Abstract

An ultra-compact surface plasmon polaritons (SPPs) narrow band-pass filter based on a slot cavity is proposed and numerically investigated. Attributed to the coupled resonances in the cavity, the filter demonstrates pass-band selection capability. Also, by varying the positions of output waveguides, the filter shows the spectrally splitting function. Moreover, the combination of the adjustments to the length/width of the slot cavity and to the coupling distance provides more flexibility in design for the locations and widths of the pass-bands of the proposed filter.

©2011 Optical Society of America

1. Introduction

Surface Plasmons, which are propagating along a metal-dielectric interface with an exponentially decaying field in both sides, have been considered as energy and information carriers to overcome the diffraction limit of light in conventional optics [13]. Among various SPPs based waveguides, metal-insulator-metal (MIM) structure [4,5] has attracted tremendous interests of researchers in recent years, because of its potential applications to manipulate and control light in nanoscale. Numerous MIM waveguide based structures have been numerically and/or experimentally demonstrated, such as bends [6], splitters [7], Mach-Zehnder interferometers [8], Y-shaped combiners [9], etc. In order to realize wavelength selection, several Bragg reflectors of MIM structure [1012] have been theoretically proposed. But most of these structures have large sizes with a relatively high transmission loss. Subsequently, some simple plasmonic waveguide filters have been proposed and demonstrated, such as tooth-shaped waveguide filters [13,14], coupler-type filters [15], channel drop filters with disk resonators [16], rectangular geometry resonators [17], and ring resonators [16]. Most of them can overcome the complexity of fabrication of Bragg reflectors and operate as good band-stop filters. More recently, F-P cavity [18], microring [19] and nanodisk [20] resonators through a different coupling method have been proposed as band-pass filters. However, all above mentioned can only modify their resonance wavelengths by adjusting the internal parameters of the resonators.

In this paper, a narrow band-pass plasmonic filter based on a slot cavity is proposed and analyzed. Compared with previous researches on plasmonic filters, new adjusting mechanisms are introduced to the structure to expend and enhance the filtering characteristics. In the proposed new filters, the resonance characteristics of the slot cavity and the out-coupling strength can be effectively modified by selecting proper input and output waveguide positions. These properties can be used to achieve the band selection/splitting (selecting the pass-band locations) capabilities. Furthermore, the transmission spectra (including the resonance wavelengths and bandwidths) of the filter can also be easily controlled by modulating the geometrical parameters of the slot cavity and the coupling distance between the waveguides and the slot cavity. The finite difference time domain (FDTD) method with a perfectly matched layer (PML) absorbing boundary condition is employed to simulate and study the property of the filter. Due to its subwavelength scale and very simple configuration, this device can be easily fabricated and highly integrated with other micro/nano devices.

2. Device structure and theoretical model

As shown in Fig. 1 , the plasmonic slot filter is composed of two MIM waveguides and a short slot cavity. The materials in the blue and white areas are chosen to be silver and air (εd = 1). The widths of input/output waveguides and slot cavity are w and wt, respectively. The length of slot cavity is L, and the distance of the input and output waveguides apart from the central line O of the slot cavity are ΔL and h, respectively. d is the coupling distance between two waveguides and slot cavity. Since the widths of the waveguides are much smaller than the incident wavelength, only a single propagation mode TM0 (only Hy,Ex, Ez,≠0) can exist in the structure [21], whose complex propagation constant β can be obtained by solving following dispersion equation [10,21]:

εdkm+εmkdtanh(kd2w)=0,
where kd and km are defined as kd=(β2εdk02)1/2 and km=(β2εmk02)1/2. εd and εm are, respectively, dielectric constants of the insulator and the metal. k0=2π/λ is the free-space wave vector. The effective refractive index of the MIM waveguide can be represented as neff=β/k0. The frequency-dependent complex relative permittivity of metal εm(ω) can be characterized by Drude mode εm(ω)=εωp/ω(ω+iγ), where ε stands for the dielectric constant at the infinite frequency, γ and ωp are the electron collision frequency and bulk plasma frequency, respectively. ω is the angular frequency of incident light. The parameters for sliver can be set as ε = 3.7, ωp = 9.1 eV, γ = 0.018 eV, which fit the experimental optical constant of silver [22] quiet well in the visible and near-infrared spectral range. The stable standing waves can be exited within the slot cavity only when the following resonance condition is satisfied: Δϕ=βm·2L+ϕr=2mπ, where ϕr ≡ ϕ1 + ϕ2, ϕ1 and ϕ2 are, respectively, phase shifts of a beam reflected on the upper and lower facets of the slot cavity. Positive integer mis the number of antinodes of the standing waves in this slot cavity. βm is the propagation constant of SPPs corresponding to the resonance mode of the mstorder of the cavity. Thus, the resonance wavelengths can be obtained as follows:
λm=2neffL/(mϕr/π).
Given the arbitrary input position ΔL in the structure, the input filed Hin inside the slot cavity is divided into two nearly identical portions Hleft and Hright propagating in opposite directions as depicted in Fig. 1. The relation between them is Hleft = Hright = Hin/2 = H0. We assume the loss coefficient of the slot cavity is σ, which represents the dissipation of the light propagating per round-trip in the cavity, including the absorbing loss by the metal and the loss caused by the power coupled out of the cavity. Since the slot cavity is symmetric with respect to the central line x = 0, we just need to consider the condition that the position of the input waveguide changes above the central line (x>0). Based on the superposition principle of optics [23] and cavity model, we can describe Hfield inside the cavity with an arbitrary input position ΔL as follows:
Hm(x,t)=2H0cos(βmxβmL2)σ×{exp[j(32βmLβmΔL)]+exp[j(βmΔL+12βmL)]}·exp(jωmt),
where 0ΔLL/2, βm·2L2mπ accords to the above resonance condition with a very small parameter ϕr . From the Eq. (3), we can see the H fields inside the cavity are in the form of the standing waves along x direction at the resonance wavelengths. In this paper, we only consider the first and second resonance mode of the slot cavity. Therefore, for the resonance of the first order (m = 1), we can obtain the H field inside the cavity as follows:
H1(x,t)=2H0cos(β1xπ2)σ·[2sin(β1ΔL)]·exp(jω1t).
For the resonance of the second order (m = 2), the Eq. (3) can be written as follows:
H2(x,t)=2H0cos(β2xπ)σ·[2cos(β2ΔL)]·exp(jω2t).
Based on the formulas above, It can be found: when ΔL=0, the H field inside the cavity is H1(x,t)0, which means that the first resonance mode can’t exist inside the slot cavity, only the second resonance mode can be coupled into the cavity. Whereas, when ΔL=L/4, one can obtain the field H2(x,t)0, that means the second resonance mode have been highly suppressed in this case. This phenomenon of selectively suppressing the intrinsic resonance mode of the slot cavity will be verified numerically and explained visually latter on.

 figure: Fig. 1

Fig. 1 Schematic of the plasmonic slot filter.

