Abstract

We demonstrate numerically that a cavity can be induced in a defect-free photonic crystal slab made of photosensitive material such as chalcogenide glass. A key advantage of the design is the possibility for complete post-processing in an otherwise defect-free structure, and the cavity can thus be formed anywhere in the photonic crystal. We demonstrate that high-Q cavities with Q~108 can be designed in this way. Since the high-Q mode can originate from an air-band, these cavities appear to be ideal candidates for sensing applications.

©2010 Optical Society of America

1. Introduction

High quality factors and small modal volume optical cavities have diverse applications ranging from quantum electrodynamics to telecommunications. Though they have been developed in many geometries, providing a wide range of resonant properties, the platform that enables the most compact cavities is the photonic crystal slab (PCS) [1]. There are many ways to form PCS cavities through geometry perturbations [2,3] but these typically rely on extremely precise control of holes’ size and position through nanolithographic techniques. These approaches require the structure to be finalized at the stage of fabrication with limited scope for postprocessing. There are ways to induce a high-Q cavity without a geometry perturbation, for example by changing the refractive index of the holes [49]. One way to achieve this is to infiltrate the air holes with materials of refractive index n>1, such as water, liquid crystal and polymer [46]. Quality factors of order Q~106 can be also designed by depositing a strip on the top surface of the silicon slab [1012].

It is also possible to induce the cavity by changing the refractive index of the background material [13]. This concept can be realized in photosensitive material-based PCSs such as chalcogenide glasses and polymers. For example the refractive index of chalcogenide glass can be changed by 1-8%, depending on the type of glass, when it is illuminated by light, typically in the visible part of the spectrum [14]. We showed earlier that ultrahigh-Q cavities, Q~106, can be designed in chalcogenide-based double-heterostructure (DH) type PCS cavities when the refractive index change has one-dimensional Gaussian profile in the waveguide direction [13]. This was experimentally confirmed when a cavity with Q = 1.25 × 105 was formed in this way [15].

In this paper we design a cavity by changing the refractive index in otherwise defect-free chalcogenide-based PCS structure. In contrast, DH type cavities require a photonic crystal slab with a waveguide, and the cavity’s position is therefore restricted. Post-processing in defect-free structure was recently demonstrated where the cavity was formed by using a relocatable fibre taper [16] but in this case the cavity is induced only when the fiber taper is present. Even though there are many reversible and irreversible photoinduced effects of chalcogenide glass, in this paper we consider a permanent refractive index change [15]. The sign and magnitude of this change depend on the glass composition and the processing history of the sample [14]. Positive or negative refractive index changes can be obtained depending on the wavelength, intensity and polarization of the light used [17]. Our cavity design is similar to the recently proposed and experimentally demonstrated geometry-based design where the cavity is formed by changing the size of the holes [18,19].

2. Model and method

In our design we start with the bulk PCS without any defect. We consider a finite PCS composed of a hexagonal array of cylindrical air holes in a chalcogenide slab with n = 2.7. The lattice constant is a, hole radius R = 0.29a and the slab thickness is h = 0.7a. The structure has 49 periods in the x-direction and 55 periods in the y-direction for dielectric band edge mode calculations. The structure used for the air band edge mode calculations is smaller: it has 37 periods in the x-direction and 41 periods in the y-direction. The domain size was reduced as a satisfactory convergence could not be obtained for the larger domain.

The cavity is induced by changing the refractive index of the chalcogenide glass. The exposed region with the induced refractive index change has a rotationally symmetric Gaussian profile (in the plane of the slab), with a full width at the half maximum d = ma, where m is an integer. It is centered on the middle of the slab, at the centre of a hole. If the refractive index is increased, the bands shift to lower frequencies, and the mode forming the top of the band gap (the air band-edge mode) enters the photonic band gap (PBG) of the unexposed structure at the M point. This results in a mode being localized to the exposed region—this region thus forms a cavity, see Fig. 1(a) . If the refractive index is decreased, bands shift to higher frequencies and the mode at the bottom of the band (the dielectric band-edge mode) enters the PBG of the unexposed structure at the K point, also forming a cavity, see Fig. 1(b). We assume that the induced refractive index change does not vary in the vertical direction. This is justified by the experimental verification of a photo-induced high-Q cavity [15]. Otherwise, even small refractive index variations in the vertical direction break the symmetry and degrade the cavity Q [20].

