Abstract

We theoretically demonstrate a method for generating the broadband supercontinuum. It is found that a weak 400-nm few-cycle pulse can be used to replace the ultraviolet attosecond pulse for controlling the ionization dynamics of the electron wave packets when a long-wavelength driving pulse is adopted. By adding a 400-nm few-cycle laser pulse to a 2000-nm driving pulse at proper time, only a quantum path can be selected to effectively contribute to the harmonics, leading to the efficient generation of a broadband supercontinuum. Moreover, our scheme is stable against nearly all the small parameter shift of the driving pulse and the controlling pulse. The macroscopic investigation reveals that the macroscopic supercontinuum with the bandwidth of about 165eV can be obtained. Then isolated sub-110-as pulses can be directly generated. Moreover, the generated attosecond pulse has a divergence angle of about 0.1mrad in the far field, which indicates its beam quality is good. Besides, it is also found that a near-field spatial filter can be used to select the different quantum paths (short or long) in the far field.

© 2012 Optical Society of America

1. Introduction

High-order harmonic generation (HHG) by laser-atom (or molecule) interaction is a well-known method for generating coherent soft X-rays and extreme ultraviolet (XUV) attosecond sources [15]. So far, high-order harmonic generation is also the unique way to produce isolated attosecond pulses and attosecond pulse trains. In the last decade, attosecond pulse trains and isolated attosecond pulses have been successfully produced experimentally [410]. Recently, the 100-as barrier has been first brought through by Goulielmakis et al. [6] using a 3.3-fs driving pulse. However, it is still an extreme challenge to generate a broadband supercontinuum that supports the isolated attosecond pulse generation with shorter duration, since the duration of the driving pulse can hardly be further compressed. Moreover, the low intensity of isolated attosecond pulses also limits their applications. In addition, Salières et al. investigated the spatial structure of harmonics in order to generate the high-order harmonics with good spatial coherence property [1113].

The HHG process can be well understood by the three-step model [14]. In detail, the electron firstly tunnels through the barrier formed by the Coulomb potential and the laser field, then it oscillates almost freely in the laser field and gains kinetic energy, and finally it returns to the ground state by recombining with the parent ion. During the recombination process, a photon with energy equal to ionization potential plus the kinetic energy is released. This classical picture indicates that the HHG process can be controlled by manipulating different steps for the broadband supercontinuum generation. It has been proposed that a two-color or multi-color field can control the acceleration process or confine the ionization process within half a cycle to produce a broadband supercontinuum [1524]. Another effective way is the polarization gating technique [2529] that can confine the recombination of the electrons into one half-cycle, then a broadband supercontinuum in the plateau can be obtained. Besides, since an ultraviolet (uv) attosecond pulse can enhance significantly the ionization rate of the target [3033], the uv-assisted ionization enhancement has been also suggested to gate the ionization times to generate the efficient broadband supercontinuum [34]. Unfortunately, only few laboratories can routinely produce such an ultraviolet (uv) attosecond pulse, which limits the spreading of their scheme. However, can the ultraviolet (uv) attosecond pulse be replaced by a realizable laser pulse to popularize this scheme? In this work, we give an affirmative answer. It is found that a weak 400-nm few-cycle pulse can be used to replace the ultraviolet attosecond pulse for controlling the ionization dynamics of the electron wave packets when a 2000-nm driving pulse is adopted. Only a quantum path can be selected to effectively contribute to the harmonics, leading to the efficient generation of a broadband supercontinuum by adding a 400-nm few-cycle laser pulse to a 2000-nm driving pulse at proper time. In addition, the 3D propagation is also carried out to investigate the spectral, temporal and spacial characteristics of the generated attosecond pulse.

2. Theoretical methods

The simulation is carried out by taking into account both the single-atom response to the laser pulse and the collective response of the macroscopic gas to the laser and high-harmonic field. The single-atom response is calculated with the Lewenstein model [35]. In this model, the instantaneous dipole moment of an atom is described as (in atom units)

dnl=itdt[πε+i(tt)/2]3/2×d*[pst(t,t)A(t)]d[pst(t,t)A(t)]×exp[iSst(t,t)]E(t)g(t)+c.c.
In this equation, E(t) is the electric field of the laser pulse, A(t) is its associated vector potential, and ε is a positive regularization constant. pst and Sst are the stationary momentum and quasiclassical action, which are given by
pst(t,t)=1ttttA(t)dt,
Sst(t,t)=(tt)Ip12pst2(t,t)(tt)+12ttA2(t)dt,
where Ip is the ionization energy of the atom, and d(p) is the dipole matrix element for transitions from the ground state to the continuum state. For hydrogenlike atoms, it can be approximated as [36]
d(p)=i27/2π(2Ip)5/4p(p2+2Ip)3.
The g(t′) in Eq. (1) represents the ground state amplitude:
g(t)=exp[tω(t)dt],
where ω(t″) is the ionization rate which is calculated by ADK tunneling model [37]:
ω(t)=ωp|Cn*|2(4ωpωt)2n*1exp(4ωp3ωt),
where
ωp=Iph¯,ωt=e|Ef(t)|2meIp,n*=Z(IphIp)1/2,|Cn*|2=22n*n*Γ(n*+1)Γ(n*),
where Z is the net resulting charge of the atom, and Iph is the ionization potential of the hydrogen atom, and e and me are electron charge and mass, respectively.

The harmonic spectrum is then obtained by Fourier transforming the time-dependent dipole acceleration a⃗(t):

aq=|1T0Ta(t)eiqωtdt|2,
where a⃗(t) = nl(t), T and ω are the duration and frequency of the driving pulse, respectively. q corresponds to the harmonic order.

The collective response of the macroscopic medium is described by the propagation of the laser and the high harmonic field, which can be written separately [38]

2E(ρ,z,t)1c22E(ρ,z,t)t2=ωp2(ρ,z,t)c2E(ρ,z,t),
2Eh(ρ,z,t)1c22Eh(ρ,z,t)t2=ωp2(ρ,z,t)c2Eh(ρ,z,t)+μ02Pnl(ρ,z,t)t2.
Where E and Eh are the laser and high harmonic field; ωp is the plasma frequency and is given by ωp=ene(ρ,z,t)/meε0; and Pnl = [n0ne(ρ,z,t)]dnl(ρ,z,t) is the nonlinear polarization generated by the medium. n0 is the gas density and ne=n0[1exp(tw(t)dt)] is the free-electron density in the gas. This propagation model takes into account both the temporal plasma-induced phase modulation and the spatial plasma lensing effects, but does not consider the linear gas dispersion, the depletion of the fundamental beam during the HHG process and absorption of high harmonics, which is due to the low gas density [38]. Then the induced refractive index n can be approximately described by the refractive index in vacuum (n = 1). These equations can be solved with Crank-Nicholson method. The calculation details can be found in [38].

The far-field harmonic emissions can be obtained from near-field harmonic emissions at the exit face of a gas medium through a Hankel transformation [3941],

Ehf(rf,zf,ω)=ik0r0Eh(rf,z,ω)zfzJ0(krrfzfz)exp[ik(r2+rf2)2(zfz)]rdr,
where J0 is the zero-order Bessel function, zf is the far-field position from the laser focus, rf is the transverse coordinate in the far field, and the wave vector k is given by k = ω/c. r0 is the radius of a near-field spatial filter.

3. Results and discussions

In order to demonstrate our scheme, we first analyze the HHG process from He atom driven by the 2000-nm driving pulse alone in terms of the three-step model [14], which presents a clear physical picture. Figure 1 shows the classical sketch of the HHG process in the 2000-nm driving pulse alone. We present the electric field of the 2000-nm driving pulse in Fig. 1(a). Figure 1(b) presents the dependence of harmonic order on the ionization (blue dots) and recombination times (red circles) in this driving pulse. As shown in Fig. 1(b), the 2000-nm driving pulse yields two couples of ionization and recombination times per half-cycle (known as short and long trajectories). The electron ionized around t = −0.4T0 (T0 is the optical cycle of the 2000-nm driving pulse) is driven by the driving field at the highest amplitude and returns to the parent ion near t = 0.25T0, leading to the emissions of the harmonics with the maximal order of 420. The electron is ionized around t = −1.0T0 and returns to the parent ion near t = −0.3T0, leading to the emissions of the harmonics with the second maximal order of 365. Therefore, more than one return contribute to the lower harmonics and the isolated attosecond pulse can be only obtained by filtering the harmonics in the cutoff, which prevents the generation of the broadband isolated attosecond pulse with a shorter duration. If the ionization rate around t = −0.4T0 is enhanced significantly, the recombination quantum path near t = 0.25T0 would mainly contribute to the harmonic emissions and a broadband supercontinuum would be obtained. According to this idea, Lan et al. [34] proposed an efficient method for producing a broadband supercontinuum by enhancing the contribution from one return with an UV pulse. Unfortunately, so far, such an ultraviolet (uv) attosecond pulse can be routinely produced in only few laboratories. Moreover, the intensity of the ultraviolet (uv) attosecond pulse is also very low. These limit the spreading of their scheme. Because an optical cycle of the 2000-nm driving pulse is 5 times long as that of the 400-nm laser pulse, a 400-nm laser pulse lasts five times less than the 2000-nm driving pulse when the same optical cycles are contained. Hence, a weak 400-nm few-cycle pulse can be introduced to replace the ultraviolet attosecond pulse for controlling the ionization dynamics of the electron wave packets when a 2000-nm driving pulse is adopted. The schematic illustration of our scheme is shown in Fig. 2. A weak 400-nm few-cycle pulse is synthesized to the 2000-nm driving pulse. Experimentally, this scheme can be carried out with a Ti: sapphire laser system. The laser beam is split into a stronger beam and a weaker one. The stronger one is used to produce the 2000-nm driving pulse via an optical parametric amplifier, and the weaker one is used to generate the 400-nm controlling pulse. In our calculation, the electric field of the combined field can be expressed as

E(t)=E0f0(t)cos(ω0)t+aE0f1(ttdelay)cos[ω1(ttdelay)+ϕ].
Here, E0 is the electric amplitude of the driving pulse, and ω0 and ω1 are the frequencies of the driving and controlling pulses, respectively. f0=exp[2ln(2)t2/τ02] and f1=exp[2ln(2)t2/τ12] present the profiles of the two pulses, and τ0 = 2. T0 and τ1 = 2. T1 are the pulse durations of the driving and controlling pulse, where T0 and T1 are the optical periods of the driving and controlling pulses. ϕ is the relative phase and is chosen to be π. τdelay is the time-delay of the controlling and driving pulses and is chosen to be −0.425T0. a is the rate of the intensities of the controlling and driving pulses. E0 and a are chosen to be 0.075a.u.and 0.4, respectively. As shown in Fig. 2, the electron is only effectively ionized around t = −0.4T0 in the combined field. Consequently, only the return near t = 0.25T0 is selected to effectively contribute to the harmonics, which will lead to the efficient generation of the broadband super-continuum.

