Abstract

Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

© 2010 Optical Society of America

1. Introduction

In natural materials positive and negative volume magnetic susceptibility χm is measured with Evans type balances by the force change applied to a sample located in a magnetic field [1]. These balances are useful for characterization of materials with dispersionless permeability. Recently, artificial materials with THz and optical frequency magnetic resonances stronger than in natural ones were fabricated [25]. Metamaterials are composed of elementary cells of linear size Lλ in the form of Swiss rolls with a negative real part of permeability in the microwave range [2], split ring resonators (SRR) and fishnet with a negative real part of the refractive index in the range from microwave to optical [35]. At frequencies higher than 100 THz, the magnetic response of such structures weakens because of internal resistance (reactance) which is inversely proportional to frequency [6, 7]. Metamaterials with electric and magnetic dispersion at THz frequencies can be made of compact dielectric particles of high permittivity [812], noble metals [13, 14], and aluminum [15]. Consideration of charge displacements and displacement currents in elementary cells of metamaterials leads to interpretation of the role of dipole [12] and multipole [16] resonances in periodic all-dielectric arrays of rods and arrays of metal SRRs, respectively. The recent studies on all-dielectric metamaterials were concluded by Merlin, who proved theoretically that in metamaterials composed of structures with large values of dielectric permittivity para- and diamagnetic responses are possible with susceptibilities significantly larger than existing in natural materials [17].

Development of metamaterials with a tunable magnetic response entails new characterization techniques. Recently, a single SRR located at the tip of an aperture tapered-fiber metal-coated probe was used for near-field detection of the magnetic field of light [18]. Aperture probes with [18] and without [19, 20] an SRR were used to perform passive measurements of magnetic and electric components of static evanescent fields excited in metamaterials and photonic crystals. Another experimental method of independently testing the electric and magnetic resonances of a properly oriented SRR by means of a y-polarized TEM10 mode (y-polarized HG01 mode [21]) with an on-axis longitudinal magnetic field Hz and off-axis Ey components was proposed by Banzer et al. [22].

2. Active magnetic near-field probe

To perform optical range measurements of magnetic responses of all-dielectric and plasmonic metamaterial elementary cells with linear dimensions up to hundreds of nanometers we propose a concentrator of the magnetic component of an electromagnetic field into subwavelength spots. The concentrator is a dielectric tapered-fiber probe able to excite local magnetic resonances in the near-field in a manner similar to conventional scanning near-field optical microscopy (SNOM), see Fig. 1a. Azimuthally polarized light interacts with the structure of the concentrator generating plasmons. This allows for the confinement of the longitudinal magnetic field component Hz to energy densities exceeding those of other components by more than an order of magnitude. The field penetrates the sample below the probe and directly (using the magnetic field Hz) induces magnetic resonances in SRRs, fishnet elementary cells, and in 3D compact all-dielectric particles [811], all with dimensions comparable to the size of the spot, which may be subwavelength. Then, the scattered signal is measured in the far-field using a classical intensity detector, giving information on the properties of the sample. Thus, our structured probe is an active device generating a magnetic field illuminating a sample, while in [1820] the probes are used as pasive recorders of magnetic fields existing in samples.

 figure: Fig. 1

Fig. 1 (a) A dielectric probe with radial metal stripes concentrates the longitudinal magnetic component of light, shown in yellow, into a subwavelength spot to measure the magnetic moment of individual metamaterial elementary cells. (b) The tapered at angle α part of a silver-coated fiber probe with eight equidistant slits and eight h thick metal lands of constant angular width equal π/8. (c) Azimuthal currents Jϕ generating the longitudinal magnetic field Hz indicated by black arrowheads and an out-of-plane vector, respectively.

Download Full Size | PPT Slide | PDF

The active part of the probe are the radial metalic stripes made of silver arrayed in an azimuthal grating, shown in detail in Fig. 1b. The metal lands and the slits have constant angular width equal π/8 what means that their lattice periodicity decreases toward the apex assuring momentum matching for excitation of plasmons by light for a wide range of wavelengths. The probe is internally illuminated by an azimuthally polarized, cylindrically symmetric Laguerre-Gauss TE10 mode [21]. Plasmons, which have a strong azimuthal component confined between the metal lands, propagate towards the apex where they form an azimuthal current in the metal and azimuthal virtual displacement current in slits circulating the apex. This results in generation of a strong longitudinal magnetic field Hz, as indicated in Fig. 1c. This magnetic concentrator is analogous to SNOM metal-coated tapered-fiber probes with a corrugated core surface [2325], where grooves assure coupling of incident light to surface plasmons.

