Abstract

We report on an efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd:YVO4 crystal as a self-Raman gain medium. A diffusion-bonded crystal not only reduces the thermal effects but also increase the interaction length for the stimulated Raman scattering. With an input pump power of 17.2 W, average power of 2.23 W at the first-Stokes wavelength of 1525 nm is generated at a pulse repetition rate of 40 kHz, corresponding to a conversion efficiency of 13%.

©2009 Optical Society of America

1. Introduction

Since water absorption in eye tissue and the intraocular fluid prevents light in the spectral range of 1.4-1.8 μm from reaching the retina, there is a considerable interest in compact laser sources with wavelengths in this eye-safe regime. The methods of generating eye-safe laser include optical parametric oscillators [1–4], Er3+, Cr4+, and Yb3+ doped solid-state laser [5–7], and stimulated Raman scattering (SRS) [8–15]. SRS has been convinced to be a promising method for wavelength conversion in solid-state lasers [16–18]. The discovery of new Raman materials gives birth to the laser sources at new wavelengths. In the recent years, eye-safe lasers from SRS frequency conversion have been successfully demonstrated in several Raman materials such as Ba(NO3)2, Nd:YVO4, Nd:GdVO4, Nd:SrWO4, Nd:KGWO4, BaWO4, and PbWO4 [8–15]. The laser crystal simultaneously serving as a Raman crystal can provide the advantage of compactness and simplicity for an intracavity SRS laser [19,20]. The laser emission at wavelengths of 1176 and 1525 nm based on self-SRS action in 1064- and 1342-nm actively Q-switched Nd:YVO4 laser have been reported, respectively [9, 21–22]. However, the overall performance is hindered by the thermal effects because the Raman gain coefficient decreases substantially with increasing temperature above room temperature [21]. Therefore, to improve the thermal effects in the gain medium is critically important for developing self-Raman solid-state lasers.

In the past few years, the thermal effects have been verified to be efficiently improved by using the so-called composite crystal as a gain medium. The composite crystal is fabricated by the diffusion bonding of a doped crystal to an undoped crystal with the same cross section [23–29]. To the best of our knowledge, the composite crystal has not been applied to the self-Raman laser systems. In this work, we employ a double-end diffusion-bonded Nd:YVO4 crystal to investigate the output performance of the self-Raman laser at 1525 nm. With an input pump power of 17.2 W, the maximum average power at 1525 nm is 2.23 W at a pulse repetition rate of 40 kHz, corresponding to conversion efficiency of 13%. The maximum average output power with the composite crystal is found to be nearly 40% higher than that with a conventional Nd:YVO4 crystal at the same pulse repetition rate.

2. Experimental setup

The experimental setup of a diode-pumped actively Q-switched eye-safe Raman laser employing a composite Nd:YVO4 crystal is shown in Fig. 1. The laser crystal is an a-cut 4 mm × 4 mm × 20 mm double-end diffusion-bonded Nd:YVO4 crystal bounded with one 2-mm-long undoped YVO4 end at the pumped facet of 0.3-at.% Nd3+-doped Nd:YVO4 crystal and one 8-mm-long undoped YVO4 end at the other facet. The laser crystal is supplied by Witcore Co., Ltd. With the 1342-nm fundamental pump wavelength, the wavelength of the first-Stokes component for the YVO4 Stokes shift at 890-cm-1 can be calculated to be around 1525 nm. The front and output coupler are designed for the first-Stokes generation. Both sides of the laser crystal are coated for antireflection at 1330-1530 nm (R<0.2%). In addition, the laser crystal is wrapped with indium foil and mounted in a water-cooled copper block. The water temperature was maintained at 22°C. The front mirror is a 500-mm radius-of-curvature concave mirror with antireflection coating at 808 nm on the entrance face (R<0.2%), high-transmission (HT) coating at 808 nm (T>90%), and high-reflection (HR) coating at 1342 and 1525 nm on the other face (R>99.8%). The output coupler is a flat mirror with high-reflection coating at 1342 nm and partial-reflection (PR) coating at 1525 nm (R=65%). The pump source is an 808-nm fiber-coupled laser diode with a core diameter of 600 μm, a numerical aperture of 0.16, and a maximum power of 17.2 W. The pump beam is reimaged at the laser active medium and the waist radius is nearly 250 μm. The 30-mm-long acousto-optic Q-switcher (NEOS Technologies) had antireflectance coatings at 1342 nm on both faces and was driven at a 27.12-MHz center frequency with 15.0 W of rf power. The overall laser cavity length is 75 mm.