 

Fig. 1 The potential well induced by (a) a positive refractive index change and (b) a negative refractive index change; the dotted lines represent the frequencies of the localized modes considered here; the solid horizontal lines represent the air and dielectric band-edge respectively.

Download Full Size | PPT Slide | PDF

The cavities’ quality factors, Q, are calculated using three-dimensional finite-difference time-domain (FDTD) simulations, combined with harmonic analysis techniques to extract narrow spectral features [21]. Numerical parameters for the calculations can be found in Refs. [4,13].

3. Results

As discussed in Section 2 if the refractive index of chalcogenide glass decreases (increases), a high-Q dielectric band-edge (air-band edge) mode can be induced. We investigate the band-edge mode for different, positive and negative, refractive index changes. The size of the exposed region is similar to the length of the photoinduced DH cavity region demonstrated experimentally [15].

First we consider a negative refractive index change. In Fig. 2(a) we show Q and the resonant mode frequency as a function of the refractive index change. The cavity size is fixed at m = 6. The quality factor increases from Q = 2.7 × 107 at Δn = 0.08 to Q = 2.1 × 108 at Δn = 0.12. In this part of the curve the total quality factor is limited by in-plane losses [18]. Further decrease of the refractive index decreases the quality factor, due to increased out-of-plane losses [18], but it still well exceeds 108. In fact, there is a large range of the refractive index changes, the entire range considered here, where the Q > 107. Figure 2 also shows the resonant mode frequency (crosses) and the dielectric band-edge (solid line). The resonant frequency changes almost linearly with the refractive index. The frequency corresponding to the optimal Q is similar to that of DH structure cavities [22].

 

Fig. 2 Quality factor (squares) and resonant frequency (crosses) as a function of the refractive index change for the (a) dielectric and (b) air band-edge mode. The horizontal solid lines represent the band-edges. The cavity width is fixed at m = 6.

Download Full Size | PPT Slide | PDF

Next we consider a positive refractive index change. In Fig. 2(b) we show Q (squares) as a function of the refractive index change. The quality factor increases from Q = 1.1 × 106 at Δn = 0.08 to Q = 5.0 × 106 at Δn = 0.12. Further increase of the refractive index decreases the total quality factor. However, the Q still well exceeds 106. The quality factor in the range Δn = [0.08, 0.12] is limited by in-plane losses, whereas the out-of-plane looses are the limiting factor for Δn>0.12. In the same figure we also show the resonant frequency (crosses) and the air band-edge (solid line). Similarly to the dielectric band-edge mode formed by changing the hole size [18], the resonant frequency crosses the band gap almost linearly. There is no obvious reason for the optimum of the dielectric and air band-edge mode to appear at the same optimal refractive index change.

There are two major electric field components, Ex and Ey. In Fig. 3(a) and 3(b) one of the major electric field component, Ex, is shown for the dielectric band edge mode (Δn<0), and in 3(d) and (e) for the air-band edge mode (Δn>0). The refractive index change for both cavities is |Δn| = 0.1. The field is symmetric out-of-plane, anti-symmetric in the x-direction and in the y-direction for both modes. The circles represent the holes. In Figs. 3(b) and 3(e) we magnified field plots in the middle of the structure. As expected the field is mainly concentrated in the dielectric for the dielectric band-edge mode and mainly in the holes for the air band-edge mode. Figure 3 shows that the electric field is strong at the edges of the air holes. Therefore any random fluctuation of air-holes radius and position may affect the Q-factors [23].

 

Fig. 3 One of the major electric field components, Ex, in the plane for the dielectric band-edge mode (a) with the larger domain, and (b) magnified in the centre of the slab, (c) the Fourier transform of the field; (d) to (f) similar, but for the air band-edge mode. For both cavities m = 6 periods and Δn = 0.1

Download Full Size | PPT Slide | PDF

In Figs. 3(c) and 3(f) we show Fourier transforms of the field with a circle indicating the light-cone. The field within the leaky light-cone region is insignificant as required for high-Q cavity modes [24]. Though the out-of-plane quality factor component is usually considered to be the limiting factor in the design of high-Q cavities, this is not completely true here. For both the dielectric and the air band edge-mode, the limiting factor can be in-plane losses. Therefore if the refractive index change is in the range considered here (Δn = [0.08, 0.12]), special care has to be taken when choosing the dimensions of the entire structure. If the PCS is not large enough in comparison to the cavity size, the in-plane component can be the limiting factor.