We establish the properties of the concentrator using the finite-difference time-domain method in 3-dimensional cylindrical coordinates where we analyze steady state and transient responses. The transient calculations are done for a temporal Gaussian pulse centered at 600 nm modulated by a sine finction and the spectra are calculated by Fourier-transformation. The concentrator has a silica fiber core (n = 1.45) of 3.2 μm diameter tapered at a half-angle α = 40° and a silver coating of thickness h. Silver is modeled using Drude dispersion ɛ(ω)=ɛωp2/[ω(ω+iΓ)] fitted to experiental data [26] for wavelengths λ 190 ÷ 1900 nm with parameters equal ε = 3.70, ωp = 13673 THz, and Γ = 27.35 THz [23].

3. Magnetic field needle

Figure 2 shows how a radially corrugated probe transforms an incident azimuthally polarized beam of λ = 500 nm (chosen as an example) into a strong magnetic focus of the longitudinal Hz component on the axis. The incident field couples to plasmons at the metal–dielectric interface of the silver stripes. Plasmons propagate toward the apex where the electric field has a dominant, circulating azimuthal component and, in accordance to Maxwell’s equations, generates a strong longitudinal magnetic field with a spot size of about 185 nm. In addition to Hz, other components of the EM field also exist, most importantly Eϕ, Ez, and Hr. However, their energy density is the highest away from the axis for Eϕ and Hr, while for Ez is more than one order of magnitude weaker than Hz. In the case of Eϕ and Hr, the strong side lobes at r = 800 nm result from part of the light passing directly through the gaps between the metal stripes, because at that radius the gaps are wider than 300 nm. A probe with a bigger core radius and a wider beam will have side lobes farther away, so optical fibers with larger cores than considered here will have an even smaller overlap of the components than obtained here.

 figure: Fig. 2

Fig. 2 Electromagnetic field in the tapered part of the probe with 50 nm silver layer: energy density of (a) azimuthal electric field ɛEϕ2, (b) longitudinal field ɛEz2, (c) radial magnetic field μHr2, (d) longitudinal μHz2. The pseudocolor scale is logarithmic and in arbitrary units, wavelength λ = 500 nm is used as an example.

Download Full Size | PPT Slide | PDF

Light emission from the magnetic probe is not restricted to only an aperture as in Al-coated aperture SNOM probes, thus the spot size, defined as the full-width at half-maximum (FWHM), varies depending on various parameters. We analyze how the silver thickness h affects the spot size and the magnetic focus intensity. Shown in Fig. 3, the size of the focused magnetic field Hz radiated by radially corrugated probes is smaller than for an all-dielectric probe (h = 0 nm) for virtually all analyzed silver thicknesses in the considered wavelength range. The FWHM decreases slowly with decreasing wavelength and the lowest FWHM is observed for the largest h. Formation of a narrow Hz needle is governed by azimuthal currents Jϕ flowing through the set of coupled stripes, virtual displacement currents in grooves, and by the azimuthal component Eϕ of part of the electric field refracted leaving the probe. As h increases, the contribution from the refracted field diminishes leaving only Jϕ and associated plasmonic edge modes. Far from the apex plasmons form a coupled mode at both inner and outer edges, however, as they propagate forward and the grooves become narrower and approach the z-axis, the mode decouples and the inside one experiences a cut-off, not reaching the apex, and only the outer one remains. If h is large enough, then the mode is confined at the outer edges, similarly as discussed in [27] on V-grooves, until it reaches the probe apex and radiates. However, for small h plasmons will radiate into an azimuthally polarized mode before reaching the apex. The farther from the apex the decoupling takes place, the larger the radius of the doughnut beam is which diffracts over a longer distance before reaching a sample. Also, the longer the wavelength, the farther from the apex this decoupling takes place. Hence, for smaller silver thicknesses h and for longer wavelengths the FWHM is larger.

 figure: Fig. 3

Fig. 3 FWHM of Hz calculated 10 nm from the apex for h ∈ [0, 100] nm.

Download Full Size | PPT Slide | PDF

At wavelengths around 480 nm for h ≥ 40 nm the FWHMs become equal due to an equilibrium between the enlargement of the spot size by an earlier decoupling for small h and direct enlargement due to a large h. For h ≥ 60 nm and λ < 450 nm the FWHM order is reversed due to the decoupling cut-off being smaller than the thickness for short wavelengths. However, as h decreases (h ≤ 50 nm) below the cut-off, plasmons decouple before the apex and their FWHM at the sample position increases. The wide FWHM values observed for h = 10÷30 nm are explained by very weak guiding provided by the silver lands. Light instead of coupling to plasmon modes in waveguides formed by silver stripes leaks out of the dielectric core forming a strong background signal comparable to that of an all-dielectric probe.

