Abstract

Slow light propagation is demonstrated by implementing Coherent Population Oscillations in a silica fiber doped with erbium ions in a ring surrounding the single mode core. Though only the wings of the mode interact with erbium ions, group velocities around 1360 m/s are obtained without any spatial distortion of the propagating mode.

©2010 Optical Society of America

1. Introduction

The optical engineering of the speed of light attracted a large interest during the last decade. Two main nonlinear interactions are exploited: Electromagnetically Induced Transparency [1,2] and Coherent Population Oscillation (CPO) [3]. However other nonlinear interactions such as Raman [4] and Brillouin [5,6] scatterings are also considered. In most of the studies, the slow light propagation is demonstrated in atomic vapors and Bose Einstein Condensates, where impressive low group velocities (few tens of m/s) were demonstrated implementing very low optical powers (in the range of few tens of mW/cm2). More recently, the field extends to solid state systems that are attractive due to the elimination of effect associated to atomic motion, the stability, the compactness and the compatibility with usual optical devices and systems. Starting from the initial demonstration in ruby [7], through alexandrite [8] and semiconductor quantum wells [9], slow light in solid state systems becomes a field of growing interest. This is specially the case for nonlinear mechanisms that, like CPO, require only a two level system to be implemented. Among solid state systems, a particular mention should be made to Er-doped materials for two main reasons. Firstly, as many rare earth, Er allows slow and ultra slow light propagation due to the very long excited level lifetime available. Secondly, such long lived states can be addressed in the important wavelength range around 1.5 µm, fitting the transparency region of silica fibers at the heart of many telecommunication applications and for which stable commercial laser sources are available.

Ultraslow light propagation with a group velocity of 3 m/s was reported via CPO effect in an Er3+ doped Y2SiO5 crystal [10]. As usual the fluctuation of the local Er environment induces an inhomogeneous broadening often considered as a limiting factor. Baldit et al. [10] demonstrated that this inhomogeneous broadening can be a resource in order to tune both the group velocity and the optical transmission. These results are also attractive from the point of view of the very low optical power involved, comparable to those implemented in experiments with atomic vapors or cold atoms. In turn, they are performed at low temperature, a serious limitation for most applications. Room temperature slow light propagation was demonstrated in erbium doped fibers (EDF) [1113], taking benefit both from the mode confinement and the increased interaction length. In addition, as a key element of optical communication, EDF offer the compatibility with applications close to the telecommunication industry. Slow light was demonstrated via CPO in this context using EDF, with group velocities at 1.5 µm of the order of 1200 m/s, both for modulated beams, in a pump-probe configuration and for self induced effect in the pulsed propagation. In addition by injecting a pump beam at 980 nm, either delay or advancement can be achieved, depending on the pumping level [14]. Group velocities between 35210 m/s and –40000 m/s where reported [14]. In all of these demonstrations, the absorbing/gain Er medium is located in the fiber core, i.e. at the center of the guided mode.

A new generation of EDF is nowadays developed with the aim of optimizing the pumping conditions while keeping the outstanding performance of regular telecommunication fibers used in transmission applications [1517]. In these fibers, the doped, Er or Yb, medium has a ring shape surrounding a single-mode core. The core is undoped and its diameter is of the order of those of regular telecommunication fibers for transmission applications, to allow low losses and single mode propagation, as well as ease integration to regular transmission systems. The distribution of the absorbing/gain medium allows to increase the pumping power injected in the, doped, second section that acts as a multimode waveguide for the pump wavelength. The amplification is obtained thanks to the partial overlap between the tail of the light propagating at 1,5 µm, mostly in the single mode core and the doped ring region. In this paper we demonstrate slow light propagation in a Ring Erbium-Doped Fiber (REDF). In this configuration the strong dispersion induced by the CPO effect is obtained through the interaction of the light mode wings extending in the ring doped with erbium ions. As predicted by [18], in the context of EIT, this condition is sufficient to modify the effective index of refraction seen by the light propagating in the single mode core.