4. Application for sensing

The quality factors for the air band-edge mode are significantly larger than the quality factors for any other reported air modes, including point type cavities, DH type cavities, and band-edge mode cavities [25,26]. DH cavity is restricted to the high-index waveguide region and therefore high-Q air modes are hard to achieve. In the case of the design based on modulation of radius of air-holes, the radius is modulated gradually; in our design the refractive index change is truly continuous. Both high Q, and a large field overlap with the sample, f, are important for optical cavity-based sensing [26,27]. The resonant shift, obtained when the sample is added to a liquid in the holes, is proportional to the energy fraction f of the resonant mode field interacting with the sample. The smallest refractive index change which can be sensed by a cavity-based sensor corresponds to a frequency shift larger than approximately the resonance linewidth, which, in turn, is determined by the quality factor. The air modes typically have large f but small Q [26,27], in contrast to the air band-edge mode presented here.

We investigate this type of the cavity for sensing application in the same manner as in Ref. [26] for the air band-edge mode with an increased refractive index Δn = 0.12. In the case of liquid-based sensing all holes are infiltrated with the fluid, in this example water with nf = 1.33. The Q of the cavity is decreased from Q = 5.0 × 106 to Q = 4.2 × 105. This is not surprising as the refractive index difference between the holes and the slab is significantly reduced. Then we add the sample to the liquid, which changes its refractive index, shifting the cavity’s resonant frequency. In Fig. 4 , we show the sensitivity versus the refractive index change caused by the presence of the sample. If we choose the detection limit to be S = 0.5 [26], at which the frequency shift is half the resonance linewidth, the detection limit of the infiltrated cavity is Δns = 5.4 × 10−6 and for the gas sensing it is Δns = 4.7 × 10−7. Therefore, a high-Q mode can originate from the air-band. Since such modes have a large overlap between the field and the sample, these cavities can be considered as ideal candidates for sensing applications. Larger overlap of the field and the sample was only demonstrated for the slotted PC waveguides that incorporate a geometry-based DH cavity [28] but with the Q decreasing from Q = 5 × 104 to Q = 4 × 103 when the slot is infiltrated. Even though there is another localized mode in the potential well, in practice the spacing between modes is larger than the small shift induced by the presence of a sample.

 

Fig. 4 Sensitivity of the air band-edge mode cavity, Δn = 0.12, m = 6 for gas sensing (crosses) and liquid-based sensing (squares) as a function of the refractive index change induced by the sample, Δns. The solid horizontal line represents the detection limit S = 0.5.

Download Full Size | PPT Slide | PDF

5. Discussion and conclusions

Though we here consider continuously varying Gaussian refractive index profiles, qualitatively similar results are obtained for other circularly symmetric cavities. For example, taking the refractive index to be step-like top hat function, a refractive index change of Δn = −0.09 and a radius of eight periods leads to a cavity with Q = 7 × 105 for the dielectric band-edge mode. The same but positive refractive index change results in a cavity with Q = 3 × 105 for the air band-edge mode. The somewhat lower Q values for step-like refractive index profiles is consistent with results for DH cavities [13]. Therefore the range of parameters, cavity size and the refractive index change that enable a high-Q cavity is quite broad. Consequently, it is not crucial to control the size and the refractive index change precisely. Similar findings were reported for DH cavities where the refractive index change is induced across the waveguide [22]. This differs from point cavities which are extremely sensitive to the values of the optimal parameters [25]. Unlike geometry based cavities, our design does not require changes in the geometry with a precision measured in nanometers [2,3,25].