 

Fig. 1. Experimental setup of a diode-end-pumped actively Q-switched Nd:YVO4 Raman laser.

Download Full Size | PPT Slide | PDF

3. Experimental results and discussions

We firstly used a simple laser setup for CW operation at 1342 nm to investigate the improvement of the thermal lensing effect in a double-end diffusion-bonded Nd:YVO4 crystal [30]. For this investigation an output coupler with partial reflection at 1342 nm was used instead of the above-mentioned Raman cavity output coupler. The optimum reflectivity of the output coupler was found to be approximately 92-94%. The effective focal lengths of the thermal lens were estimated based on the fact that the laser system would start unstable for a cavity length longer than the critical length related to the thermal lensing. Even though the absolute accuracy is not easily achieved, this method is confirmed to provide the high relative accuracy for the effective focal lengths of the thermal lens [30]. Figure 2 shows the experimental data and fitted lines of thermal lensing power in a conventional crystal and a double-end diffusion-bonded crystal with the same dopant concentration. It can be seen that the effective focal length in a double-end diffusion-bonded crystal is nearly 1.6 times that in a conventional Nd:YVO4 crystal. As a result, the thermal effects can be substantiated to be significantly reduced in a double-end diffusion-bonded crystal.

When the Raman cavity output coupler was used in the laser cavity, the pumping threshold for the Raman laser output was found to be 2-3 W for the pulse repetition rates within 20-40 kHz. The beam quality factor was found to be better than 1.5 over the entire operating region. The spectrum of laser output is measured by an optical spectrum analyzer (Advantest Q8381A) employing a diffraction lattice monochromator with a resolution of 0.1 nm. As shown in Fig. 3, the optical spectrum for the actively Q-switched self-Raman output displayed that the fundamental laser emission was at 1342 nm and the Stokes component was at 1525 nm. The frequency shift between Stokes and laser lines is in good agreement with the optical vibration modes of tetrahedral VO4 -3 ionic groups (890 cm-1) [19].

 

Fig. 2. Dependences of thermal lensing power on input pump power for conventional and double-end diffusion-bonded Nd:YVO4 CW laser at 1342 nm.

Download Full Size | PPT Slide | PDF

 

Fig. 3. Optical spectrum of the diode-pumped actively Q-switch Nd:YVO4 self-Raman laser.

Download Full Size | PPT Slide | PDF

Figure 4 shows the experimental results of the average output power at 1525 nm with respect to the input pump power for the present self-Raman laser at pulse repetition rates of 20 and 40 kHz. For comparison, the previous results obtained by Chen [9] with a conventional 0.2%-doped Nd: YVO4 crystal at a repetition rate of 20 kHz is also depicted in the same figure. Note that there were no experimental data for a conventional 0.2%-doped Nd:YVO4 crystal at a pulse repetition rate of 40 kHz because of the high lasing threshold. It can be seen that the Raman lasing threshold for a double-end diffusion-bonded Nd:YVO4 crystal is approximately 2.0 W that is substantially lower than the lasing threshold of 8.5 W for a conventional Nd:YVO4 crystal at the repetition rate of 20 kHz. Moreover, the lasing threshold at a pulse repetition rate of 40 kHz for present self-Raman laser is below 3.0 W. A rather low lasing threshold for high pulse repetition rates comes from the fact that the undoped part of the composite crystal increases the interaction length and then enhances the Raman gain.

