3, λPL = 1.2 μm). The thicknesses of the wells and the barriers are 4 nm and 8 nm, respectively. The separation of each SiO2 strip pair is 20μm and the width of the strip is increased linearly for different channels, which leads to an increase of neff and thus the laser wavelength. A bigger increase step of strip width results in a larger wavelength spacing. The mask pairs are arranged with a 250 μm period, which is also the separation between each two adjacent lasers. The selective area grown upper SCH layer consists of three InP lattice matched InGaAsP layers (λPL = 1.2 μm) which are un-doped, p-doped, and n-doped in the growth direction, with the thicknesses of 70 nm, 5 nm, and 7 nm, respectively, on plane substrates. The reverse junction on top of the SCH layer induces a weak gain coupling into the DFB structure, which helps to increase the rate of single mode lasing [8]. After gratings with uniform pitches were formed at the top of the upper SCH layer as marked in Fig. 1(a) by conventional holographic exposure combined with conventional photolithography, a p-doped 1.5 μm thick InP cladding layer and a 300 nm InGaAs contact layer finished the material structure of the device. A 3 μm wide ridge waveguide structure as shown schematically in Fig. 1(b) was adopt. The devices were mounted on Cu heat sink and tested at room temperature. The cavity length of the arrays is 300 μm, with both facets left uncoated. The light of each laser element was coupled into a single mode fiber one at a time for measurement with an optical spectrum analyzer.

3. Result and discussion

Laser arrays with 0.8 nm and 0.42nm average channel spacings were fabricated through increasing the width of the SAG strips from 0 μm by 3μm and 1.5 μm steps, respectively. The thickness differences of the upper SCH layer between each two adjacent lasers are 4 nm and 2 nm, respectively, for the 0.8 nm and 0.42nm spacing arrays. All the spectra shown in this paper were obtained with inject currents between 59 mA and 61 mA. The serial resistance of the fabricated lasers is 3.45 ± 0.19Ω (mean value ± standard deviation) and the wavelength thermal shift of the lasers with the inject current is about 0.015nm/A. Thus the drift of wavelength caused by the 2mA inject current difference is well smaller than the channel spacings of the laser arrays studied. The laser spectra of the 0.8 nm and 0.42nm spacing arrays are shown in Fig. 2(a) and Fig. 2(c), respectively. The measured laser wavelengths for different channels show very good linearity as can be seen from Fig. 2(b) and Fig. 2(d). The wavelength residues with respect to the corresponding linear fitting values are between −0.05 nm and + 0.11 nm, and −0.1 and + 0.09nm, respectively, for the 0.8 nm and 0.42 nm laser arrays. Figure 3 shows the distribution of the wavelength residues of five laser arrays (three with around 0.8 nm and two with around 0.4nm spacings) that have been measured. The standard deviation of the distribution is 0.0672nm, which is smaller than those (>0.1 nm) of MWLAs fabricated by other techniques including EBL [1, 4, 5, 911].

 figure: Fig. 2

Fig. 2 Measured spectra of the 0.8 nm (a) and 0.42 (c) spacing laser arrays, measured laser wavelength (filled square) and wavelength residue (open square) with respect to linear fitting value of the 0.8 nm (b) and 0.42nm (d) spacing laser arrays. The solid line is the linear fitting of the wavelength. The ninth channel in Fig. c did not lase. The number beside each spectrum is the corresponding bias current (mA).

Download Full Size | PPT Slide | PDF

 figure: Fig. 3

Fig. 3 Histogram of wavelength residues with respect to linear fitting values of five fabricated laser arrays (three with around 0.8 nm and two with around 0.4nm spacings).

Download Full Size | PPT Slide | PDF

By reducing the increase step of the thickness of the upper SCH layer to about 1nm (the width of the SAG strip is increased from 0μm by a 1.2μm step), a laser array with a 0.19 nm spacing was also obtained. The laser spectra and the measured wavelength as a function of channel number are shown in Figs. 4(a) and 4(b), respectively. Again, a very good linearity is obtained with wavelength residues from −0.04nm to + 0.02nm. The standard deviation of the residue distribution is as small as 0.02nm, which is much better than that (0.07nm) of the laser arrays with similar channel spacings fabricated with EBL by varying the grating pitches [12]. To match a specific wavelength spacing precisely, fine adjusting of laser wavelengths such as by thermal effect is usually needed. The small wavelength residues of our laser arrays will ease the wavelength tuning, which helps to increase the yield of the arrays and lower the related power consumption.

 figure: Fig. 4

Fig. 4 (a) Measured spectra of the 0.19 nm spacing laser array, (b) measured laser wavelength (filled square) and wavelength residue (open square) with respect to linear fitting value for different channels. The solid line is the linear fitting of the wavelength. The ninth channel in Fig. a did not lase. The number beside each spectrum is the corresponding bias current (mA).