The quality factors obtained here are larger than those reported in photoinduced DH cavities. However, the main advantage of the current design is that it can be completely achieved by post-processing in an otherwise defect free structure; the cavity can thus be formed anywhere in the structure. In contrast, DH type cavities require a photonic crystal slab with a waveguide, and the cavity’s position is therefore restricted. Contrary, the new geometry allows the formation of high-Q cavities based on air bands, which is a key advantage in sensor applications. Modal volumes tend to be larger than for point-cavity designs [25] and DH [13]. The volumes of the resonant modes for the dielectric and air band-edge mode are of the order of a few (λ/n)3. For example the modal volume for the dielectric mode changes from V = 4.1 (λ/n)3 at Δn = 0.08 to V = 2.7 (λ/n)3 at Δn = 0.16. For the air mode for the same range it changes from V = 3.5(λ/n)3 to V = 1.9(λ/n)3. However, the increase in the quality factor is much larger than the modal volume increase. Therefore the overall ratio Q/V, important in many applications, is similar for the band-edge and DH type cavities. The required refractive index change for the band edge cavity modes, Δn~0.1, is larger than for the DH cavities, where Δn~0.03 [13,15], which in practice may lead to additional losses due to increased absorption [29,30].

In conclusion, we have shown that cavities with Q as high as Q~108 can be designed in defect-free chalcogenide-based photonic crystal slabs. Both positive and negative refractive index change can result in ultrahigh-Q cavities. This new geometry also allows the formation of high-Q cavities based on air bands, which is a key advantage in sensor applications. Though we considered only chalcogenide-based PCS, in principle this design can be applied to the other photosensitive materials as well.

Acknowledgments

This work was produced with the assistance of the Australian Research Council (ARC) under the ARC Centres of Excellence Program and by an award under the Merit Allocation Scheme on the National Facility of the National Computational Infrastructure. STH is supported by the Australian Research Council (ARC) Australian Research Fellowship (DP1096288). We thank D. J. Moss for pointing out the possibility for post-tuning in chalcogenide structure and A. Rahmani for useful discussions.

References and links

1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef]   [PubMed]  

2. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]  

3. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]  

4. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006). [CrossRef]   [PubMed]  

5. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33(19), 2206–2208 (2008). [CrossRef]   [PubMed]  

6. F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006). [CrossRef]  

7. B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004). [CrossRef]  

8. R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006). [CrossRef]  

9. P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, “Local infiltration of planar photonic crystals with UV-curable polymers,” J. Opt. Soc. Am. B 25(10), 1562–1567 (2008). [CrossRef]  

10. S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007). [CrossRef]   [PubMed]  

11. S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, “Microlasers based on effective index confined slow light modes in photonic crystal waveguides,” Opt. Express 16(9), 6331–6339 (2008). [CrossRef]   [PubMed]  

12. M.-K. Seo, J. H. Kang, M.-K. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, H.-G. Park, and Y.-H. Lee, “Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition,” Opt. Express 17(8), 6790–6798 (2009). [CrossRef]   [PubMed]  

13. S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32(5), 542–544 (2007). [CrossRef]   [PubMed]  

14. A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003). [CrossRef]  

15. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34(23), 3671–3673 (2009). [CrossRef]   [PubMed]  

16. J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express 17(15), 13009–13016 (2009). [CrossRef]   [PubMed]  

17. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995). [CrossRef]  

18. F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890–10902 (2007). [CrossRef]   [PubMed]  

19. F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, “Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light,” Opt. Express 17(7), 5439–5445 (2009). [CrossRef]   [PubMed]  

20. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003). [CrossRef]  

21. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997). [CrossRef]  

22. S. Tomljenovic-Hanic, and C. M. de Sterke, “High-Q cavity design in photonic crystal heterostructures,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technol., OSA Technical Digest, JTuA125 (2008).

23. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009). [CrossRef]  

24. D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005). [CrossRef]   [PubMed]  

25. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12(17), 3988–3995 (2004). [CrossRef]   [PubMed]  

26. S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. Martijn de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009). [CrossRef]   [PubMed]  

27. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008). [CrossRef]  

28. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009). [CrossRef]  