 

Fig. 1 (a) Electric field of the 2000-nm driving pulse, and (b) classical sketch of the electron dynamics in the driving pulse.

Download Full Size | PPT Slide | PDF

 

Fig. 2 Electric fields of the 2000-nm driving pulse (bold black curve) and the 400-nm few-cycle controlling pulse (thin red curve), and the evolution of the ionization probability (dashed blue curve) in the combined field.

Download Full Size | PPT Slide | PDF

To verify the above scheme, we calculate the harmonic spectrum using the Lewenstein model [35]. Here the neutral species depletion is considered using the ADK model. Figure 3(a) shows the harmonic spectrum in the combined field (solid red curve). For comparison, the harmonic spectrum in the 2000-nm driving pulse alone is also presented (dotted black curve). One can see that the overall spectral structure is irregular for the harmonics below 300ω0, and only the harmonics near the cutoff are continuous in the 2000-nm driving pulse alone. For this case, the isolated attosecond pulse can be only obtained by synthesizing the harmonics near the cutoff. However, in the combined field, the harmonic spectrum shows a different structure in contrast to that in the 2000-nm driving pulse alone. It can be seen that the harmonic spectrum is supercontinuous above 160ω0 and a supercontinuum with the bandwidth of 160eV is generated. Moreover, the harmonic intensity is 2 or 3 orders of magnitude higher than that in the 2000-nm driving pulse alone. In order to further understand the emission times of the harmonics, the time-frequency distribution in the combined field is shown in Fig. 3(b). One can clearly see that only the quantum path P1 around t = 0.25T0 mainly contributes to the harmonics above 160ω0. Thereby only the return P1 is selected to effectively contribute to the generation of the supercontinuum, which is in good agreement with the above classical results. Moreover, the yields of the harmonics generated from the short trajectory are more efficient than that of the harmonics generated from the long trajectory, which leads to the generation of the smooth supercontinuum. In this scheme, the structure of the supercontinuum in the microscopic level is insensitive to the small changes in the intensity and duration of the controlling field. Figure 4 presents the harmonic spectra generated at the different intensities of the controlling pulse. Compared with a = 0.4, the structure of the supercontinuum hardly changes though the intensity decreases for a = 0.2. However, when the intensity of the controlling pulse decreases to a = 0.1, the structure of the harmonic spectrum becomes irregular. This implies that the continuous harmonics in the plateau can not be obtained when the intensity of the controlling pulse is too low. Then, the intensity of the controlling field is set as a = 0.4 and the pulse duration is scanned. Figure 5 shows the harmonic spectra generated at the different durations of the controlling pulse. For clarity, the harmonic spectrum with τ1 = 4.5T1 (solid glaucous curve) has been shifted 2 units down. As shown in this figure, the supercontinuum can be still obtained for τ1 = 1.5T1 and τ1 = 2.5T1. Moreover, the structure and intensity of the supercontinuum hardly change. However, when the duration increases to τ1 = 4.5T1, the harmonic spectrum below 360ω0 becomes irregular and only the harmonics above 360ω0 are continuous. For this case, the bandwidth of the supercontinuum is about 40eV, which is much less than that of the supercontinuum with τ1 = 2.0T1. According to our calculation, the duration of the controlling pulse doesn’t exceed τ1 = 3.5T1 to generate the broadband supercontinuum.

 

Fig. 3 (a) Harmonic spectra generated in the combined field (solid red curve) and in the 2000-nm driving pulse alone (dotted black curve), and (b) time-frequency distribution in the combined field.

Download Full Size | PPT Slide | PDF

 

Fig. 4 Harmonic spectra generated at the different intensities of the controlling pulse. Other parameters are the same as in Fig. 2.

Download Full Size | PPT Slide | PDF

 

Fig. 5 Harmonic spectra generated at the different durations of the controlling pulse. Other parameters are the same as in Fig. 2.

Download Full Size | PPT Slide | PDF

Next, we further investigate the influence of the driving pulse duration. Figure 6 shows the harmonic spectra generated at the different durations of the driving pulse. Other parameters are the same as in Fig. 2. As shown in this figure, when the pulse duration increases to τ0 = 4.0T0, the bandwidth and the intensity of the supercontinuum decrease. However, when the pulse duration further increases to τ0 = 8.0T0, the bandwidth of the supercontinuum hardly changes except for a slight reduction of the intensity compared to the case of τ0 = 4.0T0. Thus our scheme is also available for the driving pulse with the longer pulse duration to generate the broadband supercontinuum.

 

Fig. 6 Harmonic spectra generated at the different durations of the driving pulse. Other parameters are the same as in Fig. 2.

Download Full Size | PPT Slide | PDF

Because the laser field interacts with a macroscopic number of atoms in experiment, the full description of the HHG process requires solving not only the strong-field laser-atom interaction at the microscopic level, but also the Maxwell wave equation which describes the propagation of the radiation through the nonlinear medium at the macroscopic level [42]. Moreover, the macroscopic effect often alters the results of the single-atom scheme. In order to fully demonstrate our scheme, we perform the nonadiabatic three-dimensional (3D) propagation simulations [38] for fundamental and harmonic field in the gas target. We consider a focused Gaussian laser beam with waist of 50μm and a 0.4-mm long gas jet with the gas density of 2.5 × 1018/cm3. The gas jet is placed 2.0mm after the laser focus. Other parameters are the same as in Fig. 2. Figure 7 shows the macroscopic spectrum in the combined field (bold red curve). For comparison, the single-atom result is also presented (thin blue curve). One can clearly see that the interference fringes through the plateau to the cutoff are all removed after propagation, which implies that the continuous harmonics from a single path are perfectly phase-matched. Since the relative time-delay between the controlling pulse and the driving pulse can affect the generation of the supercontinuum, we further discuss the influences of the relative time-delay. Figure 8 presents the macroscopic harmonic spectra produced at the different time-delays between the 2000-nm and 400-nm fields. As shown in this figure, for the three different time-delays, the bandwidth of the macroscopic supercontinuous spectra hardly changes. Namely, the macroscopic broadband supercontinuum can be obtained when the time-delay is within the range from 0.4T0 to 0.45T0. In the current laser technology, the time-delay can be controlled in dozens of attosecond by a piezoelectric translator [43]. Thus our scheme is stable against small changes in the relative time-delay.

 

Fig. 7 The harmonic spectrum after 3D propagation in the combined field.

Download Full Size | PPT Slide | PDF

 

Fig. 8 The macroscopic harmonic spectra generated at the different time-delays between the 2000-nm and 400-nm fields.

Download Full Size | PPT Slide | PDF

In the following, we investigate the attosecond pulse generation making use of the macroscopic supercontinuum (bold red curve) in Fig. 7. Figure 9 presents the isolated attosecond pulses by synthesizing the harmonics of 160–220, 220–280, and 280–340 order, respectively. As shown in this figure, by applying a square window to the supercontinuum, the isolated sub-110-as pulses with extremely high signal-to-noise ratio are directly obtained without any chirp compensation. Moreover, this supercontinuum with the bandwidth of 165eV can support the attosecond pulse duration below 24as with proper chirp compensation. Since the spatiotemporal properties of the attosecond pulses are very important for practical applications, we further investigate the spatiotemporal profiles of the isolated attosecond pulses in the near field. Figure 10(a) and (b) present the spatiotemporal profiles of the attosecond pulses at the end of the medium generated by superposing the harmonics of (a) 160th–220th and (b) 280th–340th, respectively. For the attosecond pulse generated by superposing the harmonics of 160th–220th, as shown in Fig. 10(a), the near-field spatiotemporal distribution shows a crescent-like structure. And the attosecond pulse has a second maximal intensity around the radius of 27μm. For the attosecond pulse generated by superposing the harmonics of 280th–340th, as shown in Fig. 10(b), the crescent-like distribution is obviously degenerate. And the attosecond pulse has a maximal intensity around the radius of 23μm. Moreover, the isolated attosecond pulse has a strong spatial chirp and is generated later off-axis than on-axis. In order to clearly understand the near-field spatiotemporal characteristics of the generated attosecond pulses, we investigate the spatial distribution of macroscopic HHG spectrum at the exit face. The result is shown in Fig. 11. One can clearly see that there is a broadband macroscopic supercontinuum in the region (radius: −10μm—10μm and harmonic order: 150th–380th). And the intensity of the harmonics in the cutoff is stronger than that of the harmonics in the plateau for each value of radius, which leads to the appearance of the ring structure in the radial direction in the range from 150th to 380th. Moreover, the intensity of the harmonics in the cutoff decreases as the radius increases. The ring structure of the macroscopic harmonic spectrum leads to the appearance of a second maximal intensity of the isolated attosecond pulse generated by superposing the harmonics of 160th–220th around the radius of 27μm and the appearance of a maximal intensity of the isolated attosecond pulse generated by superposing the harmonics of 280th–340th around the radius of 23μm.

 

Fig. 9 Isolated attosecond pulses centered at different frequencies.

Download Full Size | PPT Slide | PDF

 

Fig. 10 Spatiotemporal profiles of the attosecond pulses at the end of the medium generated by superposing the harmonics of (a) 160th–220th and (b) 280th–340th, respectively.