Download Full Size | PPT Slide | PDF

The good uniformity of the wavelength spacing is originated from the fact that the SAG patterns modulate only the upper SCH layer. The properties of the lower SCH layer and the sensitive MQW material are the same for all the elements, thus eliminating the fluctuation of neff resulted from SAG of the two layers. This makes it easy to obtain MWLAs with uniform spacings: no intentional optimizations of the conditions of material growth and the process of fabrication were done for the devices reported in this paper. The uniform wavelength spacings of the arrays reflect the high accuracy of thickness and composition control realized by our novel SAG procedure. For our laser arrays, the span of the laser wavelength is less than 10 nm, which is well smaller than the full-width at half-maximum of the PL spectrum (50 nm) of the MQWs. Plus the unaffected MQWs, the laser elements in our arrays have uniform light output versus current (L-I) characteristics with threshold currents around 18 mA. As an example, the L-I curves of the 0.4nm laser array are shown in Fig. 5 . The real and imaginary parts of the coupling coefficient of the laser element with 82nm upper SCH layer, estimated by the method in ref [13], are 60 and 10 cm−1, respectively, rendering a κL of 1.8. The coupling coefficient is expected to decrease with the increase of the upper SCH layer. The effect, however, should not be prominent for the fabricated laser arrays because there is no clear trend of decrease of side mode suppression ratio (SMSR) of the laser spectra with the channel number as shown in Fig. 2 and Fig. 4. The single mode yield of discrete lasers in our study is over 60%, which can be further increased by optimizing the fabrication of the gratings and applying of AR/HR coatings on the laser facets [14]. The thermal cross talk between nearby elements of the arrays was characterized by measuring the wavelength shift of a laser (its inject current fixed) with the injection current of one of its adjacent lasers. A 0.0013nm/mA average wavelength shift was measured, which can be further reduced by introducing separation grooves between the lasers. As can be seen from Fig. 2 (c) and Fig. 4 (a), there are non-lasing channels in the arrays, which can be caused by imperfections in either the material growth or the fabrication processes. For practical use, the laser array emissions need to match the ITU channels, which can be realized by moving the laser wavelengths of a laser array as a group through adjusting the temperature of the heat sink [1].

 figure: Fig. 5

Fig. 5 L-I characteristics of the laser array with 0.42nm wavelength spacing.

Download Full Size | PPT Slide | PDF

Besides accurate wavelength spacings, another important issue for the fabrication of MWLAs is high single mode yield of laser elements. Complex-coupled DFB lasers as has been used in this study are a good choice. Not only do these lasers show a high single-mode stability and single-mode ratio, but also feedback sensitivity of these lasers is reduced [8,14,15]. Laser arrays with complex-coupled DFB lasers have been fabricated successfully and rather good array performances have been demonstrated [4, 1618]. Combined with complex-coupled DFB structures which can be fabricated easily, our novel SAG technique is promising for obtaining low cost MWLAs.

When the EBL technique is used, gratings with λ/4 phase shift can be fabricated to realize very high single mode yield of DFB lasers. However, it is challenging to obtain channel spacings less than 1nm as in this study with typical EBL through varying the grating pitches [19]. By combining EBL with post growth fabrication of gratings having different recess depths laser arrays with 0.16nm wavelength spacing were fabricated [19]. This, however, requires very deep reactive ion etching, which is complex and difficult in process control. Our SAG technique is then another option which can be used in combination with the EBL technique for the fabrication of MWLAs with small channel spacings. A high yield and equally accurate wavelength spacing can be obtained at the same time with a much easy fabrication process.

4. Conclusion

A novel SAG technique is reported for the fabrication of DWDM MWLAs. In the technique, only the upper SCH layer is modulated by the SAG patterns to obtain different emission wavelengths. InP based 1.5 μm laser arrays with 0.8 nm, 0.42 nm, and 0.19 nm channel spacings are presented, all showing very good wavelength linearity. The wavelength residues with respect to linear fitting values are from −0.05 nm to + 0.11 nm, from −0.1 to + 0.09nm and-0.04nm to + 0.02nm, respectively, for the 0.8 nm, 0.42 nm, and 0.19 nm spacing arrays. The experiment results indicate that our SAG technique is a simple and powerful tool for the fabrication of high quality multi-wavelength laser arrays.