It has been experimentally evidenced that the maximum output power for a conventional self-Raman laser is limited by the critical pump power that induces a large temperature gradient in the gain medium to lead to the Raman gain lower than the cavity losses [21]. Consequently, the output power begins to saturate when the pump power exceeds the critical pump power. As shown in Fig. 4, the critical pump power for the self-Raman laser with a double-end diffusion-bonded Nd:YVO4 crystal can exceed 17.2 W that is limited by the available pump power and is considerably greater than the critical pump power of 13.5 W with a conventional Nd:YVO4 crystal. As a result, the self-Raman laser with a double-end diffusion-bonded Nd:YVO4 crystal can generate the maximum average output power up to 1.72 W that is approximately 43% higher than the result with a conventional 0.2 %-doped Nd:YVO4 crystal [9]. At a repetition rate of 40 kHz, the maximum power at 1525 nm is even up to 2.23 W with an input pump power of 17.2 W, corresponding to a conversion efficiency of 13%. To the best of our knowledge, this is the highest average power for diode-pumped eye-safe self-Raman laser.

 

Fig. 4. The average output power at 1525 nm with respect to the input pump power at pulse repetition rates of 20 and 40 kHz shown as the down-triangle and circle symbols respectively for the double-end diffusion-bonded Nd:YVO4 crystal and that at 20 kHz shown as the square symbol for a conventional Nd:YVO4 crystal reported by Chen [9].

Download Full Size | PPT Slide | PDF

The temporal traces for the fundamental and Raman pulses are recorded by a LeCroy digital oscilloscope (Wavepro 7100, 10 Gsamples/s, 1-GHz bandwidth) with two fast p-i-n photodiodes. At a repetition rate of 40 kHz the pulse energy is up to 56 μJ with an input pump power of 17.2 W and the pulse width is measured to be approximately 3.2 ns, as shown in Fig. 5. The corresponding peak power is higher than 17 kW. At the pulse repetition rate of 20 kHz, the maximum pulse energy is up to 86 μJ. Figure 6 shows the pulse width at a pulse repetition rate of 20 kHz with a pump power of 17.2 W. It can be seen that although a second tiny Raman pulse usually follows the main first peak, its contribution is rather limited. Consequently the peak power can be generally higher than 22 kW. Since the fundamental energy is remained after first Raman pulse, the sub-pulse of fundamental wave is formed shown as Fig. 5 and Fig. 6. At a pulse repetition rate of 20 kHz, the remaining energy is sufficient to reach Raman gain and a second tiny Raman pulse is produced shown as Fig. 6. The sub-pulse would not be generated if the reflectivity of output coupler was lowered.

 

Fig. 5. Temporal characteristics of the fundamental and Raman pulses at a pulse repetition rate of 40 kHz with a pump power of 17.2 W.

Download Full Size | PPT Slide | PDF

 

Fig. 6. Temporal characteristics of the fundamental and Raman pulses at a pulse repetition rate of 20 kHz with a pump power of 17.2 W.

Download Full Size | PPT Slide | PDF

4. Conclusion

A compact efficient high-power diode-pumped actively Q-switched self-Raman laser at 1525 nm is demonstrated by employing a double-end diffusion-bonded Nd:YVO4 crystal. Experimental results reveal that the composite crystal can reduce the thermal effects to reach a higher critical pump power. More importantly, the undoped part plays a critical role in lowering the lasing threshold at high pulse repletion rates because of the increase of the Raman interaction length. The maximum average output power of 2.23 W at first-Stokes wavelength of 1525 nm is generated at a pulse repetition rate of 40 kHz, and the pulse width of Raman pulse is about 3.2 ns with an input pump power of 17.2 W. The corresponding conversion efficiency and peak power are approximately 13% and 17.4 kW, respectively.

Acknowledgments

The authors thank the National Science Council for their financial support of this research under Contract No. NSC-95-2112-M-009-041-MY2.