29. P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009). [CrossRef]  

30. S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [Crossref]
  3. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
    [Crossref]
  4. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006).
    [Crossref] [PubMed]
  5. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33(19), 2206–2208 (2008).
    [Crossref] [PubMed]
  6. F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
    [Crossref]
  7. B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
    [Crossref]
  8. R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
    [Crossref]
  9. P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, “Local infiltration of planar photonic crystals with UV-curable polymers,” J. Opt. Soc. Am. B 25(10), 1562–1567 (2008).
    [Crossref]
  10. S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
    [Crossref] [PubMed]
  11. S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, “Microlasers based on effective index confined slow light modes in photonic crystal waveguides,” Opt. Express 16(9), 6331–6339 (2008).
    [Crossref] [PubMed]
  12. M.-K. Seo, J. H. Kang, M.-K. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, H.-G. Park, and Y.-H. Lee, “Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition,” Opt. Express 17(8), 6790–6798 (2009).
    [Crossref] [PubMed]
  13. S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32(5), 542–544 (2007).
    [Crossref] [PubMed]
  14. A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [Crossref]
  15. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34(23), 3671–3673 (2009).
    [Crossref] [PubMed]
  16. J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express 17(15), 13009–13016 (2009).
    [Crossref] [PubMed]
  17. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
    [Crossref]
  18. F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890–10902 (2007).
    [Crossref] [PubMed]
  19. F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, “Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light,” Opt. Express 17(7), 5439–5445 (2009).
    [Crossref] [PubMed]
  20. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
    [Crossref]
  21. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997).
    [Crossref]
  22. S. Tomljenovic-Hanic, and C. M. de Sterke, “High-Q cavity design in photonic crystal heterostructures,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technol., OSA Technical Digest, JTuA125 (2008).
  23. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
    [Crossref]
  24. D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005).
    [Crossref] [PubMed]
  25. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12(17), 3988–3995 (2004).
    [Crossref] [PubMed]
  26. S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. Martijn de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
    [Crossref] [PubMed]
  27. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
    [Crossref]
  28. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
    [Crossref]
  29. P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
    [Crossref]
  30. S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009).
    [Crossref] [PubMed]

2009 (9)

M.-K. Seo, J. H. Kang, M.-K. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, H.-G. Park, and Y.-H. Lee, “Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition,” Opt. Express 17(8), 6790–6798 (2009).
[Crossref] [PubMed]

M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34(23), 3671–3673 (2009).
[Crossref] [PubMed]

J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express 17(15), 13009–13016 (2009).
[Crossref] [PubMed]

F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, “Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light,” Opt. Express 17(7), 5439–5445 (2009).
[Crossref] [PubMed]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. Martijn de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
[Crossref] [PubMed]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
[Crossref]

S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009).
[Crossref] [PubMed]

2008 (4)

2007 (3)

2006 (4)

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006).
[Crossref] [PubMed]

2005 (2)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005).
[Crossref] [PubMed]

2004 (2)

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12(17), 3988–3995 (2004).
[Crossref] [PubMed]

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

2003 (3)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[Crossref]

1997 (1)

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997).
[Crossref]

1995 (1)

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Ahn, B.-H.

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[Crossref]

Asano, T.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[Crossref]

Baehr-Jones, T.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Balet, L.

Balog, S.

Bastiaansen, C. W. M.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

Bettotti, P.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[Crossref]

Bog, U.

Bordas, F.

Bozio, R.

Broer, D. J.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

Bulla, D. A. P.

Carlstrom, C. F.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

Choi, D.-Y.

Colocci, M.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[Crossref]

de Sterke, C. M.

Di Falco, A.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

Dupuy, E.

Eggleton, B. J.

El-Kallassi, P.

Elliot, S. R.

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Elliott, S. R.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Englund, D.

Ferrini, R.

Fiore, A.

Francardi, M.

Fushman, I.

Gai, X.

Gardin, S.

Gendry, M.

Gerardino, A.

Greentree, A. D.

Grillet, C.

Hagino, H.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Hochberg, M.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Houdré, R.

Intonti, F.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[Crossref]

Jeong, K.-Y.

Kang, J. H.

Karnutsch, C.

Karouta, F.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

Kim, J.-Y.

Kim, M.-K.

Kjellander, B. K. C.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

Kolobov, A.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Krauss, T. F.

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Kwon, S.-H.

Lee, M. W.

Lee, Y.-H.

Letartre, X.

Li, L.

Loncar, M.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Mandelshtam, V. A.

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997).
[Crossref]

Martijn de Sterke, C.

Maune, B.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

McPhedran, R. C.

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Monat, C.

Mortensen, N. A.

P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
[Crossref]

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[Crossref]

Moss, D. J.

Noda, S.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[Crossref]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Notzel, R.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

Nunes, P. S.