The dominant contribution of the longitudinal magnetic component to the total energy within the focus is illustrated in Fig. 4a–d, where energy density is integrated over an area of diameter equal to the FWHM of Hz. The integrated energy density of all field components increases as h increases, because thick stripes are more efficient at confining and guiding energy toward the apex than thin ones. For small h, effects generated by the dielectric core become strong compared to those of the silver stripes. Hence, cross-coupling between polarizations is weak, as expected for a structure composed mostly of an all-linear-dielectric. The electric component Ez for h = 20 nm is almost non-existent, while the integrated energy densities of Eϕ, Hr, and Hz are not similar to those of larger h values, and h = 20 nm may be regarded as intermediate between a mostly dielectric-dependent behavior of the probe and a predominantly plasmonic response.

 figure: Fig. 4

Fig. 4 Integrated energy densities of (a) Eϕ (b) Ez (c) Hr (d) Hz 10 nm from the apex in the focus where Hz is dominant. Units are arbitrary and the same for all subfigures. (e) Ratio of integrated energy densities of Hz to Eϕ.

Download Full Size | PPT Slide | PDF

Maximum energy density of Hz as a function of silver thickness does not guarantee the most efficient active sensing of magnetic properties. More important is the magnetic energy density of Hz to electric energy density of Eϕ ratio, what decides on magnetic excitation of a sample, shown in Fig. 4e. The reference probe without silver has a linear dependence of μHz2/(ɛEϕ2)<2.5 in the optical range. Adding the silver stripes increases this ratio up to 5.5 for h = 60 nm at λ = 450 nm, however, this peak is narrow and for λ = 790 nm falls below 3.5. For larger thicknesses of 80 and 100 nm the ratio is lower in the respective peaks than for h = 60 nm, but over a large wavelength range stays above 4. The physics of the peak in Fig. 4b,e and its dependence in h are the same as for the FWHM minimum in Fig. 3: a trade-off between the outer mode cut-off and a large h guiding energy away from the axis. This is also modulated by diffraction which is small for short wavelengths and greater for larger if the size of the system (h) is the same. Thus, radially corrugated probes with thick metalisation are more efficient at focusing the magnetic field in terms of localizing magnetic energy density as well as generating small FWHMs.

4. Conclusions

The proposed device for concentrating the magnetic component of the electromagnetic field may be employed as an active probe of a scanning near-field magnetic microscope with a classical shear force control of the probe-sample distance. Near-field illumination generates magnetic responses of elementary cells and the energy of scattered light is recorded with intensity detectors in the far-field. The shear force controlled distance of tens of nanometers allows for illumination of individual elementary cells of an arrayed metamaterial with a field of FWHM reaching down to 160 nm for short wavelengths. It may also be feasible to use the proposed groove/stripe structure in combination with hollow cantilever probes. Once materials with optically induced magnetism are developed the proposed magnetic field concentrator may be used for magnetic write/read operations.

Acknowledgments

This work was supported by the Polish Ministry of Science and Higher Education under the project N N507 445534 and the National Centre for R&D under the project N R15 0018 06. The authors are partners in COST Actions MP 0702 and MP 0803. Simulations were performed in the ICM at the University of Warsaw, grant #G33-7.

References and links

1. D. Evans, “A new type of magnetic balance,” J. Phys. E: Sci. Instrum. 7, 247 (1974). [CrossRef]  

2. M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001). [CrossRef]   [PubMed]  

3. T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004). [CrossRef]   [PubMed]  

4. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008). [CrossRef]   [PubMed]  

5. S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009). [CrossRef]   [PubMed]  

6. J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005). [CrossRef]   [PubMed]  

7. A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005). [CrossRef]   [PubMed]  

8. L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007). [CrossRef]   [PubMed]  

9. J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007). [CrossRef]   [PubMed]  

10. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008). [CrossRef]   [PubMed]  

11. B. Popa and S. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008). [CrossRef]   [PubMed]  

12. K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009). [CrossRef]   [PubMed]  

13. S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009). [CrossRef]  

14. N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010). [CrossRef]   [PubMed]  

15. Y. Jeyaram, S. Jha, M. Agio, J. Löffler, and Y. Ekinci, “Magnetic metamaterials in the blue range using aluminum nanostructures,” Opt. Lett. 35, 1656–1658 (2010). [CrossRef]   [PubMed]  