2. Experiment

The REDF used in the experiment was pulled from a solution-doped preform fabricated by modified chemical-vapor deposition. The spatial distribution of the index of refraction of the fiber is represented in Fig. 1 . Two main regions appear corresponding to the single mode core with a diameter of 5.6 µm and the multimode core having a diameter of 38 µm. The Er3+ ions, shown in blue in Fig. 1, are distributed in a ring located in the multimode core in the vicinity of the single mode core. The concentration of the Er3+ ions is 600 ppm and the overlap with the optical mode propagating in the fiber is about 9%, calculated by implementing finite-element method and using the index of refraction profile depicted in Fig. 1. The fiber used in our experiment is 1.5 meter long and its absorption per unit length is represented in Fig. 2 as a function of the wavelength.

 figure: Fig. 1

Fig. 1 Defraction index profile of the REDF.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2

Fig. 2 Absorption of the REDF.

Download Full Size | PPT Slide | PDF

In order to excite the extremely narrow CPO hole, the pump-probe relative frequency stability should be better than the CPO hole linewidth which is limited by the Er3+ ions lifetime T 1 = 10 ms. These long lifetimes impose a serious constraint to the mutual pump-probe stability, when two lasers are used. To overcome the problems associated to the use of two synchronized laser sources we adopt the approach introduced by Boyd et al [7]. It consists in implementing an intensity-modulation of a continuous-wave (cw) laser source, which produces in the Fourier space new spectral components playing the role of the probe field, whereas the carrier frequency plays the role of the pump.

The scheme of the experimental setup is depicted in Fig. 3 . The light source is a cw 2-kHz linewidth fiber laser (KOHERAS) emitting at 1536.1 nm. At this wavelength, the absorption in the REDF is 0.01 cm−1. The laser beam goes through an acousto-optic modulator (AOM) in order to generate the pump and probe fields for the CPO effect. This is achieved by modulating the intensity of the first order beam diffracted by the AOM. In order to obtain a good and constant optical coupling, the REDF is spliced to a standard single mode 2-meter-long SMF28 fiber having a core diameter of 9 µm. The optical losses induced by the splicing, measured at a wavelength of 1.31 µm at which the Er3+ ions do not absorb, are 0.8 dB. The laser beam is injected into the SMF 28 fiber using a 5 × microscope objective having a numerical aperture NA = 0.12, equivalent to the NA of the SMF 28 fiber. For 10 mW incident on the fiber, 1 mW is measured at the output. Considering the splicing losses and the absorption of the fiber, a coupling efficiency of about 60% in the SMF28 fiber is deduced. A fraction of the laser beam, picked up before the objective with a polarizing beam splitter, is used as a reference to measure the delay achieved in REDF. The main beam propagating in the REDF and the reference beam are detected using InGaAs detectors (NEWFOCUS 1181) and recorded with lock-in Amplifiers. The group delay is then computed from the phases measured by the lock-in amplifiers and is simply given by τg = Δϕ/(2πδ) where Δϕ is the signal – reference phase difference and δ the modulation frequency.

 figure: Fig. 3

Fig. 3 Scheme of the experimental setup.

Download Full Size | PPT Slide | PDF

3. Slow light propagation

The group delay is measured as a function of the input intensity for a set of modulation frequencies (Fig. 4 ). Firstly, the group delay τg increases as the pump power is increased. This is due to the increased number of Er3+ ions contributing to the CPO process. Secondly, as the pump power is further increased, the delay reaches a maximum value and then declines. This is mainly due to two effects. When the saturation level is attained the number of Er3+ ions whose populations are oscillating in the CPO process reaches a stationary level. A further increase on the pump power induces a power broadening of the CPO hole. This in turn is associated to a smoothed dispersion profile at the origin of weaker delays. The maximum delay at 10 Hz is reached for a pump power of about 4 mW, corresponding to an intensity of about 6.4 W/cm2. As the frequency modulation gets higher, the maximum delay tends to zero since the modulation is faster than 1/T 1 and the population can no longer follow the pump-probe beating. The behavior obtained in REDF shown in Fig. 4 is similar to the one of CPO-based slow light propagation in a crystal doped with Er3+ ions [10]. It is also consistent with the results shown in Fig. 5 obtained in a regular EDF using the same experimental setup of Fig. 3. The EDF is 3 meter long, with an index of refraction contrast between the 4-µm-diameter core and the cladding of 18 10−3. The absorption in the EDF is 4 dB/m at 1532 nm.

 figure: Fig. 4

Fig. 4 Group delay obtained in REDFA for different frequencies δ as a function of the pump power.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5

Fig. 5 Group delay obtained in a regular EDFA.