P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
[Crossref]

O’Faolain, L.

Park, H.-G.

Pavesi, L.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[Crossref]

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[Crossref]

Prawer, S.

Psaltis, D.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Qiu, M.

Qiu, Y.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Rahmani, A.

Regreny, P.

Salemink, H. W. M.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

Scherer, A.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Schweizer, S. L.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[Crossref]

Seassal, C.

Seo, M.-K.

Shimakawa, K.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Shin, J.-H.

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Skafte-Pedersen, P.

P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
[Crossref]

Smith, C. L. C.

Snijders, J. A. P.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Song, B.-S.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[Crossref]

Steel, M. J.

Takahashi, Y.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Tanaka, Y.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
[Crossref] [PubMed]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[Crossref]

Taylor, H. S.

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997).
[Crossref]

Tomljenovic-Hanic, S.

S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. Martijn de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
[Crossref] [PubMed]

M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34(23), 3671–3673 (2009).
[Crossref] [PubMed]

S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009).
[Crossref] [PubMed]

U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33(19), 2206–2208 (2008).
[Crossref] [PubMed]

S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
[Crossref] [PubMed]

S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32(5), 542–544 (2007).
[Crossref] [PubMed]

S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006).
[Crossref] [PubMed]

Turck, V.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

van der Drift, E.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

van der Heijden, R.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

van der Heijden, R. W.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

Vignolini, S.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[Crossref]

Viktorovitch, P.

Vuckovic, J.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Wehrspohn, R.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[Crossref]

Wiersma, D.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[Crossref]

Witzens, J.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[Crossref]

Xiao, S. S.

P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
[Crossref]

Zakery, A.

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Zhang, Z.

Zuppiroli, L.

Adv. Phys. (1)

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Appl. Phys. Lett. (6)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[Crossref]

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[Crossref]

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[Crossref]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

J. Chem. Phys. (1)

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997).
[Crossref]

J. Non-Cryst. Solids (1)

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Microfluid. Nanofluid. (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[Crossref]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Opt. Express (11)

S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006).
[Crossref] [PubMed]

F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890–10902 (2007).
[Crossref] [PubMed]

F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, “Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light,” Opt. Express 17(7), 5439–5445 (2009).
[Crossref] [PubMed]

S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
[Crossref] [PubMed]

S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, “Microlasers based on effective index confined slow light modes in photonic crystal waveguides,” Opt. Express 16(9), 6331–6339 (2008).
[Crossref] [PubMed]

M.-K. Seo, J. H. Kang, M.-K. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, H.-G. Park, and Y.-H. Lee, “Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition,” Opt. Express 17(8), 6790–6798 (2009).
[Crossref] [PubMed]

S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009).
[Crossref] [PubMed]

J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express 17(15), 13009–13016 (2009).
[Crossref] [PubMed]

D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005).
[Crossref] [PubMed]

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12(17), 3988–3995 (2004).
[Crossref] [PubMed]

S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. Martijn de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Sensors (Basel Switzerland) (1)

P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
[Crossref]

Other (1)

S. Tomljenovic-Hanic, and C. M. de Sterke, “High-Q cavity design in photonic crystal heterostructures,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technol., OSA Technical Digest, JTuA125 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The potential well induced by (a) a positive refractive index change and (b) a negative refractive index change; the dotted lines represent the frequencies of the localized modes considered here; the solid horizontal lines represent the air and dielectric band-edge respectively.
Fig. 2
Fig. 2 Quality factor (squares) and resonant frequency (crosses) as a function of the refractive index change for the (a) dielectric and (b) air band-edge mode. The horizontal solid lines represent the band-edges. The cavity width is fixed at m = 6.
Fig. 3
Fig. 3 One of the major electric field components, Ex , in the plane for the dielectric band-edge mode (a) with the larger domain, and (b) magnified in the centre of the slab, (c) the Fourier transform of the field; (d) to (f) similar, but for the air band-edge mode. For both cavities m = 6 periods and Δn = 0.1
Fig. 4
Fig. 4 Sensitivity of the air band-edge mode cavity, Δn = 0.12, m = 6 for gas sensing (crosses) and liquid-based sensing (squares) as a function of the refractive index change induced by the sample, Δns . The solid horizontal line represents the detection limit S = 0.5.

Metrics