16. J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010). [CrossRef]   [PubMed]  

17. R. Merlin, “Metamaterials and the Landau-Lifshits permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106, 1693–1698 (2009). [CrossRef]   [PubMed]  

18. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009). [CrossRef]   [PubMed]  

19. M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010). [CrossRef]   [PubMed]  

20. S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010). [CrossRef]   [PubMed]  

21. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]  

22. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nanostructure,” Opt. Express 18, 10905–10923 (2010). [CrossRef]   [PubMed]  

23. T. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15, 10920–10928 (2007). [CrossRef]   [PubMed]  

24. T. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16, 451–457 (2008). [CrossRef]  

25. T. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics pp. [CrossRef]   (2010).

26. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]  

27. S. Bozhevolnyi and K. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett. 35, 541–543 (2010). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. D. Evans, “A new type of magnetic balance,” J. Phys. E: Sci. Instrum. 7, 247 (1974).
    [Crossref]
  2. M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
    [Crossref] [PubMed]
  3. T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
    [Crossref] [PubMed]
  4. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
    [Crossref] [PubMed]
  5. S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
    [Crossref] [PubMed]
  6. J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
    [Crossref] [PubMed]
  7. A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
    [Crossref] [PubMed]
  8. L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
    [Crossref] [PubMed]
  9. J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
    [Crossref] [PubMed]
  10. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
    [Crossref] [PubMed]
  11. B. Popa and S. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
    [Crossref] [PubMed]
  12. K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
    [Crossref] [PubMed]
  13. S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
    [Crossref]
  14. N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
    [Crossref] [PubMed]
  15. Y. Jeyaram, S. Jha, M. Agio, J. Löffler, and Y. Ekinci, “Magnetic metamaterials in the blue range using aluminum nanostructures,” Opt. Lett. 35, 1656–1658 (2010).
    [Crossref] [PubMed]
  16. J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
    [Crossref] [PubMed]
  17. R. Merlin, “Metamaterials and the Landau-Lifshits permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106, 1693–1698 (2009).
    [Crossref] [PubMed]
  18. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
    [Crossref] [PubMed]
  19. M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
    [Crossref] [PubMed]
  20. S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
    [Crossref] [PubMed]
  21. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  22. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nanostructure,” Opt. Express 18, 10905–10923 (2010).
    [Crossref] [PubMed]
  23. T. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15, 10920–10928 (2007).
    [Crossref] [PubMed]
  24. T. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16, 451–457 (2008).
    [Crossref]
  25. T. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics pp. (2010).
    [Crossref]
  26. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  27. S. Bozhevolnyi and K. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett. 35, 541–543 (2010).
    [Crossref] [PubMed]

2010 (7)

N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
[Crossref] [PubMed]

Y. Jeyaram, S. Jha, M. Agio, J. Löffler, and Y. Ekinci, “Magnetic metamaterials in the blue range using aluminum nanostructures,” Opt. Lett. 35, 1656–1658 (2010).
[Crossref] [PubMed]

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
[Crossref] [PubMed]

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nanostructure,” Opt. Express 18, 10905–10923 (2010).
[Crossref] [PubMed]

S. Bozhevolnyi and K. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett. 35, 541–543 (2010).
[Crossref] [PubMed]

2009 (6)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
[Crossref]

R. Merlin, “Metamaterials and the Landau-Lifshits permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106, 1693–1698 (2009).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref] [PubMed]

2008 (4)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

B. Popa and S. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref] [PubMed]

T. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16, 451–457 (2008).
[Crossref]

2007 (3)

T. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15, 10920–10928 (2007).
[Crossref] [PubMed]

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

2005 (2)

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

2004 (1)

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

2001 (1)

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

1974 (1)

D. Evans, “A new type of magnetic balance,” J. Phys. E: Sci. Instrum. 7, 247 (1974).
[Crossref]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Agio, M.

Ali, T.

N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
[Crossref] [PubMed]

Antosiewicz, T.

T. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16, 451–457 (2008).
[Crossref]

T. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15, 10920–10928 (2007).
[Crossref] [PubMed]

T. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics pp. (2010).
[Crossref]

Balet, L.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Banzer, P.

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Basov, D.

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Bozhevolnyi, S.

Brongersma, M.

J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

Burresi, M.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Cabuz, A.

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Cassagne, D.

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Centeno, E.

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Chen, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Chettiar, U.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref] [PubMed]

Chipouline, A.

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cummer, S.

B. Popa and S. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref] [PubMed]

Drachev, V.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref] [PubMed]

Du, B.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Economou, E.