Acknowledgments

The work is supported by the National “863” project (Grant No. 2011AA010303), the National Nature Science Foundation of China (NSFC) (Grant Nos. 61090392, 61274071, 61006044), and the National 973 Program (Grant No. 2012CB934202).

References and links

1. C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire Jr, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997). [CrossRef]  

2. T. Fujisawa, S. Kanazawa, K. Takahata, W. Kobayashi, T. Tadokoro, H. Ishii, and F. Kano, “1.3-μm, 4 × 25-Gbit/s, EADFB laser array module with large-output-power and low-driving-voltage for energy-efficient 100GbE transmitter,” Opt. Express 20(1), 614–620 (2012). [CrossRef]   [PubMed]  

3. S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010). [CrossRef]  

4. G. P. Li, T. Makino, A. Sarangan, and W. Huang, “A16-Wavelength Gain-Coupled DFB Laser Array with Fine Tunability,” IEEE Photon. Technol. Lett. 8(1), 22–24 (1996). [CrossRef]  

5. M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993). [CrossRef]  

6. M. Aoki, M. Suzuki, and Y. Okuno, “Multi-wavelength DFB laser arrays grown by in-plane thickness control epitaxy,” in Proceedings of the 7th International Conference on Indium Phosphide and Related Materials, (IEEE 1995), pp. 53–56.

7. G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth 170(1-4), 645–649 (1997). [CrossRef]  

8. R. Tohmon, Y. Takahashi, and T. Kilcugawa, “Complex-coupled DFB lasers based on acurrent modulation concept”, in Proceedings of the 10th International Conference on Indium Phosphide and Related Materials, (IEEE 1998), pp. 725–728.

9. S. L. Lee, I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, “Monolithically Integrated Multiwavelength Sampled Grating DBR Lasers for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 6(1), 197–206 (2000). [CrossRef]  

10. C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996). [CrossRef]  

11. T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996). [CrossRef]  

12. Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise Wavelength Control for DFB Laser Diodes by Novel Corrugation Delineation Method,” IEEE Photon. Technol. Lett. 9(3), 288–290 (1997). [CrossRef]  

13. T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain and index coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficient with current,” IEICE Trans. Electron. 83(3), 488–495 (2000).

14. S. W. Park, C. K. Moon, J. C. Han, and J. I. Song, “1.55-μm DFB Lasers Utilizing an Automatically Buried Absorptive InAsP Layer Having a High Single-Mode Yield,” IEEE Photon. Technol. Lett. 16(6), 1426–1428 (2004). [CrossRef]  

15. F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-Reliable and High-Speed 1.3 μm Complex-Coupled Distributed Feedback Buried-Heterostructure Laser Diodes With Fe-Doped InGaAsP/InP Hybrid Grating Layers Grown by MOCVD,” IEEE Trans. Electron. Dev. 55(2), 540–546 (2008). [CrossRef]  

16. A. Talneau, N. Bouadma, S. Slempkes, A. Ougazzaden, and S. Hansmann, “Accurate Wavelength Spacing from Absorption-Coupled DFB Laser Arrays,” IEEE Photon. Technol. Lett. 9(10), 1316–1318 (1997). [CrossRef]  

17. S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997). [CrossRef]  

18. H. Hillmer and B. Klepser, “Low-Cost Edge-Emitting DFB Laser Arrays for DWDM Communication Systems Implemented by Bent and Tilted Waveguides,” IEEE J. Quantum Electron. 40(10), 1377–1383 (2004). [CrossRef]  