Download Full Size | PPT Slide | PDF

3. Simulation results and analysis

In the following FDTD (commercial package) simulations, the grid size in the x and z directions are set to be 4 nm × 4 nm for good convergence of the numerical calculations. The fundamental TM mode of the MIM waveguide is excited by a pulse dipole source from the left waveguide. Two power monitors P and Q are set to detect the reflected and transmitted powers of Pref and Ptr at the locations, the transmittance and reflectance are defined as T=Ptr/Pin and R=Pref/Pin, respectively. The absorption parameter is simply given by A=1RT, which represents the dissipation of the power in the device. The parameters of the structure are set to be w = wt = 50 nm, d = 15 nm, and L = 500 nm. Firstly, the positions of input/output waveguides are fixed as ΔL = h = 225 nm, which means they are kept on the top end of the slot cavity. Figure 2(a) shows the spectra of the transmission, reflection and the absorption of the proposed filter. It can be seen that two resonance peaks at the wavelengths λ = 0.74 μm and 1.47 μm are located in the wavelength range 0.6-1.7 μm of interest, and the corresponding maximum transmittances are 70% (−1.5 dB) and 46% (−3.37 dB), respectively. The quality factor (defined as Q=λΔλ, where λ is the resonance wavelength of the cavity and Δλ is the full width at half maximum of transmission spectra [10]) at 0.74 μm and 1.47μm are, respectively, 35 and 37 in this case (d = 15 nm). It is also shown that two peaks appear around the resonance wavelengths in the absorption curve, because the SPPs coupled into the slot cavity would propagate backwards and forwards inside the cavity and thus undergo great absorption caused by the metal. The counter profiles of fields |Hy| at the different wavelengths are depicted in Fig. 2(b)2(d). According to the Eq. (1), the effective index neff of the MIM waveguide at 0.74 μm and 1.47 μm are calculated to be 1.41 and 1.376, respectively. Given the total phase shift ϕr, one can estimate the resonance wavelengths from Eq. (2). Submitting λ1 = 1.47 μm and neff = 1.376 into Eq. (2) gives ϕr = 0.22 for m = 1 and L = 500 nm. Therefore, the wavelength for m = 2 can be approximately calculated as 0.73 μm for neff = 1.41 and ϕr = 0.22 with the formula, which agrees reasonable well with the simulation result for λ2 = 0.74 μm. The deviation between FDTD simulation and the result from Eq. (2) could be attributed to the neglecting of wavelength dependence of ϕr.

 figure: Fig. 2

Fig. 2 (a)The spectra of the transmission and the reflection of the plasmonic slot filter. The contour profiles of fields |Hy| in the structure at different wavelengths (b) λ = 0.74 μm, (c) λ = 1.0 μm, and (d) λ = 1.47 μm.

Download Full Size | PPT Slide | PDF

Based on the assumptions and analysis in above section, a few novel characteristics of the proposed filter will be demonstrated as follows.

Firstly, in order to verify the phenomenon that the intrinsic resonance modes are suppressed alternatively inside the slot cavity, the input waveguide is moved to the central position O (x = 0) and the output waveguide is kept still on the top end of the slot cavity. Figure 3(a) shows the spectra of the transmission and the reflection of the structure in this case. It can be seen that there is only one narrow dip in the curve of reflection at the second resonance mode and that the first resonance mode is completely suppressed inside this cavity, which is highly in conformity with our theoretical analysis above. Similarly, when input waveguide position is chosen to be ΔL = 132 nm, one can see clearly that the second intrinsic resonance mode of the slot cavity is suppressed as depicted in Fig. 3(b), and that only the first resonance mode at 1.47 μm can be coupled into the slot cavity. The simulation results (ΔL = 132 nm) are consistent with our theoretical analysis (ΔL = 125 nm) reasonably well. For clarity, we can visually explain this phenomenon in detail from propagation behavior of SPPs inside the slot cavity as shown in Fig. 1. Taking the first resonance mode at 1.47 μm for example, when the input waveguide is located in the central position O, the input field Hin is divided into two equal parts Hleft and Hright with the identical initial phase ϕ0. One portion of field Hleft propagates to the upper facet of the slot cavity and returns back to the input position O with a phase ϕ0+π, thus, it will couple and interfere with another part of filed Hright destructively due to phase difference π between them. The similar condition would also happen for the second resonance mode at 0.74 μm when input waveguide moves to the position ΔL = 132 nm. These two resonances in opposite directions coupled with each other are the physical reasons that the intrinsic resonance modes of the slot cavity can be alternatively suppressed by choosing proper input waveguide positions, which have never been explicitly studied in the previous researches on plasmonic filters [1820]. By introducing these coupled resonances to modify the resonance characteristics of the slot cavity, the pass-band selection can be achieved without changing the parameters of the cavity. Moreover, a single channel pass-band transmission in a broad wavelength range can be obtained as depicted in Fig. 3(a) and 3(b), which may have promising applications in photonics and nanoscale optics.

 figure: Fig. 3

Fig. 3 The spectra of the transmission and reflection of the slot cavity for (a) ΔL = 0, (b) ΔL = 132 nm, respectively, with w = wt = 50 nm, L = 500 nm, d = 15 nm, h = 225 nm.