Download Full Size | PPT Slide | PDF

Note that in all cases the delay does not rapidly vanish as the power is further increased. This is a signature of the inhomogeneous broadening as evidenced in the following theoretical analysis.

The behavior of the group delay is theoretically very well accounted for using a simple analysis based on the dynamical evolution of the ions population when excited by a modulated light. In this approach, the ground state population evolution is given by

dN(t)dt=N(t)σωI(t)+N0NT1,
where σ and T1 are respectively the absorption cross section and the population lifetime of the Er3+ ions. I(t) is the total optical intensity exciting the Er3+ ions. It can be written as I(t)=Ip+2Imcos(2πδt), where Ip is the cw part of the beam that is considered as the pump and Im is the amplitude of the modulation that plays the role of the probe in the CPO process. The evolution of the total intensity I(t) propagating in the fiber is given by

dI(t)dt=σN(t)I(t).

Solving Eq. (1) in the approximation of a weak modulation, , we can deduce the complex absorption coefficient of the modulated intensity. It is given by

αm=α01+S[1S(1+S+i2πδ)(1+S)2+(2πδT1)2],
where α0 is the unsaturated absorption and S=Ip/Isat is the saturation parameter. The imaginary part of the absorption is the index dispersion induced by the CPO effect and vanishes when the modulation frequency δis larger than the natural linewidth 1/T1of the erbium ions. The group delay is given by
τg=2πδL/Im(αm),
where L is the fiber length.

The dashed line in Fig. 4 is the theoretical plot of expression (4) obtained for T 1 = 10 ms, δ = 10 Hz and by adjusting the saturation parameter S. When the powers are below the optimum value for which the maximum delay is reached, theory agrees with the observation. However as the pump power is increased above the optimum value of 4 mW, theory does not follow anymore the experimental data. This disagreement is due to the inhomogeneous broadening of the optical transition that cannot be considered in the model based on the evolution of the population and thus by expression (4). A more rigorous theoretical approach based on the evolution of the matrix density should be used. This formalism takes account of the different relative detunings (pump – probe and pump – atomic resonance) and more importantly the inhomogeneous broadening. In this approach, the dielectric susceptibility is calculated. The detailed analysis can be found in reference [19]. The dielectric susceptibility of the probe is given by

χs(δ,Δ)=α0cωT21Δ+δ+i/T211+S1+Δ2T22×[1S2T1T2(δ+2i/T2)(Δδi/T2)D(δ,Δ)(δi/T2)],
where D(δ,Δ)=(δ+i/T1)(Δ+δ+i/T2)(Δδi/T2)+(S/T1T2)(δ+i/T2). δ is the pump-probe frequency relative detuning and Δ is the pump detuning from the atomic resonance. T2 is the optical coherence time.

In order to take account of the inhomogeneous broadening, one has to integrate the susceptibility χs(δ,Δ) over the inhomogeneous line. It came out from the calculations, that knowing the exact value of the inhomogeneous broadening is not relevant when it is much larger than homogeneous line since the important contribution to the integral is around few homogeneous lines. This is the case for the REDF. In addition T 1 = 10 ms and the absorption profile are independently measured, and the only unknown parameter is the saturation intensity that can be inferred from the fit of one of the curves of Fig. 4. The other fits are thus obtained without any adjustable parameter. The continuous lines in Fig. 4 are the theoretical group delays obtained using the density matrix formalism. The agreement is now excellent and points to the crucial role of the inhomogeneous broadening. We would like to stress that, from a more practical point of view, the inhomogeneous broadening does not kill the slowing down of the light. It constitutes instead an interesting resource to tune the group delay, by taking benefit from the change of the absorption level among the inhomogeneous profile.