19. M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-Growth Fabrication of Multiple Wavelength DFB Laser Arrays With Precise Wavelength Spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
    [Crossref]
  2. T. Fujisawa, S. Kanazawa, K. Takahata, W. Kobayashi, T. Tadokoro, H. Ishii, and F. Kano, “1.3-μm, 4 × 25-Gbit/s, EADFB laser array module with large-output-power and low-driving-voltage for energy-efficient 100GbE transmitter,” Opt. Express 20(1), 614–620 (2012).
    [Crossref] [PubMed]
  3. S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
    [Crossref]
  4. G. P. Li, T. Makino, A. Sarangan, and W. Huang, “A16-Wavelength Gain-Coupled DFB Laser Array with Fine Tunability,” IEEE Photon. Technol. Lett. 8(1), 22–24 (1996).
    [Crossref]
  5. M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
    [Crossref]
  6. M. Aoki, M. Suzuki, and Y. Okuno, “Multi-wavelength DFB laser arrays grown by in-plane thickness control epitaxy,” in Proceedings of the 7th International Conference on Indium Phosphide and Related Materials, (IEEE 1995), pp. 53–56.
  7. G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth 170(1-4), 645–649 (1997).
    [Crossref]
  8. R. Tohmon, Y. Takahashi, and T. Kilcugawa, “Complex-coupled DFB lasers based on acurrent modulation concept”, in Proceedings of the 10th International Conference on Indium Phosphide and Related Materials, (IEEE 1998), pp. 725–728.
  9. S. L. Lee, I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, “Monolithically Integrated Multiwavelength Sampled Grating DBR Lasers for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 6(1), 197–206 (2000).
    [Crossref]
  10. C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
    [Crossref]
  11. T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
    [Crossref]
  12. Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise Wavelength Control for DFB Laser Diodes by Novel Corrugation Delineation Method,” IEEE Photon. Technol. Lett. 9(3), 288–290 (1997).
    [Crossref]
  13. T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain and index coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficient with current,” IEICE Trans. Electron. 83(3), 488–495 (2000).
  14. S. W. Park, C. K. Moon, J. C. Han, and J. I. Song, “1.55-μm DFB Lasers Utilizing an Automatically Buried Absorptive InAsP Layer Having a High Single-Mode Yield,” IEEE Photon. Technol. Lett. 16(6), 1426–1428 (2004).
    [Crossref]
  15. F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-Reliable and High-Speed 1.3 μm Complex-Coupled Distributed Feedback Buried-Heterostructure Laser Diodes With Fe-Doped InGaAsP/InP Hybrid Grating Layers Grown by MOCVD,” IEEE Trans. Electron. Dev. 55(2), 540–546 (2008).
    [Crossref]
  16. A. Talneau, N. Bouadma, S. Slempkes, A. Ougazzaden, and S. Hansmann, “Accurate Wavelength Spacing from Absorption-Coupled DFB Laser Arrays,” IEEE Photon. Technol. Lett. 9(10), 1316–1318 (1997).
    [Crossref]
  17. S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
    [Crossref]
  18. H. Hillmer and B. Klepser, “Low-Cost Edge-Emitting DFB Laser Arrays for DWDM Communication Systems Implemented by Bent and Tilted Waveguides,” IEEE J. Quantum Electron. 40(10), 1377–1383 (2004).
    [Crossref]
  19. M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-Growth Fabrication of Multiple Wavelength DFB Laser Arrays With Precise Wavelength Spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
    [Crossref]

2012 (2)

T. Fujisawa, S. Kanazawa, K. Takahata, W. Kobayashi, T. Tadokoro, H. Ishii, and F. Kano, “1.3-μm, 4 × 25-Gbit/s, EADFB laser array module with large-output-power and low-driving-voltage for energy-efficient 100GbE transmitter,” Opt. Express 20(1), 614–620 (2012).
[Crossref] [PubMed]

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-Growth Fabrication of Multiple Wavelength DFB Laser Arrays With Precise Wavelength Spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
[Crossref]

2010 (1)

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

2008 (1)

F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-Reliable and High-Speed 1.3 μm Complex-Coupled Distributed Feedback Buried-Heterostructure Laser Diodes With Fe-Doped InGaAsP/InP Hybrid Grating Layers Grown by MOCVD,” IEEE Trans. Electron. Dev. 55(2), 540–546 (2008).
[Crossref]

2004 (2)

S. W. Park, C. K. Moon, J. C. Han, and J. I. Song, “1.55-μm DFB Lasers Utilizing an Automatically Buried Absorptive InAsP Layer Having a High Single-Mode Yield,” IEEE Photon. Technol. Lett. 16(6), 1426–1428 (2004).
[Crossref]

H. Hillmer and B. Klepser, “Low-Cost Edge-Emitting DFB Laser Arrays for DWDM Communication Systems Implemented by Bent and Tilted Waveguides,” IEEE J. Quantum Electron. 40(10), 1377–1383 (2004).
[Crossref]

2000 (2)

T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain and index coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficient with current,” IEICE Trans. Electron. 83(3), 488–495 (2000).