References and links

1. L. R. Marshall and A. Kaz, “Eye-safe output from noncritically phase-matched parametric oscillators,” J. Opt. Soc. Am. B , 10, 1730–1736 (1993). [CrossRef]  

2. G. H. Xiao, M. Bass, and M. Acharekar, “Passively Q-switched solid-state lasers with intracavity optical parametric oscillators,” IEEE J. Quantum Electron. 34, 2241–2245 (1998). [CrossRef]  

3. Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser, Appl. Phys. B 76, 263–266 (2003). [CrossRef]  

4. Y. F. Chen, Y. C. Chen, S. W. Chen, and Y. P. Lan, “High-power efficient diode-pumped passively Q-switched Nd:YVO4/KTP/Cr4+:YAG eye-safe laser,” Opt. Commun. 234, 337–342 (2004). [CrossRef]  

5. R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998). [CrossRef]  

6. I. Sokölska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B 71, 893–896 (2000).

7. A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers,” Prog. Quantum Electron. 26, 287–352 (2002). [CrossRef]  

8. N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74, 521–527 (2002). [CrossRef]  

9. Y. F. Chen, “Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal,” Opt. Lett. 29, 2172–2174 (2004). [CrossRef]   [PubMed]  

10. Y. F. Chen, “Efficient 1521-nm Nd:GdVO4 Raman laser,” Opt. Lett. 29, 2632–2634 (2004). [CrossRef]   [PubMed]  

11. A. Brenier, G. Jia, and C. Tu, “Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd+ crystal,” J. Phys.: Condens. Matter 16, 9103–9108 (2004). [CrossRef]  

12. J. H. Huang, J. P. Lin, R. B. Su, J. H. Li, H. Zheng, C. H. Xu, F. Shi, Z. Z. Lin, J. Zhuang, W. R. Zeng, and W. X. Lin, “Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal,” Opt. Lett. 32, 1096–1098 (2007). [CrossRef]  

13. Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, “High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,” Appl. Phys. B 93, 327–330 (2008). [CrossRef]  

14. Z. P. Wang, D. W. Hu, X. Fang, H. J. Zhang, X. G. Xu, J. Y. Wang, and Z. H. Shao, “Eye-safe Raman laser at 1.5 μm based on BaWO4 crystal,” Chin. Phys. Lett. 25, 122–124 (2008). [CrossRef]  

15. G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, “Highly efficient 1.3-μm second-Stokes PbWO4 Raman laser,” Opt. Lett. 28, 426–428 (2003). [CrossRef]   [PubMed]  

16. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003). [CrossRef]  

17. P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev “Solid state laser with raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004). [CrossRef]  

18. J. A. Piper and H. M. Pask, “Crysatalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007). [CrossRef]  

19. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001). [CrossRef]  

20. S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006). [CrossRef]  

21. Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29, 1915–1917 (2004). [CrossRef]   [PubMed]  

22. F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006). [CrossRef]  

23. F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66, 3549–3551 (1995). [CrossRef]  

24. R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998). [CrossRef]  

25. M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997). [CrossRef]  

26. M. Tsunekane, N. Taguchi, and H. Inaba, “Improvement of thermal effects in a diode-end-pumped, composite Tm:YAG rod with undoped ends,” Appl. Opt. 38, 1788–1791 (1999). [CrossRef]  

27. M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178, 383–393 (2000). [CrossRef]  

28. J. Šulc, H. Jelínková, V. Kubecek, K. Nejezchleb, and K. Blažek, “Comparison of different composite Nd:YAG rods thermal properties under diode pumping,” Proc. SPIE 4630, 128–134 (2002). [CrossRef]  

29. Z. Zhuo, T. Li, X Li, and H. Yang, “Investigation of Nd:YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser,” Opt. Commun. 274, 176–181 (2007). [CrossRef]  

30. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded NdYVO4 crystals for 4F3/24I11/2 and 4F3/24I13/2 transitions,” Opt. Express , 16, 21155–21160 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-21155. [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. L. R. Marshall and A. Kaz, “Eye-safe output from noncritically phase-matched parametric oscillators,” J. Opt. Soc. Am. B,  10, 1730–1736 (1993).
    [Crossref]
  2. G. H. Xiao, M. Bass, and M. Acharekar, “Passively Q-switched solid-state lasers with intracavity optical parametric oscillators,” IEEE J. Quantum Electron. 34, 2241–2245 (1998).
    [Crossref]
  3. Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser, Appl. Phys. B 76, 263–266 (2003).
    [Crossref]
  4. Y. F. Chen, Y. C. Chen, S. W. Chen, and Y. P. Lan, “High-power efficient diode-pumped passively Q-switched Nd:YVO4/KTP/Cr4+:YAG eye-safe laser,” Opt. Commun. 234, 337–342 (2004).
    [Crossref]
  5. R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
    [Crossref]
  6. I. Sokölska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B 71, 893–896 (2000).
  7. A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers,” Prog. Quantum Electron. 26, 287–352 (2002).
    [Crossref]
  8. N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74, 521–527 (2002).
    [Crossref]
  9. Y. F. Chen, “Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal,” Opt. Lett. 29, 2172–2174 (2004).
    [Crossref] [PubMed]
  10. Y. F. Chen, “Efficient 1521-nm Nd:GdVO4 Raman laser,” Opt. Lett. 29, 2632–2634 (2004).
    [Crossref] [PubMed]
  11. A. Brenier, G. Jia, and C. Tu, “Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd+ crystal,” J. Phys.: Condens. Matter 16, 9103–9108 (2004).
    [Crossref]
  12. J. H. Huang, J. P. Lin, R. B. Su, J. H. Li, H. Zheng, C. H. Xu, F. Shi, Z. Z. Lin, J. Zhuang, W. R. Zeng, and W. X. Lin, “Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal,” Opt. Lett. 32, 1096–1098 (2007).
    [Crossref]
  13. Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, “High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,” Appl. Phys. B 93, 327–330 (2008).
    [Crossref]
  14. Z. P. Wang, D. W. Hu, X. Fang, H. J. Zhang, X. G. Xu, J. Y. Wang, and Z. H. Shao, “Eye-safe Raman laser at 1.5 μm based on BaWO4 crystal,” Chin. Phys. Lett. 25, 122–124 (2008).
    [Crossref]
  15. G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, “Highly efficient 1.3-μm second-Stokes PbWO4 Raman laser,” Opt. Lett. 28, 426–428 (2003).
    [Crossref] [PubMed]
  16. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
    [Crossref]
  17. P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev “Solid state laser with raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
    [Crossref]
  18. J. A. Piper and H. M. Pask, “Crysatalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
    [Crossref]
  19. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
    [Crossref]
  20. S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
    [Crossref]
  21. Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29, 1915–1917 (2004).
    [Crossref] [PubMed]
  22. F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
    [Crossref]
  23. F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66, 3549–3551 (1995).
    [Crossref]
  24. R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
    [Crossref]
  25. M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
    [Crossref]
  26. M. Tsunekane, N. Taguchi, and H. Inaba, “Improvement of thermal effects in a diode-end-pumped, composite Tm:YAG rod with undoped ends,” Appl. Opt. 38, 1788–1791 (1999).
    [Crossref]
  27. M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178, 383–393 (2000).
    [Crossref]
  28. J. Šulc, H. Jelínková, V. Kubecek, K. Nejezchleb, and K. Blažek, “Comparison of different composite Nd:YAG rods thermal properties under diode pumping,” Proc. SPIE 4630, 128–134 (2002).
    [Crossref]
  29. Z. Zhuo, T. Li, X Li, and H. Yang, “Investigation of Nd:YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser,” Opt. Commun. 274, 176–181 (2007).
    [Crossref]
  30. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded NdYVO4 crystals for 4F3/2→ 4I11/2 and 4F3/2→ 4I13/2 transitions,” Opt. Express,  16, 21155–21160 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-21155.
    [Crossref] [PubMed]

2008 (3)

Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, “High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,” Appl. Phys. B 93, 327–330 (2008).
[Crossref]