The group delay is then measured as a function of the modulation frequency in order to clearly highlight its CPO origin. The results, presented in Fig. 6 for a pump power of 5 mW, clearly show a decline of the optical delay as the modulation frequency is increased, with a full width at half maximum of 25 Hz. This value is consistent with the natural linewidth (1 + S)1/2T 1 = 25 Hz of the Er3+ transition, where S = 1.5 for a power of 5 mW. The continuous line is the theoretical group delay calculated using the matrix density formalism and taking into account the inhomogeneous broadening. The maximum delay achieved of 1.1 ms corresponds to a group velocity as low as 1360 m/s. Since the Er3+ ions ring introduces a strong localized absorption a question arises on the eventual distortion of the spatial profile or more subtle an eventual variation of the delay along the spatial profile. We perform measurements where the output beam was screened by a movable razor blade. They confirm that both the spatial intensity profile is undistorted and that the optical delay is uniform along the whole spatial profile. This is expected for an optical mode undergoing, as a whole, CPO effect wherever the absorption associated to the two-level system is located.

 figure: Fig. 6

Fig. 6 Group delay as function of the frequency δ for a pump power of 5 mW. The continuous line is the theoretical curve.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, we have demonstrated slow light propagation in an REDF via CPO effect. Although the doping is annularly distributed in a second core surrounding the undoped central core, the whole optical mode experience a group delay. The measured group velocity is as low as 1360 m/s, lower than the speed of sound in silica. It can be tuned by taking benefit from the inhomogeneous broadening, inherent to the dispersion of the local environment of erbium ions in the silica. Finally, we would like to stress that such REDF are particularly suitable for implementing tunable group delays (positive or negative) by pumping in the secondary, doped, core at a wavelength of 980 nm. Indeed, the pumping effect will change the absorption of the fiber turning it into gain, modifying the slop of the index of refraction dispersion.

References and links

1. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997). [CrossRef]  

2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005). [CrossRef]  

3. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harte, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981). [CrossRef]  

4. J. Q. Liang, M. Katsuragawa, F. Kien, K. Hakuta, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 031801 (2002). [CrossRef]  

5. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005). [CrossRef]   [PubMed]  

6. K. Y. Song, M. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005). [CrossRef]   [PubMed]  

7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003). [CrossRef]   [PubMed]  

8. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003). [CrossRef]   [PubMed]  

9. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004). [CrossRef]   [PubMed]  

10. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005). [CrossRef]   [PubMed]  

11. J. Freeman and J. Conradi, “Gain modulation response of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 5(2), 224–226 (1993). [CrossRef]  

12. S. Novak and A. Moesle, “Analytic model for gain modulation in EDFAs,” J. Lightwave Technol. 20(6), 975–985 (2002). [CrossRef]  

13. S. Jarabo, “Measurement of the phase shift for a low-frequency-modulated signal power in an erbium-doped fiber amplifier,” J. Opt. Soc. Am. B 14(7), 1846 (1997). [CrossRef]  

14. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006). [CrossRef]  

15. M. P. Petrov, R. V. Kiyan, E. A. Kuzin, E. A. Rogacheva, and V. V. Spirin, “Gain saturation in three- and four-level fiber amplifiers,” Opt. Commun. 109(5-6), 499–506 (1994). [CrossRef]  

16. J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, “Yb(3+)-ring-doped fiber for high-energy pulse amplification,” Opt. Lett. 22(14), 1092–1094 (1997). [CrossRef]   [PubMed]  

17. P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002). [CrossRef]  

18. A. K. Patnaik, J. Q. Liang, and K. Hakuta, “Slow light propagation in a thin optical fiber via electromagnetically induced transparency,” Phys. Rev. A 66(6), 063808 (2002). [CrossRef]  

19. E. Baldit, S. Briaudeau, P. Monnier, K. Bencheikh, and J. A. Levenson, “Light propagation in a solid doped with erbium ions: from ultraslow light to the superluminal regime,” C. R. Phys. 10(10), 927–937 (2009). [CrossRef]  

References

  • View by:

  1. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
    [Crossref]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  3. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harte, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
    [Crossref]
  4. J. Q. Liang, M. Katsuragawa, F. Kien, K. Hakuta, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 031801 (2002).
    [Crossref]
  5. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [Crossref] [PubMed]
  6. K. Y. Song, M. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
    [Crossref] [PubMed]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
    [Crossref] [PubMed]
  8. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
    [Crossref] [PubMed]
  9. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
    [Crossref] [PubMed]
  10. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
    [Crossref] [PubMed]
  11. J. Freeman and J. Conradi, “Gain modulation response of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 5(2), 224–226 (1993).
    [Crossref]
  12. S. Novak and A. Moesle, “Analytic model for gain modulation in EDFAs,” J. Lightwave Technol. 20(6), 975–985 (2002).
    [Crossref]
  13. S. Jarabo, “Measurement of the phase shift for a low-frequency-modulated signal power in an erbium-doped fiber amplifier,” J. Opt. Soc. Am. B 14(7), 1846 (1997).
    [Crossref]
  14. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
    [Crossref]
  15. M. P. Petrov, R. V. Kiyan, E. A. Kuzin, E. A. Rogacheva, and V. V. Spirin, “Gain saturation in three- and four-level fiber amplifiers,” Opt. Commun. 109(5-6), 499–506 (1994).
    [Crossref]
  16. J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, “Yb(3+)-ring-doped fiber for high-energy pulse amplification,” Opt. Lett. 22(14), 1092–1094 (1997).
    [Crossref] [PubMed]
  17. P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
    [Crossref]
  18. A. K. Patnaik, J. Q. Liang, and K. Hakuta, “Slow light propagation in a thin optical fiber via electromagnetically induced transparency,” Phys. Rev. A 66(6), 063808 (2002).
    [Crossref]
  19. E. Baldit, S. Briaudeau, P. Monnier, K. Bencheikh, and J. A. Levenson, “Light propagation in a solid doped with erbium ions: from ultraslow light to the superluminal regime,” C. R. Phys. 10(10), 927–937 (2009).
    [Crossref]

2009 (1)

E. Baldit, S. Briaudeau, P. Monnier, K. Bencheikh, and J. A. Levenson, “Light propagation in a solid doped with erbium ions: from ultraslow light to the superluminal regime,” C. R. Phys. 10(10), 927–937 (2009).
[Crossref]

2006 (1)

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[Crossref]

2005 (4)

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

K. Y. Song, M. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

2002 (4)

J. Q. Liang, M. Katsuragawa, F. Kien, K. Hakuta, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 031801 (2002).
[Crossref]

S. Novak and A. Moesle, “Analytic model for gain modulation in EDFAs,” J. Lightwave Technol. 20(6), 975–985 (2002).
[Crossref]

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

A. K. Patnaik, J. Q. Liang, and K. Hakuta, “Slow light propagation in a thin optical fiber via electromagnetically induced transparency,” Phys. Rev. A 66(6), 063808 (2002).
[Crossref]

1997 (3)

1994 (1)

M. P. Petrov, R. V. Kiyan, E. A. Kuzin, E. A. Rogacheva, and V. V. Spirin, “Gain saturation in three- and four-level fiber amplifiers,” Opt. Commun. 109(5-6), 499–506 (1994).
[Crossref]

1993 (1)

J. Freeman and J. Conradi, “Gain modulation response of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 5(2), 224–226 (1993).
[Crossref]

1981 (1)

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harte, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[Crossref]

Agostini, E.

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

Baldit, E.

E. Baldit, S. Briaudeau, P. Monnier, K. Bencheikh, and J. A. Levenson, “Light propagation in a solid doped with erbium ions: from ultraslow light to the superluminal regime,” C. R. Phys. 10(10), 927–937 (2009).
[Crossref]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[Crossref] [PubMed]

Bayart, D.

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

Bencheikh, K.

E. Baldit, S. Briaudeau, P. Monnier, K. Bencheikh, and J. A. Levenson, “Light propagation in a solid doped with erbium ions: from ultraslow light to the superluminal regime,” C. R. Phys. 10(10), 927–937 (2009).
[Crossref]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[Crossref] [PubMed]

Bigelow, M. S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Bousselet, P.