S. L. Lee, I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, “Monolithically Integrated Multiwavelength Sampled Grating DBR Lasers for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 6(1), 197–206 (2000).
[Crossref]

1997 (5)

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth 170(1-4), 645–649 (1997).
[Crossref]

Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise Wavelength Control for DFB Laser Diodes by Novel Corrugation Delineation Method,” IEEE Photon. Technol. Lett. 9(3), 288–290 (1997).
[Crossref]

A. Talneau, N. Bouadma, S. Slempkes, A. Ougazzaden, and S. Hansmann, “Accurate Wavelength Spacing from Absorption-Coupled DFB Laser Arrays,” IEEE Photon. Technol. Lett. 9(10), 1316–1318 (1997).
[Crossref]

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
[Crossref]

1996 (3)

C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
[Crossref]

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

G. P. Li, T. Makino, A. Sarangan, and W. Huang, “A16-Wavelength Gain-Coupled DFB Laser Array with Fine Tunability,” IEEE Photon. Technol. Lett. 8(1), 22–24 (1996).
[Crossref]

1993 (1)

M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
[Crossref]

Amersfoort, M. R.

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
[Crossref]

Andreadakis, N. C.

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
[Crossref]

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Bhat, R.

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
[Crossref]

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Bimberg, D.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
[Crossref]

Bouadma, N.

A. Talneau, N. Bouadma, S. Slempkes, A. Ougazzaden, and S. Hansmann, “Accurate Wavelength Spacing from Absorption-Coupled DFB Laser Arrays,” IEEE Photon. Technol. Lett. 9(10), 1316–1318 (1997).
[Crossref]

Burkhard, H.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
[Crossref]

Caneau, C.

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
[Crossref]

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Chen, A.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Cheng, F. Y.

F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-Reliable and High-Speed 1.3 μm Complex-Coupled Distributed Feedback Buried-Heterostructure Laser Diodes With Fe-Doped InGaAsP/InP Hybrid Grating Layers Grown by MOCVD,” IEEE Trans. Electron. Dev. 55(2), 540–546 (2008).
[Crossref]

Chien, M.

M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
[Crossref]

Corzine, S.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Curtis, L.

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Dahlhof, K.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
[Crossref]

Delprat, D.

G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth 170(1-4), 645–649 (1997).
[Crossref]

Dentai, A.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Dominic, V.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Dragone, C.

M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
[Crossref]

Evans, P.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Favire, F.

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
[Crossref]

Favire, F. J.

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

Fisher, M.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Fujisawa, T.

Gamelin, J.

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

Gamelin, J. K.

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Gheorma, J.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Giuliani, G.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-Growth Fabrication of Multiple Wavelength DFB Laser Arrays With Precise Wavelength Spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
[Crossref]

Gloukhian, A.

G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth 170(1-4), 645–649 (1997).
[Crossref]

Gobel, R.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
[Crossref]

Han, J. C.

S. W. Park, C. K. Moon, J. C. Han, and J. I. Song, “1.55-μm DFB Lasers Utilizing an Automatically Buried Absorptive InAsP Layer Having a High Single-Mode Yield,” IEEE Photon. Technol. Lett. 16(6), 1426–1428 (2004).
[Crossref]

Hansmann, S.

A. Talneau, N. Bouadma, S. Slempkes, A. Ougazzaden, and S. Hansmann, “Accurate Wavelength Spacing from Absorption-Coupled DFB Laser Arrays,” IEEE Photon. Technol. Lett. 9(10), 1316–1318 (1997).
[Crossref]

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
[Crossref]

Hillmer, H.

H. Hillmer and B. Klepser, “Low-Cost Edge-Emitting DFB Laser Arrays for DWDM Communication Systems Implemented by Bent and Tilted Waveguides,” IEEE J. Quantum Electron. 40(10), 1377–1383 (2004).
[Crossref]

Hu, C. W.

F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-Reliable and High-Speed 1.3 μm Complex-Coupled Distributed Feedback Buried-Heterostructure Laser Diodes With Fe-Doped InGaAsP/InP Hybrid Grating Layers Grown by MOCVD,” IEEE Trans. Electron. Dev. 55(2), 540–546 (2008).
[Crossref]

Huang, W.

G. P. Li, T. Makino, A. Sarangan, and W. Huang, “A16-Wavelength Gain-Coupled DFB Laser Array with Fine Tunability,” IEEE Photon. Technol. Lett. 8(1), 22–24 (1996).
[Crossref]

Hubner, B.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
[Crossref]

Ishii, H.