Download Full Size | PPT Slide | PDF

 

Fig. 11 Spatial distribution of macroscopic HHG spectrum at the exit face.

Download Full Size | PPT Slide | PDF

The far-field spatiotemporal characteristics of the attosecond pulse are very important for its practical applications. We further investigate the spatial profile and spatiotemporal characteristic of the isolated attosecond pulse in the far field. In the calculation, the far-field position is located 1.0m from the laser focus. The spatial profile of isolated attosecond pulse generated by superposing the harmonics from 220 to 280 is shown in Fig. 12(a). It can be seen from this figure that the divergence angle of the generated isolated attosecond pulse is about 0.1mrad according to our calculation. This indicates that a large amount of the energy is radiated on axis and the isolated attosecond pulse processes a good beam quality. In order to fully show the far-field characteristic of the isolated attosecond pulse, figure 12(b) presents the spatiotemporal profile of the isolated attosecond pulse in the far field. As shown in this figure, the attosecond pulse is radiated at t = 0.25T0 on axis and the generated attosecond pulse presents a curved spatial distribution. Fortunately, a large energy of the attosecond pulse is radiated on axis. Thus, a strong isolated attosecond pulse can be directly obtained in the far field.

 

Fig. 12 The far-field spatial profile and far-field spatiotemporal profile of isolated attosecond pulse generated by superposing the harmonics from 220 to 280.

Download Full Size | PPT Slide | PDF

Next,we investigate the influence of the near-field filter to the far-field characteristic of the generated attosecond pulse. Figure 13(a) presents the far-field profile of the generated attosecond pulse by using the near-field filter with a radius of 5μm. Other parameters are the same as in Fig. 12. As shown in Fig. 13(a), the far-field spatial distribution is a Gaussian-like stucture. Moreover, the divergence angle is larger than that without the near-field spatial filter as shown in Fig. 12(a). This implies that the better beam quality can be obtained without the near-field filter. In order to clearly show the far-field spatiotemporal characteristic of the generated attosecond pulse, figure 13(b) presents the spatiotemporal profile of the isolated attosecond pulse with the near-field filter. As shown in this figure, the generated attosecond pulse also presents a curved spatial distribution. It is quite surprising that the attosecond pulse is radiated at t = 0.05T0 on axis, which is obviously earlier than that without the near-field filter. In order to further understand the different radiation times of the attosecond pulses without and with the near-field filter, figure 14 shows the time-frequency distribution of on-axis harmonic spectra in the far field without and with the near-field filter. As shown in Fig. 14(a), when the total near-field harmonics are ”projected” into the far field, the intensity of the long quantum path is stronger than that of the short one. In other words, the long quantum path is successfully selected in the far field for this case. However, when the near-field filter is performed, only the harmonics in the window from 0 to 5μm in the near field are ”projected” in to the far field. As shown in Fig. 14(b), the intensity of the short quantum path is stronger than that of the long one. Namely, the short quantum path is successfully selected in the far field. Therefore, the different radiation times of the far-field attosecond pulses without and with the near-field filter come from the different selection (short or long) of the quantum path. Moreover, our results also imply that a near-field spatial filter can be also used to select different quantum paths (short or long) in the far field. In addition, we also calculate the far-field profiles of isolated attosecond pulses with the near-field filter at different radiuses, which is shown in Fig. 15. It is clear that the divergence angle of the attosecond pulse can be significantly affected by the radius of the near-field filter. For comparison, the far-field profile of isolated attosecond pulse without the near-field filter is also presented (solid glaucous curve). At first glance, the far-field profile without the near-field filter is much closer to that using the near-field filter with a radius of 5μm. This is because that the normalized intensity is used in this figure. In fact, they are quite different. The intensity of the attosecond pulse without the near-field filter is far larger than that using the near-field filter with a radius of 5μm. Moreover, as shown in Fig. 12(b), when the near-field filter is not adopted, the attosecond pulse is radiated at t = 0.25T0 on axis, which corresponds to the long quantum path. However, as shown in Fig. 13(b), when the near-field filter with a radius of 5μm is adopted, the attosecond pulse is radiated at t = 0.05T0 on axis, which corresponds to the short quantum path.

 

Fig. 13 The far-field profile and far-field spatiotemporal profile of isolated attosecond pulse generated by superposing the harmonics from 220 to 280 using the near-field filter with a radius of 5μm.

Download Full Size | PPT Slide | PDF

 

Fig. 14 Time-frequency distribution of on-axis harmonic spectra in the far field without (a) and with (b) the near-field filter.

Download Full Size | PPT Slide | PDF

 

Fig. 15 The far-field profiles of isolated attosecond pulses with the near-field filter at different radiuses. The solid glaucous curve is the far-field profile of isolated attosecond pulse without the near-field filter.

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we investigate the broadband supercontinuum generation by adding a 400-nm few-cycle laser pulse to a 2000-nm driving pulse. It is found that a weak 400-nm few-cycle pulse can be used to replace the ultraviolet attosecond pulse for controlling the ionization dynamics of the electron wave packets when a long-wavelength driving pulse is adopted. By properly selecting the time-delay between the two pulses, only a quantum path can be selected to effectively contribute to the harmonics, leading to the efficient generation of a broadband supercontinuum. Moreover, the microscopic broadband supercontinuum can be produced for nearly all the small parameter shift of the driving pulse and the controlling pulse. The macroscopic propagation is also carried out and the macroscopic supercontinuum with the bandwidth of about 165eV can be generated. Then isolated sub-110-as pulses can be directly obtained. Moreover, the generated attosecond pulse has a good beam quality in the far field. In addition, we also find that a near-field spatial filter can be used to select the different quantum paths (short or long) in the far field.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 91026021, 11075068, 10875054, 11175076 and 10975065), the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2010-k08) and Scholarship Award for Excellent Doctoral Student granted by Ministry of Education.

References and links

1. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009). [CrossRef]  

2. A. Rundruist, C. Durfee III, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412–1415 (1998). [CrossRef]  

3. R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002). [PubMed]  

4. M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001). [CrossRef]  

5. P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001). [CrossRef]   [PubMed]  

6. E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008). [CrossRef]   [PubMed]  

7. F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics 4, 875–879 (2010). [CrossRef]  

8. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006). [CrossRef]   [PubMed]  

9. X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009). [CrossRef]   [PubMed]  

10. S. Gilbertson, S. Khan, Y. Wu, M. Chini, and Z. Chang, “Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers,” Phys. Rev. Lett. 105, 093902 (2010). [CrossRef]   [PubMed]  

11. P. Salières, A. L’Huillier, and M. Lewenstein, “Coherence control of the high-order harmonics,” Phys. Rev. Lett. 74, 3376–3379 (1995). [CrossRef]  

12. P. Salières, T. Ditmire, M. Perry, A. L’Huillier, and M. Lewenstein, “Angular distributions of the high-order harmonics generated by a femtosecond laser,” J. Phys. B 29, 4771–4786 (1996). [CrossRef]  

13. F. Schapper, M. Holler, T. Auguste, A. Zair, M. Weger, P. Salières, L. Gallmann, and U. Keller, “Spatial finger-print of quantum path interferences in high order harmonic generation,” Opt. Express 18, 2987–2994 (2010). [CrossRef]   [PubMed]  

14. P. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993). [CrossRef]  

15. E. Takahashi, P. Lan, O. Mücke, Y. Nabekawa, and K. Midorikawa, “Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse,” Phys. Rev. Lett. 104, 233901 (2010). [CrossRef]   [PubMed]  

16. T. Pfeifer, L. Gallmann, M. Abel, D. Neumark, and S. Leone, “Single attosecond pulse generation in the multicycle-driver regime by adding a weak second-harmonic field,” Opt. Lett. 31, 975–977 (2006). [CrossRef]   [PubMed]  

17. Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98, 203901 (2007). [CrossRef]   [PubMed]  

18. W. Hong, P. Lu, Q. Li, and Q. Zhang, “Broadband water window supercontinuum generation with a tailored mid-IR pulse in neutral media,” Opt. Lett. 34, 2102–2104 (2009). [CrossRef]   [PubMed]  

19. P. Lan, P. Lu, Q. Li, F. Li, W. Hong, and Q. Zhang, “Macroscopic effects for quantum control of broadband isolated attosecond pulse generation with a two-color field,” Phys. Rev. A 79, 043413 (2009). [CrossRef]  

20. H. Du and B. Hu, “Propagation effects of isolated attosecond pulse generation with a multicycle chirped and chirped-free two-color field,” Phys. Rev. A 84, 023817 (2011). [CrossRef]  

21. H. Du, H. Wang, and B. Hu, “Isolated short attosecond pulse generated using a two-color laser and a high-order pulse,” Phys. Rev. A 81, 063813 (2010). [CrossRef]  

22. H. Du, L. Luo, X. Wang, and B. Hu, “Isolated attosecond pulse generation from pre-excited medium with a chirped and chirped-free two-color field,” Opt. Express 20, 9713–9725 (2012). [CrossRef]   [PubMed]  

23. F. Calegari, C. Vozzi, M. Negro, G. Sansone, F. Frassetto, L. Poletto, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver,” Opt. Lett. 34, 3125–3127 (2009). [CrossRef]   [PubMed]  

24. P. Lan, E. Takahashi, and K. Midorikawa, “Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation,” Phys. Rev. A 82, 053413 (2010). [CrossRef]  

25. P. Corkum, N. Burnett, and M. Ivanov, “Subfemtosecond pulses,” Opt. Lett. 19, 1870–1872 (1994). [CrossRef]   [PubMed]  

26. Z. Chang, “Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau,” Phys. Rev. A 70, 043802 (2004). [CrossRef]  

27. C. Altucci, V. Tosa, and R. Velotta, “Beyond the single-atom response in isolated attosecond-pulse generation,” Phys. Rev. A 75, 061401(R) (2007). [CrossRef]  