Z. P. Wang, D. W. Hu, X. Fang, H. J. Zhang, X. G. Xu, J. Y. Wang, and Z. H. Shao, “Eye-safe Raman laser at 1.5 μm based on BaWO4 crystal,” Chin. Phys. Lett. 25, 122–124 (2008).
[Crossref]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded NdYVO4 crystals for 4F3/2→ 4I11/2 and 4F3/2→ 4I13/2 transitions,” Opt. Express,  16, 21155–21160 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-21155.
[Crossref] [PubMed]

2007 (3)

Z. Zhuo, T. Li, X Li, and H. Yang, “Investigation of Nd:YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser,” Opt. Commun. 274, 176–181 (2007).
[Crossref]

J. A. Piper and H. M. Pask, “Crysatalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

J. H. Huang, J. P. Lin, R. B. Su, J. H. Li, H. Zheng, C. H. Xu, F. Shi, Z. Z. Lin, J. Zhuang, W. R. Zeng, and W. X. Lin, “Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal,” Opt. Lett. 32, 1096–1098 (2007).
[Crossref]

2006 (2)

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[Crossref]

F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[Crossref]

2004 (6)

Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29, 1915–1917 (2004).
[Crossref] [PubMed]

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev “Solid state laser with raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[Crossref]

Y. F. Chen, “Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal,” Opt. Lett. 29, 2172–2174 (2004).
[Crossref] [PubMed]

Y. F. Chen, “Efficient 1521-nm Nd:GdVO4 Raman laser,” Opt. Lett. 29, 2632–2634 (2004).
[Crossref] [PubMed]

A. Brenier, G. Jia, and C. Tu, “Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd+ crystal,” J. Phys.: Condens. Matter 16, 9103–9108 (2004).
[Crossref]

Y. F. Chen, Y. C. Chen, S. W. Chen, and Y. P. Lan, “High-power efficient diode-pumped passively Q-switched Nd:YVO4/KTP/Cr4+:YAG eye-safe laser,” Opt. Commun. 234, 337–342 (2004).
[Crossref]

2003 (3)

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser, Appl. Phys. B 76, 263–266 (2003).
[Crossref]

G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, “Highly efficient 1.3-μm second-Stokes PbWO4 Raman laser,” Opt. Lett. 28, 426–428 (2003).
[Crossref] [PubMed]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
[Crossref]

2002 (3)

A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers,” Prog. Quantum Electron. 26, 287–352 (2002).
[Crossref]

N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74, 521–527 (2002).
[Crossref]

J. Šulc, H. Jelínková, V. Kubecek, K. Nejezchleb, and K. Blažek, “Comparison of different composite Nd:YAG rods thermal properties under diode pumping,” Proc. SPIE 4630, 128–134 (2002).
[Crossref]

2001 (1)

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

2000 (2)

M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178, 383–393 (2000).
[Crossref]

I. Sokölska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B 71, 893–896 (2000).

1999 (1)

1998 (3)

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[Crossref]

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[Crossref]

G. H. Xiao, M. Bass, and M. Acharekar, “Passively Q-switched solid-state lasers with intracavity optical parametric oscillators,” IEEE J. Quantum Electron. 34, 2241–2245 (1998).
[Crossref]

1997 (1)

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[Crossref]

1995 (1)

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66, 3549–3551 (1995).
[Crossref]

1993 (1)

Acharekar, M.

G. H. Xiao, M. Bass, and M. Acharekar, “Passively Q-switched solid-state lasers with intracavity optical parametric oscillators,” IEEE J. Quantum Electron. 34, 2241–2245 (1998).
[Crossref]

Bagaev, S. N.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

Balmer, J. E.

M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178, 383–393 (2000).
[Crossref]

Barnes, J. C.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

Basiev, T. T.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev “Solid state laser with raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[Crossref]

Bass, M.

G. H. Xiao, M. Bass, and M. Acharekar, “Passively Q-switched solid-state lasers with intracavity optical parametric oscillators,” IEEE J. Quantum Electron. 34, 2241–2245 (1998).
[Crossref]

Blažek, K.