Jang, I. F.

S. L. Lee, I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, “Monolithically Integrated Multiwavelength Sampled Grating DBR Lasers for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 6(1), 197–206 (2000).
[Crossref]

Joyner, C.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Kanazawa, S.

Kano, F.

Kato, M.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Kempf, B. E.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
[Crossref]

Kish, F.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Klepser, B.

H. Hillmer and B. Klepser, “Low-Cost Edge-Emitting DFB Laser Arrays for DWDM Communication Systems Implemented by Bent and Tilted Waveguides,” IEEE J. Quantum Electron. 40(10), 1377–1383 (2004).
[Crossref]

Kobayashi, W.

Koren, U.

M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
[Crossref]

Koza, M.

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Koza, M. A.

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
[Crossref]

Krost, A.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
[Crossref]

Kuphal, E.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
[Crossref]

Lambert, D.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Lee, F. M.

F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-Reliable and High-Speed 1.3 μm Complex-Coupled Distributed Feedback Buried-Heterostructure Laser Diodes With Fe-Doped InGaAsP/InP Hybrid Grating Layers Grown by MOCVD,” IEEE Trans. Electron. Dev. 55(2), 540–546 (2008).
[Crossref]

Lee, S. L.

S. L. Lee, I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, “Monolithically Integrated Multiwavelength Sampled Grating DBR Lasers for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 6(1), 197–206 (2000).
[Crossref]

Lee, T. P.

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Lepore, A.

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Li, G. P.

G. P. Li, T. Makino, A. Sarangan, and W. Huang, “A16-Wavelength Gain-Coupled DFB Laser Array with Fine Tunability,” IEEE Photon. Technol. Lett. 8(1), 22–24 (1996).
[Crossref]

Lin, C. C.

F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-Reliable and High-Speed 1.3 μm Complex-Coupled Distributed Feedback Buried-Heterostructure Laser Diodes With Fe-Doped InGaAsP/InP Hybrid Grating Layers Grown by MOCVD,” IEEE Trans. Electron. Dev. 55(2), 540–546 (2008).
[Crossref]

Lin, P. S. D.

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
[Crossref]

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Lyubomirsky, I.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Mahoney, D. D.

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Makino, T.

G. P. Li, T. Makino, A. Sarangan, and W. Huang, “A16-Wavelength Gain-Coupled DFB Laser Array with Fine Tunability,” IEEE Photon. Technol. Lett. 8(1), 22–24 (1996).
[Crossref]

Miller, B. I.

M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
[Crossref]

Mircea, A.

G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth 170(1-4), 645–649 (1997).
[Crossref]

Missey, M.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Moon, C. K.

S. W. Park, C. K. Moon, J. C. Han, and J. I. Song, “1.55-μm DFB Lasers Utilizing an Automatically Buried Absorptive InAsP Layer Having a High Single-Mode Yield,” IEEE Photon. Technol. Lett. 16(6), 1426–1428 (2004).
[Crossref]

Muroya, Y.

Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise Wavelength Control for DFB Laser Diodes by Novel Corrugation Delineation Method,” IEEE Photon. Technol. Lett. 9(3), 288–290 (1997).
[Crossref]

Murthy, S.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Nagarajan, R.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Nakamura, T.

Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise Wavelength Control for DFB Laser Diodes by Novel Corrugation Delineation Method,” IEEE Photon. Technol. Lett. 9(3), 288–290 (1997).
[Crossref]

Nakano, Y.

T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain and index coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficient with current,” IEICE Trans. Electron. 83(3), 488–495 (2000).

Nakura, T.

T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain and index coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficient with current,” IEICE Trans. Electron. 83(3), 488–495 (2000).

Newkirk, M. A.

M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
[Crossref]

Nilsson, A.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Ougazzaden, A.

G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth 170(1-4), 645–649 (1997).
[Crossref]

A. Talneau, N. Bouadma, S. Slempkes, A. Ougazzaden, and S. Hansmann, “Accurate Wavelength Spacing from Absorption-Coupled DFB Laser Arrays,” IEEE Photon. Technol. Lett. 9(10), 1316–1318 (1997).
[Crossref]

Park, S. W.

S. W. Park, C. K. Moon, J. C. Han, and J. I. Song, “1.55-μm DFB Lasers Utilizing an Automatically Buried Absorptive InAsP Layer Having a High Single-Mode Yield,” IEEE Photon. Technol. Lett. 16(6), 1426–1428 (2004).
[Crossref]

Pathak, B.