28. C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett. 35, 2798–2880 (2010). [CrossRef]   [PubMed]  

29. H. Du and B. Hu, “Broadband supercontinuum generation method combining mid-infrared chirped-pulse modulation and generalized polarization gating,” Opt. Express 18, 25958–25966 (2010). [CrossRef]   [PubMed]  

30. K. Schafer, M. Gaarde, A. Heinrich, J. Biegert, and U. Keller, “Strong field quantum path control using attosecond pulse trains,” Phys. Rev. Lett. 92, 023003 (2004). [CrossRef]   [PubMed]  

31. K. Ishikawa, “Photoemission and ionization of He+ under simultaneous irradiation of fundamental laser and high-order harmonic pulses,” Phys. Rev. Lett. 91, 043002 (2003). [CrossRef]   [PubMed]  

32. M. Gaarde, K. Schafer, A. Heinrich, J. Biegert, and U. Keller, “Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation,” Phys. Rev. A 72, 013411 (2005). [CrossRef]  

33. A. Bandrauk and N. Shon, “Attosecond control of ionization and high-order harmonic generation in molecules,” Phys. Rev. A 66, 031401(R) (2002). [CrossRef]  

34. P. Lan, P. Lu, W. Cao, and X. Wang, “Efficient generation of an isolated single-cycle attosecond pulse,” Phys. Rev. A 76, 043808 (2007). [CrossRef]  

35. M. Lewenstein, Ph. Balcou, M. Ivanov, A. L’Huillier, and P. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994). [CrossRef]   [PubMed]  

36. H. Bethe and E. Salpeter, Quantum mechanics of one and two electron atoms (Academic, New York, 1957).

37. M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atoms ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

38. E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000). [CrossRef]  

39. A. L’Huillier, P. Balcou, S. Candel, K. Schafer, and K. Kulander, “Calculations of high-order harmonic-generation processes in xenon at 1064nm,” Phys. Rev. A 46, 2778–2790 (1992). [CrossRef]  

40. V. Tosa, K. Kim, and C. Nam, “Macroscopic generation of attosecond-pulse trains in strongly ionized media,” Phys. Rev. A 79, 043828 (2009). [CrossRef]  

41. C. Jin, A.-T. Le, and C. Lin, “Medium propagation effects in high-order harmonic generation of Ar and N2,” Phys. Rev. A 83, 023411 (2011). [CrossRef]  

42. M. Gaarde, J. Tate, and K. Schafer, “Macroscopic aspects of attosecond pulse generation,” J. Phys. B 41, 132001 (2008). [CrossRef]  

43. H. Mashiko, S. Gilbertson, C. Li, S. Khan, M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100, 103906 (2008). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
    [Crossref]
  2. A. Rundruist, C. Durfee, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412–1415 (1998).
    [Crossref]
  3. R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
    [PubMed]
  4. M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
    [Crossref]
  5. P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
    [Crossref] [PubMed]
  6. E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
    [Crossref] [PubMed]
  7. F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics 4, 875–879 (2010).
    [Crossref]
  8. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
    [Crossref] [PubMed]
  9. X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).
    [Crossref] [PubMed]
  10. S. Gilbertson, S. Khan, Y. Wu, M. Chini, and Z. Chang, “Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers,” Phys. Rev. Lett. 105, 093902 (2010).
    [Crossref] [PubMed]
  11. P. Salières, A. L’Huillier, and M. Lewenstein, “Coherence control of the high-order harmonics,” Phys. Rev. Lett. 74, 3376–3379 (1995).
    [Crossref]
  12. P. Salières, T. Ditmire, M. Perry, A. L’Huillier, and M. Lewenstein, “Angular distributions of the high-order harmonics generated by a femtosecond laser,” J. Phys. B 29, 4771–4786 (1996).
    [Crossref]
  13. F. Schapper, M. Holler, T. Auguste, A. Zair, M. Weger, P. Salières, L. Gallmann, and U. Keller, “Spatial finger-print of quantum path interferences in high order harmonic generation,” Opt. Express 18, 2987–2994 (2010).
    [Crossref] [PubMed]
  14. P. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
    [Crossref]
  15. E. Takahashi, P. Lan, O. Mücke, Y. Nabekawa, and K. Midorikawa, “Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse,” Phys. Rev. Lett. 104, 233901 (2010).
    [Crossref] [PubMed]
  16. T. Pfeifer, L. Gallmann, M. Abel, D. Neumark, and S. Leone, “Single attosecond pulse generation in the multicycle-driver regime by adding a weak second-harmonic field,” Opt. Lett. 31, 975–977 (2006).
    [Crossref] [PubMed]
  17. Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98, 203901 (2007).
    [Crossref] [PubMed]
  18. W. Hong, P. Lu, Q. Li, and Q. Zhang, “Broadband water window supercontinuum generation with a tailored mid-IR pulse in neutral media,” Opt. Lett. 34, 2102–2104 (2009).
    [Crossref] [PubMed]
  19. P. Lan, P. Lu, Q. Li, F. Li, W. Hong, and Q. Zhang, “Macroscopic effects for quantum control of broadband isolated attosecond pulse generation with a two-color field,” Phys. Rev. A 79, 043413 (2009).
    [Crossref]
  20. H. Du and B. Hu, “Propagation effects of isolated attosecond pulse generation with a multicycle chirped and chirped-free two-color field,” Phys. Rev. A 84, 023817 (2011).
    [Crossref]
  21. H. Du, H. Wang, and B. Hu, “Isolated short attosecond pulse generated using a two-color laser and a high-order pulse,” Phys. Rev. A 81, 063813 (2010).
    [Crossref]
  22. H. Du, L. Luo, X. Wang, and B. Hu, “Isolated attosecond pulse generation from pre-excited medium with a chirped and chirped-free two-color field,” Opt. Express 20, 9713–9725 (2012).
    [Crossref] [PubMed]
  23. F. Calegari, C. Vozzi, M. Negro, G. Sansone, F. Frassetto, L. Poletto, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver,” Opt. Lett. 34, 3125–3127 (2009).
    [Crossref] [PubMed]
  24. P. Lan, E. Takahashi, and K. Midorikawa, “Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation,” Phys. Rev. A 82, 053413 (2010).
    [Crossref]
  25. P. Corkum, N. Burnett, and M. Ivanov, “Subfemtosecond pulses,” Opt. Lett. 19, 1870–1872 (1994).
    [Crossref] [PubMed]
  26. Z. Chang, “Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau,” Phys. Rev. A 70, 043802 (2004).
    [Crossref]
  27. C. Altucci, V. Tosa, and R. Velotta, “Beyond the single-atom response in isolated attosecond-pulse generation,” Phys. Rev. A 75, 061401(R) (2007).
    [Crossref]
  28. C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett. 35, 2798–2880 (2010).
    [Crossref] [PubMed]
  29. H. Du and B. Hu, “Broadband supercontinuum generation method combining mid-infrared chirped-pulse modulation and generalized polarization gating,” Opt. Express 18, 25958–25966 (2010).
    [Crossref] [PubMed]
  30. K. Schafer, M. Gaarde, A. Heinrich, J. Biegert, and U. Keller, “Strong field quantum path control using attosecond pulse trains,” Phys. Rev. Lett. 92, 023003 (2004).
    [Crossref] [PubMed]
  31. K. Ishikawa, “Photoemission and ionization of He+ under simultaneous irradiation of fundamental laser and high-order harmonic pulses,” Phys. Rev. Lett. 91, 043002 (2003).
    [Crossref] [PubMed]
  32. M. Gaarde, K. Schafer, A. Heinrich, J. Biegert, and U. Keller, “Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation,” Phys. Rev. A 72, 013411 (2005).
    [Crossref]
  33. A. Bandrauk and N. Shon, “Attosecond control of ionization and high-order harmonic generation in molecules,” Phys. Rev. A 66, 031401(R) (2002).
    [Crossref]
  34. P. Lan, P. Lu, W. Cao, and X. Wang, “Efficient generation of an isolated single-cycle attosecond pulse,” Phys. Rev. A 76, 043808 (2007).
    [Crossref]
  35. M. Lewenstein, Ph. Balcou, M. Ivanov, A. L’Huillier, and P. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
    [Crossref] [PubMed]
  36. H. Bethe and E. Salpeter, Quantum mechanics of one and two electron atoms (Academic, New York, 1957).
  37. M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atoms ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).
  38. E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
    [Crossref]
  39. A. L’Huillier, P. Balcou, S. Candel, K. Schafer, and K. Kulander, “Calculations of high-order harmonic-generation processes in xenon at 1064nm,” Phys. Rev. A 46, 2778–2790 (1992).
    [Crossref]
  40. V. Tosa, K. Kim, and C. Nam, “Macroscopic generation of attosecond-pulse trains in strongly ionized media,” Phys. Rev. A 79, 043828 (2009).
    [Crossref]
  41. C. Jin, A.-T. Le, and C. Lin, “Medium propagation effects in high-order harmonic generation of Ar and N2,” Phys. Rev. A 83, 023411 (2011).
    [Crossref]
  42. M. Gaarde, J. Tate, and K. Schafer, “Macroscopic aspects of attosecond pulse generation,” J. Phys. B 41, 132001 (2008).
    [Crossref]
  43. H. Mashiko, S. Gilbertson, C. Li, S. Khan, M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100, 103906 (2008).
    [Crossref] [PubMed]

2012 (1)

2011 (2)

H. Du and B. Hu, “Propagation effects of isolated attosecond pulse generation with a multicycle chirped and chirped-free two-color field,” Phys. Rev. A 84, 023817 (2011).
[Crossref]

C. Jin, A.-T. Le, and C. Lin, “Medium propagation effects in high-order harmonic generation of Ar and N2,” Phys. Rev. A 83, 023411 (2011).
[Crossref]

2010 (8)

H. Du, H. Wang, and B. Hu, “Isolated short attosecond pulse generated using a two-color laser and a high-order pulse,” Phys. Rev. A 81, 063813 (2010).
[Crossref]