Download Full Size | PPT Slide | PDF

Secondly, the parameter h, which stands for the distance of output waveguide apart from the central line O of the slot cavity, is also an important factor influencing the output characteristics of the proposed filter, because the out-coupling strength through the end-coupling method is strongly depending on the intensity of Hfield in the out-coupling regions. In another word, the SPPs can hardly be coupled out from the cavity in the position with very low intensity of Hfield. In order to verify the above theoretical analysis, let the input waveguide on the top end of the slot cavity with other parameters unchanged to make sure that two resonance modes exist inside the slot cavity. According to Eq. (3), one can easily find out that the Hfield inside the slot cavity is in the form of standing waves and that the antinodes of the standing waves for the first and second resonance are in the positions h = 0 and h = 125 nm, respectively, which is also seen in Fig. 2(b) and 2(d). Therefore, when two output waveguides are put in the above positions of the antinodes as shown in Fig. 4(a) , the two resonance modes are separately coupled into two output waveguides as depicted in Fig. 4(b). It can be seen that only the first (second) resonance mode could be coupled out from the slot cavity in the position of the antinodes of the second (first) resonance. And the crosstalks between the port 1 (0.74 μm) and port 2 (1.47 μm) are −16 dB for the port 1 and −25 dB for the port 2, respectively. This characteristic can be utilized to realize a narrow band-pass filter with spectrally splitting function.

 figure: Fig. 4

Fig. 4 (a) Schematic of the plasmonic slot filter with two output waveguides at h = 0 and h = 125 nm, respectively. (b) The transmission spectra of two output waveguides at h = 0 and h = 125 nm, respectively.

Download Full Size | PPT Slide | PDF

Next, the influence of internal parameters of the slot cavity on the resonance wavelengths is studied by FDTD method in detail. The input/output waveguides are fixed to the position ΔL = L/2w/2 to make sure that both two resonance modes exist inside the slot cavity. At the beginning, the length of the slot cavity is set as variable while the other parameters are fixed as above. Figure 5(a) shows the transmission spectra of the structure corresponding to different cavity lengths. The inset of Fig. 5(a) reveals the wavelengths of each resonance modes have nearly linear relationships with the length of the slot cavity, but with different slope factors (approximate to 1/m). This result is in accordance with the solution of Eq. (2). Meanwhile, according to Eq. (2), the resonance wavelengths will also shift when altering the width wt of the slot cavity, as shown in Fig. 5(b), resulting from the width-dependent effective index of MIM waveguide. Based on the simulations and analysis above, it is seen that the locations of the pass-bands of the filter can be easily designed by changing both the length and width of the slot cavity.

 figure: Fig. 5

Fig. 5 (a) Transmission spectra of the structure for different length L with other parameters unchanged. Inset: Wavelengths of the resonance peaks versus the length of the slot cavity for different resonance order m = 1 and m = 2. (b) The transmission spectra for different widths of the slot cavity with L = 500 nm, d = 15 nm, ΔL = h = 225 nm.

Download Full Size | PPT Slide | PDF

Now, we study the influence of the coupling distance d on the transmission characteristics of the proposed filter, which is also an important factor influencing the intensities of transmission spectra near the resonance wavelengths. Figure 6 shows the transmission curves would change with altering the coupling distance. It is obvious that the resonance wavelengths exhibits slightly blue-shift and transmission peaks decrease simultaneously with increasing the coupling distance, which is consistent with the results in Refs. [15,19]. Moreover, the bandwidths of peaks become a bit of narrower with increased d because a large coupling distance would result in small coupling strength which will enhance the “cavity” effect due to small amount of energy coupled out of the slot cavity. Therefore, the bandwidths (Q factor) of the resonance spectra can be modified by controlling the coupling distance d.

 figure: Fig. 6

Fig. 6 Transmission spectra of the proposed filter for different coupling distance d between the input/output waveguides and the slot cavity with L = 500 nm, ΔL = h = 225 nm.