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

Boyd, R. W.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harte, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[Crossref]

Briaudeau, S.

E. Baldit, S. Briaudeau, P. Monnier, K. Bencheikh, and J. A. Levenson, “Light propagation in a solid doped with erbium ions: from ultraslow light to the superluminal regime,” C. R. Phys. 10(10), 927–937 (2009).
[Crossref]

Caplen, J. E.

Chang, S. W.

Chang-Hasnain, C. J.

Chuang, S. L.

Conradi, J.

J. Freeman and J. Conradi, “Gain modulation response of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 5(2), 224–226 (1993).
[Crossref]

Corbel, E.

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Freeman, J.

J. Freeman and J. Conradi, “Gain modulation response of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 5(2), 224–226 (1993).
[Crossref]

Frignac, Y.

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Hakuta, K.

J. Q. Liang, M. Katsuragawa, F. Kien, K. Hakuta, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 031801 (2002).
[Crossref]

J. Q. Liang, M. Katsuragawa, F. Kien, K. Hakuta, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 031801 (2002).
[Crossref]

A. K. Patnaik, J. Q. Liang, and K. Hakuta, “Slow light propagation in a thin optical fiber via electromagnetically induced transparency,” Phys. Rev. A 66(6), 063808 (2002).
[Crossref]

Hamaide, J. P.

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

Hanna, D. C.

Harris, S. E.

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
[Crossref]

Harte, D. J.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harte, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[Crossref]

Herráez, M.

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Jarabo, S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[Crossref]

S. Jarabo, “Measurement of the phase shift for a low-frequency-modulated signal power in an erbium-doped fiber amplifier,” J. Opt. Soc. Am. B 14(7), 1846 (1997).
[Crossref]

Katsuragawa, M.

J. Q. Liang, M. Katsuragawa, F. Kien, K. Hakuta, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 031801 (2002).
[Crossref]

Kien, F.

J. Q. Liang, M. Katsuragawa, F. Kien, K. Hakuta, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 031801 (2002).
[Crossref]

Kien, F. L.

J. Q. Liang, M. Katsuragawa, F. Kien, K. Hakuta, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 031801 (2002).
[Crossref]

Kiyan, R. V.

M. P. Petrov, R. V. Kiyan, E. A. Kuzin, E. A. Rogacheva, and V. V. Spirin, “Gain saturation in three- and four-level fiber amplifiers,” Opt. Commun. 109(5-6), 499–506 (1994).
[Crossref]

Ku, P. C.

Kuzin, E. A.

M. P. Petrov, R. V. Kiyan, E. A. Kuzin, E. A. Rogacheva, and V. V. Spirin, “Gain saturation in three- and four-level fiber amplifiers,” Opt. Commun. 109(5-6), 499–506 (1994).
[Crossref]

Lanne, S.

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

Lepeshkin, N. N.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[Crossref]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

Leplingard, E.

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

Levenson, J. A.

E. Baldit, S. Briaudeau, P. Monnier, K. Bencheikh, and J. A. Levenson, “Light propagation in a solid doped with erbium ions: from ultraslow light to the superluminal regime,” C. R. Phys. 10(10), 927–937 (2009).
[Crossref]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[Crossref] [PubMed]

Li, T.

Liang, J. Q.

J. Q. Liang, M. Katsuragawa, F. Kien, K. Hakuta, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 031801 (2002).
[Crossref]

A. K. Patnaik, J. Q. Liang, and K. Hakuta, “Slow light propagation in a thin optical fiber via electromagnetically induced transparency,” Phys. Rev. A 66(6), 063808 (2002).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Moesle, A.

Monnier, P.

E. Baldit, S. Briaudeau, P. Monnier, K. Bencheikh, and J. A. Levenson, “Light propagation in a solid doped with erbium ions: from ultraslow light to the superluminal regime,” C. R. Phys. 10(10), 927–937 (2009).
[Crossref]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[Crossref] [PubMed]

Narum, P.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harte, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[Crossref]

Nilsson, J.

Novak, S.

Nowodzinski, A.

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Palinginis, P.

Paschotta, R.

Patnaik, A. K.