P. Lan, E. Takahashi, and K. Midorikawa, “Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation,” Phys. Rev. A 82, 053413 (2010).
[Crossref]

C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett. 35, 2798–2880 (2010).
[Crossref] [PubMed]

H. Du and B. Hu, “Broadband supercontinuum generation method combining mid-infrared chirped-pulse modulation and generalized polarization gating,” Opt. Express 18, 25958–25966 (2010).
[Crossref] [PubMed]

F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics 4, 875–879 (2010).
[Crossref]

S. Gilbertson, S. Khan, Y. Wu, M. Chini, and Z. Chang, “Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers,” Phys. Rev. Lett. 105, 093902 (2010).
[Crossref] [PubMed]

F. Schapper, M. Holler, T. Auguste, A. Zair, M. Weger, P. Salières, L. Gallmann, and U. Keller, “Spatial finger-print of quantum path interferences in high order harmonic generation,” Opt. Express 18, 2987–2994 (2010).
[Crossref] [PubMed]

E. Takahashi, P. Lan, O. Mücke, Y. Nabekawa, and K. Midorikawa, “Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse,” Phys. Rev. Lett. 104, 233901 (2010).
[Crossref] [PubMed]

2009 (6)

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).
[Crossref] [PubMed]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

F. Calegari, C. Vozzi, M. Negro, G. Sansone, F. Frassetto, L. Poletto, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver,” Opt. Lett. 34, 3125–3127 (2009).
[Crossref] [PubMed]

W. Hong, P. Lu, Q. Li, and Q. Zhang, “Broadband water window supercontinuum generation with a tailored mid-IR pulse in neutral media,” Opt. Lett. 34, 2102–2104 (2009).
[Crossref] [PubMed]

P. Lan, P. Lu, Q. Li, F. Li, W. Hong, and Q. Zhang, “Macroscopic effects for quantum control of broadband isolated attosecond pulse generation with a two-color field,” Phys. Rev. A 79, 043413 (2009).
[Crossref]

V. Tosa, K. Kim, and C. Nam, “Macroscopic generation of attosecond-pulse trains in strongly ionized media,” Phys. Rev. A 79, 043828 (2009).
[Crossref]

2008 (3)

M. Gaarde, J. Tate, and K. Schafer, “Macroscopic aspects of attosecond pulse generation,” J. Phys. B 41, 132001 (2008).
[Crossref]

H. Mashiko, S. Gilbertson, C. Li, S. Khan, M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100, 103906 (2008).
[Crossref] [PubMed]

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

2007 (3)

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98, 203901 (2007).
[Crossref] [PubMed]

C. Altucci, V. Tosa, and R. Velotta, “Beyond the single-atom response in isolated attosecond-pulse generation,” Phys. Rev. A 75, 061401(R) (2007).
[Crossref]

P. Lan, P. Lu, W. Cao, and X. Wang, “Efficient generation of an isolated single-cycle attosecond pulse,” Phys. Rev. A 76, 043808 (2007).
[Crossref]

2006 (2)

T. Pfeifer, L. Gallmann, M. Abel, D. Neumark, and S. Leone, “Single attosecond pulse generation in the multicycle-driver regime by adding a weak second-harmonic field,” Opt. Lett. 31, 975–977 (2006).
[Crossref] [PubMed]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

2005 (1)

M. Gaarde, K. Schafer, A. Heinrich, J. Biegert, and U. Keller, “Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation,” Phys. Rev. A 72, 013411 (2005).
[Crossref]

2004 (2)

Z. Chang, “Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau,” Phys. Rev. A 70, 043802 (2004).
[Crossref]

K. Schafer, M. Gaarde, A. Heinrich, J. Biegert, and U. Keller, “Strong field quantum path control using attosecond pulse trains,” Phys. Rev. Lett. 92, 023003 (2004).
[Crossref] [PubMed]

2003 (1)

K. Ishikawa, “Photoemission and ionization of He+ under simultaneous irradiation of fundamental laser and high-order harmonic pulses,” Phys. Rev. Lett. 91, 043002 (2003).
[Crossref] [PubMed]

2002 (2)

A. Bandrauk and N. Shon, “Attosecond control of ionization and high-order harmonic generation in molecules,” Phys. Rev. A 66, 031401(R) (2002).
[Crossref]

R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
[PubMed]

2001 (2)

M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
[Crossref]

P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref] [PubMed]

2000 (1)

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

1998 (1)

A. Rundruist, C. Durfee, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412–1415 (1998).
[Crossref]

1996 (1)

P. Salières, T. Ditmire, M. Perry, A. L’Huillier, and M. Lewenstein, “Angular distributions of the high-order harmonics generated by a femtosecond laser,” J. Phys. B 29, 4771–4786 (1996).
[Crossref]

1995 (1)

P. Salières, A. L’Huillier, and M. Lewenstein, “Coherence control of the high-order harmonics,” Phys. Rev. Lett. 74, 3376–3379 (1995).
[Crossref]

1994 (2)

P. Corkum, N. Burnett, and M. Ivanov, “Subfemtosecond pulses,” Opt. Lett. 19, 1870–1872 (1994).
[Crossref] [PubMed]

M. Lewenstein, Ph. Balcou, M. Ivanov, A. L’Huillier, and P. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

1993 (1)

P. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref]

1992 (1)

A. L’Huillier, P. Balcou, S. Candel, K. Schafer, and K. Kulander, “Calculations of high-order harmonic-generation processes in xenon at 1064nm,” Phys. Rev. A 46, 2778–2790 (1992).
[Crossref]

1986 (1)

M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atoms ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Abel, M.

Agostini, P.

P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref] [PubMed]

Altucci, C.

C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett. 35, 2798–2880 (2010).
[Crossref] [PubMed]

C. Altucci, V. Tosa, and R. Velotta, “Beyond the single-atom response in isolated attosecond-pulse generation,” Phys. Rev. A 75, 061401(R) (2007).
[Crossref]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

Ammosov, M.

M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atoms ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Aquila, A.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

Attwood, D.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
[PubMed]

Auge, F.

P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref] [PubMed]

Auguste, T.

Avaldi, L.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Backus, S.

R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
[PubMed]

A. Rundruist, C. Durfee, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412–1415 (1998).
[Crossref]

Balcou, P.

A. L’Huillier, P. Balcou, S. Candel, K. Schafer, and K. Kulander, “Calculations of high-order harmonic-generation processes in xenon at 1064nm,” Phys. Rev. A 46, 2778–2790 (1992).
[Crossref]

Balcou, Ph.

P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref] [PubMed]

M. Lewenstein, Ph. Balcou, M. Ivanov, A. L’Huillier, and P. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

Bandrauk, A.

A. Bandrauk and N. Shon, “Attosecond control of ionization and high-order harmonic generation in molecules,” Phys. Rev. A 66, 031401(R) (2002).
[Crossref]

Bartels, R.

R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
[PubMed]

Benedetti, E.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Bethe, H.

H. Bethe and E. Salpeter, Quantum mechanics of one and two electron atoms (Academic, New York, 1957).

Biegert, J.

M. Gaarde, K. Schafer, A. Heinrich, J. Biegert, and U. Keller, “Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation,” Phys. Rev. A 72, 013411 (2005).
[Crossref]

K. Schafer, M. Gaarde, A. Heinrich, J. Biegert, and U. Keller, “Strong field quantum path control using attosecond pulse trains,” Phys. Rev. Lett. 92, 023003 (2004).
[Crossref] [PubMed]

Brabec, T.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
[Crossref]

Breger, P.

P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref] [PubMed]

Bruzzese, R.

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

Burnett, N.

Calegari, F.

C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett. 35, 2798–2880 (2010).
[Crossref] [PubMed]

F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics 4, 875–879 (2010).
[Crossref]

F. Calegari, C. Vozzi, M. Negro, G. Sansone, F. Frassetto, L. Poletto, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver,” Opt. Lett. 34, 3125–3127 (2009).
[Crossref] [PubMed]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Candel, S.

A. L’Huillier, P. Balcou, S. Candel, K. Schafer, and K. Kulander, “Calculations of high-order harmonic-generation processes in xenon at 1064nm,” Phys. Rev. A 46, 2778–2790 (1992).
[Crossref]

Cao, W.

P. Lan, P. Lu, W. Cao, and X. Wang, “Efficient generation of an isolated single-cycle attosecond pulse,” Phys. Rev. A 76, 043808 (2007).
[Crossref]

Ceccherini, P.

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

Cerullo, G.

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

Chang, Z.

S. Gilbertson, S. Khan, Y. Wu, M. Chini, and Z. Chang, “Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers,” Phys. Rev. Lett. 105, 093902 (2010).
[Crossref] [PubMed]

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).
[Crossref] [PubMed]

H. Mashiko, S. Gilbertson, C. Li, S. Khan, M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100, 103906 (2008).
[Crossref] [PubMed]

Z. Chang, “Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau,” Phys. Rev. A 70, 043802 (2004).
[Crossref]

A. Rundruist, C. Durfee, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412–1415 (1998).
[Crossref]

Cheng, Y.

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98, 203901 (2007).
[Crossref] [PubMed]

Chini, M.

S. Gilbertson, S. Khan, Y. Wu, M. Chini, and Z. Chang, “Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers,” Phys. Rev. Lett. 105, 093902 (2010).
[Crossref] [PubMed]

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).
[Crossref] [PubMed]

Christov, I.

R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
[PubMed]

Corkum, P.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
[Crossref]

P. Corkum, N. Burnett, and M. Ivanov, “Subfemtosecond pulses,” Opt. Lett. 19, 1870–1872 (1994).
[Crossref] [PubMed]

M. Lewenstein, Ph. Balcou, M. Ivanov, A. L’Huillier, and P. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

P. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref]

de Lisio, C.

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

De Silvestri, S.

C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett. 35, 2798–2880 (2010).
[Crossref] [PubMed]

F. Calegari, C. Vozzi, M. Negro, G. Sansone, F. Frassetto, L. Poletto, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver,” Opt. Lett. 34, 3125–3127 (2009).
[Crossref] [PubMed]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

Delone, N.