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

Ekinci, Y.

Evans, D.

D. Evans, “A new type of magnetic balance,” J. Phys. E: Sci. Instrum. 7, 247 (1974).
[Crossref]

Fang, N.

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Felbacq, D.

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Fiore, A.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Francardi, M.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Genov, D.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Gerardino, A.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Gilderdale, D.

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

Grzegorczyk, T.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Guizal, B.

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Gurioli, M.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Hajnal, J.

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

Halas, N.

N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
[Crossref] [PubMed]

Heideman, R.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Huang, X.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Intonti, F.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Ishikawa, A.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

Jeyaram, Y.

Jha, S.

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

Kampfrath, T.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Kang, L.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Kawata, S.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

Khoo, I.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

Kildishev, A.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref] [PubMed]

Kong, J.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Koschny, T.

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

Kuipers, L.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Lalanne, P.

Larkman, D.

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

Lederer, F.

Leinse, A.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Leuchs, G.

Li, B.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Li, L.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Li, L. L.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Löffler, J.

Menzel, C.

Merlin, R.

R. Merlin, “Metamaterials and the Landau-Lifshits permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106, 1693–1698 (2009).
[Crossref] [PubMed]

Mirin, N.

N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
[Crossref] [PubMed]

Nerkararyan, K.

Noda, S.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

Nordlander, P.

N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
[Crossref] [PubMed]

Padilla, W.

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Pendry, J.

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

Peng, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Pertsch, T.

Peschel, U.

Petschulat, J.

Popa, B.

B. Popa and S. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref] [PubMed]

Prangsma, J.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

Quabis, S.

Ran, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Riboli, F.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Rockstuhl, C.

Schoenmaker, H.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Schuller, J.

J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

Shalaev, V.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref] [PubMed]

Smith, D.

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Song, B.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

Soukoulis, C.

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

Szoplik, T.

T. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16, 451–457 (2008).
[Crossref]

T. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15, 10920–10928 (2007).
[Crossref] [PubMed]

T. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics pp. (2010).
[Crossref]

Tanaka, T.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

Tauber, T.

J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

Tüennermann, A.

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

van Oosten, D.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Vier, D.

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Vignolini, S.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Vynck, K.

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Wiersma, D.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Wiltshire, M.

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

Wróbel, P.

T. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics pp. (2010).
[Crossref]

Xiao, S.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref] [PubMed]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

Xie, Q.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Yang, J.

Yen, T.

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Young, I.

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Zhan, Q.

Zhang, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Zhao, H.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Zhao, Q.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Zhou, J.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

Zia, R.

J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

ACS Nano (1)

N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

J. Phys. E: Sci. Instrum. (1)

D. Evans, “A new type of magnetic balance,” J. Phys. E: Sci. Instrum. 7, 247 (1974).
[Crossref]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Opto-Electron. Rev. (1)

T. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16, 451–457 (2008).
[Crossref]

Phys. Rev. B (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (9)

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

B. Popa and S. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref] [PubMed]

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Merlin, “Metamaterials and the Landau-Lifshits permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106, 1693–1698 (2009).
[Crossref] [PubMed]

Science (3)

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Other (1)

T. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics pp. (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) A dielectric probe with radial metal stripes concentrates the longitudinal magnetic component of light, shown in yellow, into a subwavelength spot to measure the magnetic moment of individual metamaterial elementary cells. (b) The tapered at angle α part of a silver-coated fiber probe with eight equidistant slits and eight h thick metal lands of constant angular width equal π/8. (c) Azimuthal currents Jϕ generating the longitudinal magnetic field Hz indicated by black arrowheads and an out-of-plane vector, respectively.
Fig. 2
Fig. 2 Electromagnetic field in the tapered part of the probe with 50 nm silver layer: energy density of (a) azimuthal electric field ɛ E ϕ 2, (b) longitudinal field ɛ E z 2, (c) radial magnetic field μ H r 2, (d) longitudinal μ H z 2. The pseudocolor scale is logarithmic and in arbitrary units, wavelength λ = 500 nm is used as an example.
Fig. 3
Fig. 3 FWHM of Hz calculated 10 nm from the apex for h ∈ [0, 100] nm.
Fig. 4
Fig. 4 Integrated energy densities of (a) Eϕ (b) Ez (c) Hr (d) Hz 10 nm from the apex in the focus where Hz is dominant. Units are arbitrary and the same for all subfigures. (e) Ratio of integrated energy densities of Hz to Eϕ.

Metrics