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
[Crossref]

Pathak, B. N.

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

Pien, C. T.

S. L. Lee, I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, “Monolithically Integrated Multiwavelength Sampled Grating DBR Lasers for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 6(1), 197–206 (2000).
[Crossref]

Pleumeekers, J.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Presby, H. M.

M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
[Crossref]

Rahjel, A. W.

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Rahn, J.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Rajhel, A.

C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
[Crossref]

Rajhel, A. W.

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

Ramdane, A.

G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth 170(1-4), 645–649 (1997).
[Crossref]

Rao, E. V. K.

G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth 170(1-4), 645–649 (1997).
[Crossref]

Raybon, G.

M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
[Crossref]

Samra, P.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Sarangan, A.

G. P. Li, T. Makino, A. Sarangan, and W. Huang, “A16-Wavelength Gain-Coupled DFB Laser Array with Fine Tunability,” IEEE Photon. Technol. Lett. 8(1), 22–24 (1996).
[Crossref]

Schatke, K.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
[Crossref]

Schneider, R.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Shih, T. T.

S. L. Lee, I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, “Monolithically Integrated Multiwavelength Sampled Grating DBR Lasers for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 6(1), 197–206 (2000).
[Crossref]

Slempkes, S.

A. Talneau, N. Bouadma, S. Slempkes, A. Ougazzaden, and S. Hansmann, “Accurate Wavelength Spacing from Absorption-Coupled DFB Laser Arrays,” IEEE Photon. Technol. Lett. 9(10), 1316–1318 (1997).
[Crossref]

Song, J. I.

S. W. Park, C. K. Moon, J. C. Han, and J. I. Song, “1.55-μm DFB Lasers Utilizing an Automatically Buried Absorptive InAsP Layer Having a High Single-Mode Yield,” IEEE Photon. Technol. Lett. 16(6), 1426–1428 (2004).
[Crossref]

Sorel, M.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-Growth Fabrication of Multiple Wavelength DFB Laser Arrays With Precise Wavelength Spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
[Crossref]

Spannagel, A.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Stewart, J.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Strain, M. J.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-Growth Fabrication of Multiple Wavelength DFB Laser Arrays With Precise Wavelength Spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
[Crossref]

Strzelecka, E.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Studenkov, P.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Tadokoro, T.

Takahata, K.

Talneau, A.

A. Talneau, N. Bouadma, S. Slempkes, A. Ougazzaden, and S. Hansmann, “Accurate Wavelength Spacing from Absorption-Coupled DFB Laser Arrays,” IEEE Photon. Technol. Lett. 9(10), 1316–1318 (1997).
[Crossref]

Tell, B.

M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
[Crossref]

Torikai, T.

Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise Wavelength Control for DFB Laser Diodes by Novel Corrugation Delineation Method,” IEEE Photon. Technol. Lett. 9(3), 288–290 (1997).
[Crossref]

Tsai, C. L.

F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-Reliable and High-Speed 1.3 μm Complex-Coupled Distributed Feedback Buried-Heterostructure Laser Diodes With Fe-Doped InGaAsP/InP Hybrid Grating Layers Grown by MOCVD,” IEEE Trans. Electron. Dev. 55(2), 540–546 (2008).
[Crossref]

Wang, C. Y.

S. L. Lee, I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, “Monolithically Integrated Multiwavelength Sampled Grating DBR Lasers for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 6(1), 197–206 (2000).
[Crossref]

Welch, D.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Wu, M. C.

F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-Reliable and High-Speed 1.3 μm Complex-Coupled Distributed Feedback Buried-Heterostructure Laser Diodes With Fe-Doped InGaAsP/InP Hybrid Grating Layers Grown by MOCVD,” IEEE Trans. Electron. Dev. 55(2), 540–546 (2008).
[Crossref]

Yamada, H.

Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise Wavelength Control for DFB Laser Diodes by Novel Corrugation Delineation Method,” IEEE Photon. Technol. Lett. 9(3), 288–290 (1997).
[Crossref]

Young, M. G.

M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
[Crossref]

Young, W. C.

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Zah, C.

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

Zah, C. E.

C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
[Crossref]

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

Zanola, M.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-Growth Fabrication of Multiple Wavelength DFB Laser Arrays With Precise Wavelength Spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
[Crossref]

Ziari, M.

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

Zimmermann, G.