M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atoms ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Ditmire, T.

P. Salières, T. Ditmire, M. Perry, A. L’Huillier, and M. Lewenstein, “Angular distributions of the high-order harmonics generated by a femtosecond laser,” J. Phys. B 29, 4771–4786 (1996).
[Crossref]

Drescher, M.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
[Crossref]

Du, H.

H. Du, L. Luo, X. Wang, and B. Hu, “Isolated attosecond pulse generation from pre-excited medium with a chirped and chirped-free two-color field,” Opt. Express 20, 9713–9725 (2012).
[Crossref] [PubMed]

H. Du and B. Hu, “Propagation effects of isolated attosecond pulse generation with a multicycle chirped and chirped-free two-color field,” Phys. Rev. A 84, 023817 (2011).
[Crossref]

H. Du, H. Wang, and B. Hu, “Isolated short attosecond pulse generated using a two-color laser and a high-order pulse,” Phys. Rev. A 81, 063813 (2010).
[Crossref]

H. Du and B. Hu, “Broadband supercontinuum generation method combining mid-infrared chirped-pulse modulation and generalized polarization gating,” Opt. Express 18, 25958–25966 (2010).
[Crossref] [PubMed]

Durfee, C.

A. Rundruist, C. Durfee, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412–1415 (1998).
[Crossref]

Feng, X.

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).
[Crossref] [PubMed]

Ferrari, F.

F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics 4, 875–879 (2010).
[Crossref]

Flammini, R.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Frassetto, F.

Gaarde, M.

M. Gaarde, J. Tate, and K. Schafer, “Macroscopic aspects of attosecond pulse generation,” J. Phys. B 41, 132001 (2008).
[Crossref]

M. Gaarde, K. Schafer, A. Heinrich, J. Biegert, and U. Keller, “Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation,” Phys. Rev. A 72, 013411 (2005).
[Crossref]

K. Schafer, M. Gaarde, A. Heinrich, J. Biegert, and U. Keller, “Strong field quantum path control using attosecond pulse trains,” Phys. Rev. Lett. 92, 023003 (2004).
[Crossref] [PubMed]

Gagnon, J.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

Gallmann, L.

Gilbertson, S.

S. Gilbertson, S. Khan, Y. Wu, M. Chini, and Z. Chang, “Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers,” Phys. Rev. Lett. 105, 093902 (2010).
[Crossref] [PubMed]

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).
[Crossref] [PubMed]

H. Mashiko, S. Gilbertson, C. Li, S. Khan, M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100, 103906 (2008).
[Crossref] [PubMed]

Goulielmakis, E.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

Green, H.

R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
[PubMed]

Gullikson, E.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

Heinrich, A.

M. Gaarde, K. Schafer, A. Heinrich, J. Biegert, and U. Keller, “Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation,” Phys. Rev. A 72, 013411 (2005).
[Crossref]

K. Schafer, M. Gaarde, A. Heinrich, J. Biegert, and U. Keller, “Strong field quantum path control using attosecond pulse trains,” Phys. Rev. Lett. 92, 023003 (2004).
[Crossref] [PubMed]

Heinzmann, U.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
[Crossref]

Hentschel, M.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
[Crossref]

Herne, C.

A. Rundruist, C. Durfee, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412–1415 (1998).
[Crossref]

Hofstetter, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

Holler, M.

Hong, W.

W. Hong, P. Lu, Q. Li, and Q. Zhang, “Broadband water window supercontinuum generation with a tailored mid-IR pulse in neutral media,” Opt. Lett. 34, 2102–2104 (2009).
[Crossref] [PubMed]

P. Lan, P. Lu, Q. Li, F. Li, W. Hong, and Q. Zhang, “Macroscopic effects for quantum control of broadband isolated attosecond pulse generation with a two-color field,” Phys. Rev. A 79, 043413 (2009).
[Crossref]

Hu, B.

H. Du, L. Luo, X. Wang, and B. Hu, “Isolated attosecond pulse generation from pre-excited medium with a chirped and chirped-free two-color field,” Opt. Express 20, 9713–9725 (2012).
[Crossref] [PubMed]

H. Du and B. Hu, “Propagation effects of isolated attosecond pulse generation with a multicycle chirped and chirped-free two-color field,” Phys. Rev. A 84, 023817 (2011).
[Crossref]

H. Du, H. Wang, and B. Hu, “Isolated short attosecond pulse generated using a two-color laser and a high-order pulse,” Phys. Rev. A 81, 063813 (2010).
[Crossref]

H. Du and B. Hu, “Broadband supercontinuum generation method combining mid-infrared chirped-pulse modulation and generalized polarization gating,” Opt. Express 18, 25958–25966 (2010).
[Crossref] [PubMed]

Ishikawa, K.

K. Ishikawa, “Photoemission and ionization of He+ under simultaneous irradiation of fundamental laser and high-order harmonic pulses,” Phys. Rev. Lett. 91, 043002 (2003).
[Crossref] [PubMed]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

P. Corkum, N. Burnett, and M. Ivanov, “Subfemtosecond pulses,” Opt. Lett. 19, 1870–1872 (1994).
[Crossref] [PubMed]

M. Lewenstein, Ph. Balcou, M. Ivanov, A. L’Huillier, and P. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

Jacobsen, C.

R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
[PubMed]

Jin, C.

C. Jin, A.-T. Le, and C. Lin, “Medium propagation effects in high-order harmonic generation of Ar and N2,” Phys. Rev. A 83, 023411 (2011).
[Crossref]

Kapteyn, H.

R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
[PubMed]

A. Rundruist, C. Durfee, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412–1415 (1998).
[Crossref]

Keller, U.

F. Schapper, M. Holler, T. Auguste, A. Zair, M. Weger, P. Salières, L. Gallmann, and U. Keller, “Spatial finger-print of quantum path interferences in high order harmonic generation,” Opt. Express 18, 2987–2994 (2010).
[Crossref] [PubMed]

M. Gaarde, K. Schafer, A. Heinrich, J. Biegert, and U. Keller, “Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation,” Phys. Rev. A 72, 013411 (2005).
[Crossref]

K. Schafer, M. Gaarde, A. Heinrich, J. Biegert, and U. Keller, “Strong field quantum path control using attosecond pulse trains,” Phys. Rev. Lett. 92, 023003 (2004).
[Crossref] [PubMed]

Khan, S.

S. Gilbertson, S. Khan, Y. Wu, M. Chini, and Z. Chang, “Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers,” Phys. Rev. Lett. 105, 093902 (2010).
[Crossref] [PubMed]

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).
[Crossref] [PubMed]

H. Mashiko, S. Gilbertson, C. Li, S. Khan, M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100, 103906 (2008).
[Crossref] [PubMed]

Kienberger, R.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
[Crossref]

Kim, K.

V. Tosa, K. Kim, and C. Nam, “Macroscopic generation of attosecond-pulse trains in strongly ionized media,” Phys. Rev. A 79, 043828 (2009).
[Crossref]

Kleineberg, U.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

Krainov, V.

M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atoms ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
[Crossref]

Kulander, K.

A. L’Huillier, P. Balcou, S. Candel, K. Schafer, and K. Kulander, “Calculations of high-order harmonic-generation processes in xenon at 1064nm,” Phys. Rev. A 46, 2778–2790 (1992).
[Crossref]

L’Huillier, A.

P. Salières, T. Ditmire, M. Perry, A. L’Huillier, and M. Lewenstein, “Angular distributions of the high-order harmonics generated by a femtosecond laser,” J. Phys. B 29, 4771–4786 (1996).
[Crossref]

P. Salières, A. L’Huillier, and M. Lewenstein, “Coherence control of the high-order harmonics,” Phys. Rev. Lett. 74, 3376–3379 (1995).
[Crossref]

M. Lewenstein, Ph. Balcou, M. Ivanov, A. L’Huillier, and P. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

A. L’Huillier, P. Balcou, S. Candel, K. Schafer, and K. Kulander, “Calculations of high-order harmonic-generation processes in xenon at 1064nm,” Phys. Rev. A 46, 2778–2790 (1992).
[Crossref]

Lan, P.

P. Lan, E. Takahashi, and K. Midorikawa, “Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation,” Phys. Rev. A 82, 053413 (2010).
[Crossref]

E. Takahashi, P. Lan, O. Mücke, Y. Nabekawa, and K. Midorikawa, “Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse,” Phys. Rev. Lett. 104, 233901 (2010).
[Crossref] [PubMed]

P. Lan, P. Lu, Q. Li, F. Li, W. Hong, and Q. Zhang, “Macroscopic effects for quantum control of broadband isolated attosecond pulse generation with a two-color field,” Phys. Rev. A 79, 043413 (2009).
[Crossref]

P. Lan, P. Lu, W. Cao, and X. Wang, “Efficient generation of an isolated single-cycle attosecond pulse,” Phys. Rev. A 76, 043808 (2007).
[Crossref]

Le, A.-T.

C. Jin, A.-T. Le, and C. Lin, “Medium propagation effects in high-order harmonic generation of Ar and N2,” Phys. Rev. A 83, 023411 (2011).
[Crossref]

Leone, S.

Lewenstein, M.

P. Salières, T. Ditmire, M. Perry, A. L’Huillier, and M. Lewenstein, “Angular distributions of the high-order harmonics generated by a femtosecond laser,” J. Phys. B 29, 4771–4786 (1996).
[Crossref]

P. Salières, A. L’Huillier, and M. Lewenstein, “Coherence control of the high-order harmonics,” Phys. Rev. Lett. 74, 3376–3379 (1995).
[Crossref]

M. Lewenstein, Ph. Balcou, M. Ivanov, A. L’Huillier, and P. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

Li, C.

H. Mashiko, S. Gilbertson, C. Li, S. Khan, M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100, 103906 (2008).
[Crossref] [PubMed]

Li, F.