Download Full Size | PPT Slide | PDF

Finally, we make a simple comparison of our proposed structure with those considered in Refs. [1520]. Since the wavelengths of SPPs correspond to the resonance peaks are allowed to transport efficiently in the output waveguides, while others are forbidden. Our structure can operate as plasmonic band-pass filters, which is very different from the band-stop filters in Refs. [1517] based on the parallel directional coupling method. Compared with all other band-pass filters in the literature [1820], the proposed slot filter has a very simple structure and flexible input/output positions (the input/output waveguides can be designed in the same side or different side of the slot cavity). Most importantly, the novel phenomena of suppressing resonance mode and spectrally splitting light have been both theoretically demonstrated and numerically verified for the first time in this paper. Besides, a single channel transmission can be realized in a broad wavelength range, while it’s unachievable in Refs. [1820].

4. Conclusion

In conclusion, a subwavelength plasmonic slot filter is proposed and numerically analyzed by using 2D FDTD method. Several adjustable parameters have been investigated to flexibly modify the filtering characteristics of the proposed plasmonic filter. Both the theoretical analysis and simulation results show the variation of the input/output waveguide positions is an effective method to select pass-band and spectrally split light. Moreover, the transmission spectra, including the resonance wavelength and bandwidth can also be adjusted by modulating the internal parameters of the cavity and the coupling distance between the slot cavity and input/output waveguides. The results above imply that it have potential applications in nanoscale integrated photonic circuits on flat metallic surface.

References and links

1. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1998).

2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef]   [PubMed]  

3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef]   [PubMed]  

4. K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005). [CrossRef]   [PubMed]  

5. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef]   [PubMed]  

6. T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005). [CrossRef]   [PubMed]  

7. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]  

8. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004). [CrossRef]   [PubMed]  

9. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005). [CrossRef]   [PubMed]  

10. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005). [CrossRef]  

11. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007). [CrossRef]  

12. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008). [CrossRef]   [PubMed]  

13. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008). [CrossRef]   [PubMed]  

14. J. Tao, X. G. Huang, X. S. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009). [CrossRef]   [PubMed]  

15. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7549–7555 (2009). [CrossRef]  

16. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006). [CrossRef]   [PubMed]  

17. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007). [CrossRef]  

18. A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009). [CrossRef]  

19. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009). [CrossRef]  

20. H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010). [CrossRef]   [PubMed]  

21. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]  

22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

23. S. A. Akhmanov, and S. Y. Nikitin, Physical Optics (Oxford University Press, 1997).

References

  • View by:

  1. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1998).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [Crossref] [PubMed]
  4. K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005).
    [Crossref] [PubMed]
  5. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
    [Crossref] [PubMed]
  6. T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005).
    [Crossref] [PubMed]
  7. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
    [Crossref]
  8. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
    [Crossref] [PubMed]
  9. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
    [Crossref] [PubMed]
  10. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
    [Crossref]
  11. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
    [Crossref]
  12. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008).
    [Crossref] [PubMed]
  13. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [Crossref] [PubMed]
  14. J. Tao, X. G. Huang, X. S. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009).
    [Crossref] [PubMed]
  15. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7549–7555 (2009).
    [Crossref]
  16. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
    [Crossref] [PubMed]
  17. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
    [Crossref]
  18. A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
    [Crossref]
  19. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
    [Crossref]
  20. H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
    [Crossref] [PubMed]
  21. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [Crossref]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  23. S. A. Akhmanov, and S. Y. Nikitin, Physical Optics (Oxford University Press, 1997).

2010 (1)

2009 (4)

2008 (2)

2007 (2)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[Crossref]

2006 (2)

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

2005 (6)

2004 (1)

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Akjouj, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[Crossref]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Deng, Q.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Djafari-Rouhani, B.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[Crossref]

Du, C.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[Crossref]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

Gao, H.