A. K. Patnaik, J. Q. Liang, and K. Hakuta, “Slow light propagation in a thin optical fiber via electromagnetically induced transparency,” Phys. Rev. A 66(6), 063808 (2002).
[Crossref]

Petrov, M. P.

M. P. Petrov, R. V. Kiyan, E. A. Kuzin, E. A. Rogacheva, and V. V. Spirin, “Gain saturation in three- and four-level fiber amplifiers,” Opt. Commun. 109(5-6), 499–506 (1994).
[Crossref]

Raymer, M. G.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harte, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[Crossref]

Rogacheva, E. A.

M. P. Petrov, R. V. Kiyan, E. A. Kuzin, E. A. Rogacheva, and V. V. Spirin, “Gain saturation in three- and four-level fiber amplifiers,” Opt. Commun. 109(5-6), 499–506 (1994).
[Crossref]

Rouget, V.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[Crossref] [PubMed]

Schweinsberg, A.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Sedgwick, F.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Simonneau, C.

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

Song, K. Y.

Spirin, V. V.

M. P. Petrov, R. V. Kiyan, E. A. Kuzin, E. A. Rogacheva, and V. V. Spirin, “Gain saturation in three- and four-level fiber amplifiers,” Opt. Commun. 109(5-6), 499–506 (1994).
[Crossref]

Thévenaz, L.

Thiéry, J. P.

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

Wang, H.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

C. R. Phys. (1)

E. Baldit, S. Briaudeau, P. Monnier, K. Bencheikh, and J. A. Levenson, “Light propagation in a solid doped with erbium ions: from ultraslow light to the superluminal regime,” C. R. Phys. 10(10), 927–937 (2009).
[Crossref]

Electron. Lett. (1)

P. Bousselet, S. Lanne, J. P. Thiéry, Y. Frignac, E. Leplingard, C. Simonneau, E. Corbel, D. Bayart, J. P. Hamaide, E. Agostini, and A. Nowodzinski, “BER validation of ring-doping cladding-pumped EDFAs for dense WDM applications,” Electron. Lett. 38(11), 522–523 (2002).
[Crossref]

Europhys. Lett. (1)

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Freeman and J. Conradi, “Gain modulation response of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 5(2), 224–226 (1993).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

M. P. Petrov, R. V. Kiyan, E. A. Kuzin, E. A. Rogacheva, and V. V. Spirin, “Gain saturation in three- and four-level fiber amplifiers,” Opt. Commun. 109(5-6), 499–506 (1994).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (3)

A. K. Patnaik, J. Q. Liang, and K. Hakuta, “Slow light propagation in a thin optical fiber via electromagnetically induced transparency,” Phys. Rev. A 66(6), 063808 (2002).
[Crossref]

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harte, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[Crossref]

J. Q. Liang, M. Katsuragawa, F. Kien, K. Hakuta, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65(3), 031801 (2002).
[Crossref]

Phys. Rev. Lett. (3)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Defraction index profile of the REDF.
Fig. 2
Fig. 2 Absorption of the REDF.
Fig. 3
Fig. 3 Scheme of the experimental setup.
Fig. 4
Fig. 4 Group delay obtained in REDFA for different frequencies δ as a function of the pump power.
Fig. 5
Fig. 5 Group delay obtained in a regular EDFA.
Fig. 6
Fig. 6 Group delay as function of the frequency δ for a pump power of 5 mW. The continuous line is the theoretical curve.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d N ( t ) d t = N ( t ) σ ω I ( t ) + N 0 N T 1 ,
d I ( t ) d t = σ N ( t ) I ( t ) .
α m = α 0 1 + S [ 1 S ( 1 + S + i 2 π δ ) ( 1 + S ) 2 + ( 2 π δ T 1 ) 2 ] ,
τ g = 2 π δ L / Im ( α m ) ,
χ s ( δ , Δ ) = α 0 c ω T 2 1 Δ + δ + i / T 2 1 1 + S 1 + Δ 2 T 2 2 × [ 1 S 2 T 1 T 2 ( δ + 2 i / T 2 ) ( Δ δ i / T 2 ) D ( δ , Δ ) ( δ i / T 2 ) ] ,

Metrics