P. Lan, P. Lu, Q. Li, F. Li, W. Hong, and Q. Zhang, “Macroscopic effects for quantum control of broadband isolated attosecond pulse generation with a two-color field,” Phys. Rev. A 79, 043413 (2009).
[Crossref]

Li, Q.

P. Lan, P. Lu, Q. Li, F. Li, W. Hong, and Q. Zhang, “Macroscopic effects for quantum control of broadband isolated attosecond pulse generation with a two-color field,” Phys. Rev. A 79, 043413 (2009).
[Crossref]

W. Hong, P. Lu, Q. Li, and Q. Zhang, “Broadband water window supercontinuum generation with a tailored mid-IR pulse in neutral media,” Opt. Lett. 34, 2102–2104 (2009).
[Crossref] [PubMed]

Li, R.

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98, 203901 (2007).
[Crossref] [PubMed]

Lin, C.

C. Jin, A.-T. Le, and C. Lin, “Medium propagation effects in high-order harmonic generation of Ar and N2,” Phys. Rev. A 83, 023411 (2011).
[Crossref]

Liu, Y.

R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
[PubMed]

Lu, P.

W. Hong, P. Lu, Q. Li, and Q. Zhang, “Broadband water window supercontinuum generation with a tailored mid-IR pulse in neutral media,” Opt. Lett. 34, 2102–2104 (2009).
[Crossref] [PubMed]

P. Lan, P. Lu, Q. Li, F. Li, W. Hong, and Q. Zhang, “Macroscopic effects for quantum control of broadband isolated attosecond pulse generation with a two-color field,” Phys. Rev. A 79, 043413 (2009).
[Crossref]

P. Lan, P. Lu, W. Cao, and X. Wang, “Efficient generation of an isolated single-cycle attosecond pulse,” Phys. Rev. A 76, 043808 (2007).
[Crossref]

Lucchini, M.

F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics 4, 875–879 (2010).
[Crossref]

Luo, L.

Mashiko, H.

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).
[Crossref] [PubMed]

H. Mashiko, S. Gilbertson, C. Li, S. Khan, M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100, 103906 (2008).
[Crossref] [PubMed]

Midorikawa, K.

P. Lan, E. Takahashi, and K. Midorikawa, “Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation,” Phys. Rev. A 82, 053413 (2010).
[Crossref]

E. Takahashi, P. Lan, O. Mücke, Y. Nabekawa, and K. Midorikawa, “Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse,” Phys. Rev. Lett. 104, 233901 (2010).
[Crossref] [PubMed]

Milosevic, N.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
[Crossref]

Moon, E.

H. Mashiko, S. Gilbertson, C. Li, S. Khan, M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100, 103906 (2008).
[Crossref] [PubMed]

Mücke, O.

E. Takahashi, P. Lan, O. Mücke, Y. Nabekawa, and K. Midorikawa, “Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse,” Phys. Rev. Lett. 104, 233901 (2010).
[Crossref] [PubMed]

Muller, H.

P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref] [PubMed]

Mullot, G.

P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref] [PubMed]

Murnane, M.

R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
[PubMed]

A. Rundruist, C. Durfee, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412–1415 (1998).
[Crossref]

Nabekawa, Y.

E. Takahashi, P. Lan, O. Mücke, Y. Nabekawa, and K. Midorikawa, “Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse,” Phys. Rev. Lett. 104, 233901 (2010).
[Crossref] [PubMed]

Nam, C.

V. Tosa, K. Kim, and C. Nam, “Macroscopic generation of attosecond-pulse trains in strongly ionized media,” Phys. Rev. A 79, 043828 (2009).
[Crossref]

Negro, M.

Neumark, D.

Nisoli, M.

F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics 4, 875–879 (2010).
[Crossref]

F. Calegari, C. Vozzi, M. Negro, G. Sansone, F. Frassetto, L. Poletto, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver,” Opt. Lett. 34, 3125–3127 (2009).
[Crossref] [PubMed]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

Paul, A.

R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
[PubMed]

Paul, P.

P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref] [PubMed]

Perry, M.

P. Salières, T. Ditmire, M. Perry, A. L’Huillier, and M. Lewenstein, “Angular distributions of the high-order harmonics generated by a femtosecond laser,” J. Phys. B 29, 4771–4786 (1996).
[Crossref]

Pfeifer, T.

Poletto, L.

C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett. 35, 2798–2880 (2010).
[Crossref] [PubMed]

F. Calegari, C. Vozzi, M. Negro, G. Sansone, F. Frassetto, L. Poletto, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver,” Opt. Lett. 34, 3125–3127 (2009).
[Crossref] [PubMed]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

Priori, E.

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

Reider, G.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
[Crossref]

Rundruist, A.

A. Rundruist, C. Durfee, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412–1415 (1998).
[Crossref]

Salières, P.

F. Schapper, M. Holler, T. Auguste, A. Zair, M. Weger, P. Salières, L. Gallmann, and U. Keller, “Spatial finger-print of quantum path interferences in high order harmonic generation,” Opt. Express 18, 2987–2994 (2010).
[Crossref] [PubMed]

P. Salières, T. Ditmire, M. Perry, A. L’Huillier, and M. Lewenstein, “Angular distributions of the high-order harmonics generated by a femtosecond laser,” J. Phys. B 29, 4771–4786 (1996).
[Crossref]

P. Salières, A. L’Huillier, and M. Lewenstein, “Coherence control of the high-order harmonics,” Phys. Rev. Lett. 74, 3376–3379 (1995).
[Crossref]

Salpeter, E.

H. Bethe and E. Salpeter, Quantum mechanics of one and two electron atoms (Academic, New York, 1957).

Sansone, G.

F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics 4, 875–879 (2010).
[Crossref]

F. Calegari, C. Vozzi, M. Negro, G. Sansone, F. Frassetto, L. Poletto, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver,” Opt. Lett. 34, 3125–3127 (2009).
[Crossref] [PubMed]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Schafer, K.

M. Gaarde, J. Tate, and K. Schafer, “Macroscopic aspects of attosecond pulse generation,” J. Phys. B 41, 132001 (2008).
[Crossref]

M. Gaarde, K. Schafer, A. Heinrich, J. Biegert, and U. Keller, “Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation,” Phys. Rev. A 72, 013411 (2005).
[Crossref]

K. Schafer, M. Gaarde, A. Heinrich, J. Biegert, and U. Keller, “Strong field quantum path control using attosecond pulse trains,” Phys. Rev. Lett. 92, 023003 (2004).
[Crossref] [PubMed]

A. L’Huillier, P. Balcou, S. Candel, K. Schafer, and K. Kulander, “Calculations of high-order harmonic-generation processes in xenon at 1064nm,” Phys. Rev. A 46, 2778–2790 (1992).
[Crossref]

Schapper, F.

Schultze, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

Shakya, M.

H. Mashiko, S. Gilbertson, C. Li, S. Khan, M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100, 103906 (2008).
[Crossref] [PubMed]

Shon, N.

A. Bandrauk and N. Shon, “Attosecond control of ionization and high-order harmonic generation in molecules,” Phys. Rev. A 66, 031401(R) (2002).
[Crossref]

Song, X.

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98, 203901 (2007).
[Crossref] [PubMed]

Spielmann, Ch.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
[Crossref]

Stagira, S.

F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics 4, 875–879 (2010).
[Crossref]

C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett. 35, 2798–2880 (2010).
[Crossref] [PubMed]

F. Calegari, C. Vozzi, M. Negro, G. Sansone, F. Frassetto, L. Poletto, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver,” Opt. Lett. 34, 3125–3127 (2009).
[Crossref] [PubMed]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

Takahashi, E.

P. Lan, E. Takahashi, and K. Midorikawa, “Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation,” Phys. Rev. A 82, 053413 (2010).
[Crossref]

E. Takahashi, P. Lan, O. Mücke, Y. Nabekawa, and K. Midorikawa, “Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse,” Phys. Rev. Lett. 104, 233901 (2010).
[Crossref] [PubMed]

Tate, J.

M. Gaarde, J. Tate, and K. Schafer, “Macroscopic aspects of attosecond pulse generation,” J. Phys. B 41, 132001 (2008).
[Crossref]

Toma, E.

P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref] [PubMed]

Tosa, V.

C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett. 35, 2798–2880 (2010).
[Crossref] [PubMed]

V. Tosa, K. Kim, and C. Nam, “Macroscopic generation of attosecond-pulse trains in strongly ionized media,” Phys. Rev. A 79, 043828 (2009).
[Crossref]

C. Altucci, V. Tosa, and R. Velotta, “Beyond the single-atom response in isolated attosecond-pulse generation,” Phys. Rev. A 75, 061401(R) (2007).
[Crossref]

Uiberacker, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

Velotta, R.

C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett. 35, 2798–2880 (2010).
[Crossref] [PubMed]

C. Altucci, V. Tosa, and R. Velotta, “Beyond the single-atom response in isolated attosecond-pulse generation,” Phys. Rev. A 75, 061401(R) (2007).
[Crossref]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Villoresi, P.

C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett. 35, 2798–2880 (2010).
[Crossref] [PubMed]

F. Calegari, C. Vozzi, M. Negro, G. Sansone, F. Frassetto, L. Poletto, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver,” Opt. Lett. 34, 3125–3127 (2009).
[Crossref] [PubMed]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

Vozzi, C.

C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett. 35, 2798–2880 (2010).
[Crossref] [PubMed]

F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics 4, 875–879 (2010).
[Crossref]

F. Calegari, C. Vozzi, M. Negro, G. Sansone, F. Frassetto, L. Poletto, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver,” Opt. Lett. 34, 3125–3127 (2009).
[Crossref] [PubMed]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Wang, H.

H. Du, H. Wang, and B. Hu, “Isolated short attosecond pulse generated using a two-color laser and a high-order pulse,” Phys. Rev. A 81, 063813 (2010).
[Crossref]

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).
[Crossref] [PubMed]

Wang, X.

Weger, M.

Wu, Y.