Gillet, J.-N.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[Crossref]

Gong, Y. K.

Gray, S.

Han, Z.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
[Crossref] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

He, M. D.

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
[Crossref] [PubMed]

Hosseini, A.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[Crossref]

Huang, W. Q.

Huang, X. G.

Jin, X.

Jin, X. P.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Lee, T. W.

Lin, X.

Lin, X. S.

Liu, J. Q.

Liu, L.

Liu, X. M.

Lu, H.

Luo, X.

Lv, Y.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Mao, D.

Massoud, Y.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[Crossref]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Noual, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[Crossref]

Pennec, Y.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[Crossref]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Qiu, M.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Shi, H.

Sugiyama, T.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Tanaka, K.

Tanaka, M.

Tao, J.

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[Crossref]

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[Crossref] [PubMed]

Wang, C.

Wang, D.

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[Crossref] [PubMed]

Wang, H. Z.

Wang, L. L.

Wang, L. R.

Wang, T. B.

Wen, S.

Wen, X. W.

Xiao, S. S.

Yao, H.

Yin, C. P.

Zhang, Q.

Zou, B. S.

Appl. Phys. Lett. (3)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[Crossref]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

N. J. Phys. (1)

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[Crossref]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (10)

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005).
[Crossref] [PubMed]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
[Crossref] [PubMed]

T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005).
[Crossref] [PubMed]

T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
[Crossref]

H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
[Crossref] [PubMed]

J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008).
[Crossref] [PubMed]

J. Tao, X. G. Huang, X. S. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009).
[Crossref] [PubMed]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7549–7555 (2009).
[Crossref]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
[Crossref] [PubMed]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Other (2)

S. A. Akhmanov, and S. Y. Nikitin, Physical Optics (Oxford University Press, 1997).

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1998).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the plasmonic slot filter.
Fig. 2
Fig. 2 (a)The spectra of the transmission and the reflection of the plasmonic slot filter. The contour profiles of fields | H y | in the structure at different wavelengths (b) λ = 0.74 μm, (c) λ = 1.0 μm, and (d) λ = 1.47 μm.
Fig. 3
Fig. 3 The spectra of the transmission and reflection of the slot cavity for (a) Δ L = 0, (b) Δ L = 132 nm, respectively, with w = w t = 50 nm, L = 500 nm, d = 15 nm, h = 225 nm.
Fig. 4
Fig. 4 (a) Schematic of the plasmonic slot filter with two output waveguides at h = 0 and h = 125 nm, respectively. (b) The transmission spectra of two output waveguides at h = 0 and h = 125 nm, respectively.
Fig. 5
Fig. 5 (a) Transmission spectra of the structure for different length L with other parameters unchanged. Inset: Wavelengths of the resonance peaks versus the length of the slot cavity for different resonance order m = 1 and m = 2. (b) The transmission spectra for different widths of the slot cavity with L = 500 nm, d = 15 nm, Δ L = h = 225 nm.
Fig. 6
Fig. 6 Transmission spectra of the proposed filter for different coupling distance d between the input/output waveguides and the slot cavity with L = 500 nm, Δ L = h = 225 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε d k m + ε m k d tanh ( k d 2 w ) = 0 ,
λ m = 2 n e f f L / ( m ϕ r / π ) .
H m ( x , t ) = 2 H 0 cos ( β m x β m L 2 ) σ × { exp [ j ( 3 2 β m L β m Δ L ) ] + exp [ j ( β m Δ L + 1 2 β m L ) ] } · exp ( j ω m t ) ,
H 1 ( x , t ) = 2 H 0 cos ( β 1 x π 2 ) σ · [ 2 sin ( β 1 Δ L ) ] · exp ( j ω 1 t ) .
H 2 ( x , t ) = 2 H 0 cos ( β 2 x π ) σ · [ 2 cos ( β 2 Δ L ) ] · exp ( j ω 2 t ) .

Metrics