G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth 170(1-4), 645–649 (1997).
[Crossref]

Zirngibl, M.

M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Hillmer and B. Klepser, “Low-Cost Edge-Emitting DFB Laser Arrays for DWDM Communication Systems Implemented by Bent and Tilted Waveguides,” IEEE J. Quantum Electron. 40(10), 1377–1383 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
[Crossref]

S. L. Lee, I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, “Monolithically Integrated Multiwavelength Sampled Grating DBR Lasers for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 6(1), 197–206 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (8)

C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett. 8(7), 864–866 (1996).
[Crossref]

Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise Wavelength Control for DFB Laser Diodes by Novel Corrugation Delineation Method,” IEEE Photon. Technol. Lett. 9(3), 288–290 (1997).
[Crossref]

S. W. Park, C. K. Moon, J. C. Han, and J. I. Song, “1.55-μm DFB Lasers Utilizing an Automatically Buried Absorptive InAsP Layer Having a High Single-Mode Yield,” IEEE Photon. Technol. Lett. 16(6), 1426–1428 (2004).
[Crossref]

A. Talneau, N. Bouadma, S. Slempkes, A. Ougazzaden, and S. Hansmann, “Accurate Wavelength Spacing from Absorption-Coupled DFB Laser Arrays,” IEEE Photon. Technol. Lett. 9(10), 1316–1318 (1997).
[Crossref]

S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett. 22(14), 1015–1017 (2010).
[Crossref]

G. P. Li, T. Makino, A. Sarangan, and W. Huang, “A16-Wavelength Gain-Coupled DFB Laser Array with Fine Tunability,” IEEE Photon. Technol. Lett. 8(1), 22–24 (1996).
[Crossref]

M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett. 5(8), 908–910 (1993).
[Crossref]

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-Growth Fabrication of Multiple Wavelength DFB Laser Arrays With Precise Wavelength Spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
[Crossref]

IEEE Trans. Electron. Dev. (1)

F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-Reliable and High-Speed 1.3 μm Complex-Coupled Distributed Feedback Buried-Heterostructure Laser Diodes With Fe-Doped InGaAsP/InP Hybrid Grating Layers Grown by MOCVD,” IEEE Trans. Electron. Dev. 55(2), 540–546 (2008).
[Crossref]

IEICE Trans. Electron. (1)

T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain and index coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficient with current,” IEICE Trans. Electron. 83(3), 488–495 (2000).

J. Cryst. Growth (1)

G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth 170(1-4), 645–649 (1997).
[Crossref]

J. Lightwave Technol. (2)

T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–976 (1996).
[Crossref]

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol. 15(7), 1191–1197 (1997).
[Crossref]

Opt. Express (1)

Other (2)

R. Tohmon, Y. Takahashi, and T. Kilcugawa, “Complex-coupled DFB lasers based on acurrent modulation concept”, in Proceedings of the 10th International Conference on Indium Phosphide and Related Materials, (IEEE 1998), pp. 725–728.

M. Aoki, M. Suzuki, and Y. Okuno, “Multi-wavelength DFB laser arrays grown by in-plane thickness control epitaxy,” in Proceedings of the 7th International Conference on Indium Phosphide and Related Materials, (IEEE 1995), pp. 53–56.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic structure of the laser material obtained by our modified SAG technique. (b) Schematic ridge waveguide structure of the fabricated lasers.
Fig. 2
Fig. 2 Measured spectra of the 0.8 nm (a) and 0.42 (c) spacing laser arrays, measured laser wavelength (filled square) and wavelength residue (open square) with respect to linear fitting value of the 0.8 nm (b) and 0.42nm (d) spacing laser arrays. The solid line is the linear fitting of the wavelength. The ninth channel in Fig. c did not lase. The number beside each spectrum is the corresponding bias current (mA).
Fig. 3
Fig. 3 Histogram of wavelength residues with respect to linear fitting values of five fabricated laser arrays (three with around 0.8 nm and two with around 0.4nm spacings).
Fig. 4
Fig. 4 (a) Measured spectra of the 0.19 nm spacing laser array, (b) measured laser wavelength (filled square) and wavelength residue (open square) with respect to linear fitting value for different channels. The solid line is the linear fitting of the wavelength. The ninth channel in Fig. a did not lase. The number beside each spectrum is the corresponding bias current (mA).
Fig. 5
Fig. 5 L-I characteristics of the laser array with 0.42nm wavelength spacing.

Metrics