S. Gilbertson, S. Khan, Y. Wu, M. Chini, and Z. Chang, “Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers,” Phys. Rev. Lett. 105, 093902 (2010).
[Crossref] [PubMed]

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).
[Crossref] [PubMed]

Xu, Z.

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98, 203901 (2007).
[Crossref] [PubMed]

Yakovlev, V.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

Zair, A.

Zeng, Z.

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98, 203901 (2007).
[Crossref] [PubMed]

Zhang, Q.

W. Hong, P. Lu, Q. Li, and Q. Zhang, “Broadband water window supercontinuum generation with a tailored mid-IR pulse in neutral media,” Opt. Lett. 34, 2102–2104 (2009).
[Crossref] [PubMed]

P. Lan, P. Lu, Q. Li, F. Li, W. Hong, and Q. Zhang, “Macroscopic effects for quantum control of broadband isolated attosecond pulse generation with a two-color field,” Phys. Rev. A 79, 043413 (2009).
[Crossref]

Zhao, K.

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).
[Crossref] [PubMed]

J. Phys. B (2)

P. Salières, T. Ditmire, M. Perry, A. L’Huillier, and M. Lewenstein, “Angular distributions of the high-order harmonics generated by a femtosecond laser,” J. Phys. B 29, 4771–4786 (1996).
[Crossref]

M. Gaarde, J. Tate, and K. Schafer, “Macroscopic aspects of attosecond pulse generation,” J. Phys. B 41, 132001 (2008).
[Crossref]

Nat. Photonics (1)

F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics 4, 875–879 (2010).
[Crossref]

Nature (London) (1)

M. Hentschel, R. Kienberger, Ch. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. A (14)

P. Lan, P. Lu, Q. Li, F. Li, W. Hong, and Q. Zhang, “Macroscopic effects for quantum control of broadband isolated attosecond pulse generation with a two-color field,” Phys. Rev. A 79, 043413 (2009).
[Crossref]

H. Du and B. Hu, “Propagation effects of isolated attosecond pulse generation with a multicycle chirped and chirped-free two-color field,” Phys. Rev. A 84, 023817 (2011).
[Crossref]

H. Du, H. Wang, and B. Hu, “Isolated short attosecond pulse generated using a two-color laser and a high-order pulse,” Phys. Rev. A 81, 063813 (2010).
[Crossref]

P. Lan, E. Takahashi, and K. Midorikawa, “Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation,” Phys. Rev. A 82, 053413 (2010).
[Crossref]

Z. Chang, “Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau,” Phys. Rev. A 70, 043802 (2004).
[Crossref]

C. Altucci, V. Tosa, and R. Velotta, “Beyond the single-atom response in isolated attosecond-pulse generation,” Phys. Rev. A 75, 061401(R) (2007).
[Crossref]

M. Gaarde, K. Schafer, A. Heinrich, J. Biegert, and U. Keller, “Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation,” Phys. Rev. A 72, 013411 (2005).
[Crossref]

A. Bandrauk and N. Shon, “Attosecond control of ionization and high-order harmonic generation in molecules,” Phys. Rev. A 66, 031401(R) (2002).
[Crossref]

P. Lan, P. Lu, W. Cao, and X. Wang, “Efficient generation of an isolated single-cycle attosecond pulse,” Phys. Rev. A 76, 043808 (2007).
[Crossref]

M. Lewenstein, Ph. Balcou, M. Ivanov, A. L’Huillier, and P. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A 61, 063801 (2000).
[Crossref]

A. L’Huillier, P. Balcou, S. Candel, K. Schafer, and K. Kulander, “Calculations of high-order harmonic-generation processes in xenon at 1064nm,” Phys. Rev. A 46, 2778–2790 (1992).
[Crossref]

V. Tosa, K. Kim, and C. Nam, “Macroscopic generation of attosecond-pulse trains in strongly ionized media,” Phys. Rev. A 79, 043828 (2009).
[Crossref]

C. Jin, A.-T. Le, and C. Lin, “Medium propagation effects in high-order harmonic generation of Ar and N2,” Phys. Rev. A 83, 023411 (2011).
[Crossref]

Phys. Rev. Lett. (9)

K. Schafer, M. Gaarde, A. Heinrich, J. Biegert, and U. Keller, “Strong field quantum path control using attosecond pulse trains,” Phys. Rev. Lett. 92, 023003 (2004).
[Crossref] [PubMed]

K. Ishikawa, “Photoemission and ionization of He+ under simultaneous irradiation of fundamental laser and high-order harmonic pulses,” Phys. Rev. Lett. 91, 043002 (2003).
[Crossref] [PubMed]

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett. 98, 203901 (2007).
[Crossref] [PubMed]

P. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref]

E. Takahashi, P. Lan, O. Mücke, Y. Nabekawa, and K. Midorikawa, “Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse,” Phys. Rev. Lett. 104, 233901 (2010).
[Crossref] [PubMed]

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).
[Crossref] [PubMed]

S. Gilbertson, S. Khan, Y. Wu, M. Chini, and Z. Chang, “Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers,” Phys. Rev. Lett. 105, 093902 (2010).
[Crossref] [PubMed]

P. Salières, A. L’Huillier, and M. Lewenstein, “Coherence control of the high-order harmonics,” Phys. Rev. Lett. 74, 3376–3379 (1995).
[Crossref]

H. Mashiko, S. Gilbertson, C. Li, S. Khan, M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100, 103906 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

Science (5)

A. Rundruist, C. Durfee, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412–1415 (1998).
[Crossref]

R. Bartels, A. Paul, H. Green, H. Kapteyn, M. Murnane, S. Backus, I. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
[PubMed]

P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[Crossref] [PubMed]

E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[Crossref] [PubMed]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atoms ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Other (1)

H. Bethe and E. Salpeter, Quantum mechanics of one and two electron atoms (Academic, New York, 1957).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 (a) Electric field of the 2000-nm driving pulse, and (b) classical sketch of the electron dynamics in the driving pulse.
Fig. 2
Fig. 2 Electric fields of the 2000-nm driving pulse (bold black curve) and the 400-nm few-cycle controlling pulse (thin red curve), and the evolution of the ionization probability (dashed blue curve) in the combined field.
Fig. 3
Fig. 3 (a) Harmonic spectra generated in the combined field (solid red curve) and in the 2000-nm driving pulse alone (dotted black curve), and (b) time-frequency distribution in the combined field.
Fig. 4
Fig. 4 Harmonic spectra generated at the different intensities of the controlling pulse. Other parameters are the same as in Fig. 2.
Fig. 5
Fig. 5 Harmonic spectra generated at the different durations of the controlling pulse. Other parameters are the same as in Fig. 2.
Fig. 6
Fig. 6 Harmonic spectra generated at the different durations of the driving pulse. Other parameters are the same as in Fig. 2.
Fig. 7
Fig. 7 The harmonic spectrum after 3D propagation in the combined field.
Fig. 8
Fig. 8 The macroscopic harmonic spectra generated at the different time-delays between the 2000-nm and 400-nm fields.
Fig. 9
Fig. 9 Isolated attosecond pulses centered at different frequencies.
Fig. 10
Fig. 10 Spatiotemporal profiles of the attosecond pulses at the end of the medium generated by superposing the harmonics of (a) 160th–220th and (b) 280th–340th, respectively.
Fig. 11
Fig. 11 Spatial distribution of macroscopic HHG spectrum at the exit face.
Fig. 12
Fig. 12 The far-field spatial profile and far-field spatiotemporal profile of isolated attosecond pulse generated by superposing the harmonics from 220 to 280.
Fig. 13
Fig. 13 The far-field profile and far-field spatiotemporal profile of isolated attosecond pulse generated by superposing the harmonics from 220 to 280 using the near-field filter with a radius of 5μm.
Fig. 14
Fig. 14 Time-frequency distribution of on-axis harmonic spectra in the far field without (a) and with (b) the near-field filter.
Fig. 15
Fig. 15 The far-field profiles of isolated attosecond pulses with the near-field filter at different radiuses. The solid glaucous curve is the far-field profile of isolated attosecond pulse without the near-field filter.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d n l = i t d t [ π ε + i ( t t ) / 2 ] 3 / 2 × d * [ p s t ( t , t ) A ( t ) ] d [ p s t ( t , t ) A ( t ) ] × exp [ i S s t ( t , t ) ] E ( t ) g ( t ) + c . c .
p s t ( t , t ) = 1 t t t t A ( t ) d t ,
S s t ( t , t ) = ( t t ) I p 1 2 p s t 2 ( t , t ) ( t t ) + 1 2 t t A 2 ( t ) d t ,
d ( p ) = i 2 7 / 2 π ( 2 I p ) 5 / 4 p ( p 2 + 2 I p ) 3 .
g ( t ) = exp [ t ω ( t ) d t ] ,
ω ( t ) = ω p | C n * | 2 ( 4 ω p ω t ) 2 n * 1 exp ( 4 ω p 3 ω t ) ,
ω p = I p h ¯ , ω t = e | E f ( t ) | 2 m e I p , n * = Z ( I p h I p ) 1 / 2 , | C n * | 2 = 2 2 n * n * Γ ( n * + 1 ) Γ ( n * ) ,
a q = | 1 T 0 T a ( t ) e i q ω t d t | 2 ,
2 E ( ρ , z , t ) 1 c 2 2 E ( ρ , z , t ) t 2 = ω p 2 ( ρ , z , t ) c 2 E ( ρ , z , t ) ,
2 E h ( ρ , z , t ) 1 c 2 2 E h ( ρ , z , t ) t 2 = ω p 2 ( ρ , z , t ) c 2 E h ( ρ , z , t ) + μ 0 2 P n l ( ρ , z , t ) t 2 .
E h f ( r f , z f , ω ) = i k 0 r 0 E h ( r f , z , ω ) z f z J 0 ( k r r f z f z ) exp [ i k ( r 2 + r f 2 ) 2 ( z f z ) ] r d r ,
E ( t ) = E 0 f 0 ( t ) cos ( ω 0 ) t + a E 0 f 1 ( t t delay ) cos [ ω 1 ( t t delay ) + ϕ ] .

Metrics