J. Šulc, H. Jelínková, V. Kubecek, K. Nejezchleb, and K. Blažek, “Comparison of different composite Nd:YAG rods thermal properties under diode pumping,” Proc. SPIE 4630, 128–134 (2002).
[Crossref]

Brenier, A.

A. Brenier, G. Jia, and C. Tu, “Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd+ crystal,” J. Phys.: Condens. Matter 16, 9103–9108 (2004).
[Crossref]

Cerný, P.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev “Solid state laser with raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[Crossref]

Chang, J.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[Crossref]

Chang, Y. T.

Chen, S. W.

Y. F. Chen, Y. C. Chen, S. W. Chen, and Y. P. Lan, “High-power efficient diode-pumped passively Q-switched Nd:YVO4/KTP/Cr4+:YAG eye-safe laser,” Opt. Commun. 234, 337–342 (2004).
[Crossref]

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser, Appl. Phys. B 76, 263–266 (2003).
[Crossref]

Chen, Y. C.

Y. F. Chen, Y. C. Chen, S. W. Chen, and Y. P. Lan, “High-power efficient diode-pumped passively Q-switched Nd:YVO4/KTP/Cr4+:YAG eye-safe laser,” Opt. Commun. 234, 337–342 (2004).
[Crossref]

Chen, Y. F.

Chyba, T. H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

Ding, S. H.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[Crossref]

F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[Crossref]

Donald, M. M.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[Crossref]

Duan, Y. H.

Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, “High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,” Appl. Phys. B 93, 327–330 (2008).
[Crossref]

Eichler, H. J.

G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, “Highly efficient 1.3-μm second-Stokes PbWO4 Raman laser,” Opt. Lett. 28, 426–428 (2003).
[Crossref] [PubMed]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

Fan, L.

Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, “High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,” Appl. Phys. B 93, 327–330 (2008).
[Crossref]

Fan, S. Z.

F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[Crossref]

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[Crossref]

Fan, Y. X.

Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, “High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,” Appl. Phys. B 93, 327–330 (2008).
[Crossref]

Fang, X.

Z. P. Wang, D. W. Hu, X. Fang, H. J. Zhang, X. G. Xu, J. Y. Wang, and Z. H. Shao, “Eye-safe Raman laser at 1.5 μm based on BaWO4 crystal,” Chin. Phys. Lett. 25, 122–124 (2008).
[Crossref]

Fluck, R.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[Crossref]

Gad, G. M. A.

G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, “Highly efficient 1.3-μm second-Stokes PbWO4 Raman laser,” Opt. Lett. 28, 426–428 (2003).
[Crossref] [PubMed]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

Gini, E.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[Crossref]

Graf, Th.

M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178, 383–393 (2000).
[Crossref]

Hanson, F.

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66, 3549–3551 (1995).
[Crossref]

Häring, R.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[Crossref]

Heumann, E.

I. Sokölska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B 71, 893–896 (2000).

Hu, D. W.

Z. P. Wang, D. W. Hu, X. Fang, H. J. Zhang, X. G. Xu, J. Y. Wang, and Z. H. Shao, “Eye-safe Raman laser at 1.5 μm based on BaWO4 crystal,” Chin. Phys. Lett. 25, 122–124 (2008).
[Crossref]

Huang, J. H.

Huang, Y. P.

Inaba, H.

M. Tsunekane, N. Taguchi, and H. Inaba, “Improvement of thermal effects in a diode-end-pumped, composite Tm:YAG rod with undoped ends,” Appl. Opt. 38, 1788–1791 (1999).
[Crossref]

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[Crossref]

Jelínková, H.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev “Solid state laser with raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[Crossref]

J. Šulc, H. Jelínková, V. Kubecek, K. Nejezchleb, and K. Blažek, “Comparison of different composite Nd:YAG rods thermal properties under diode pumping,” Proc. SPIE 4630, 128–134 (2002).
[Crossref]

Jia, G.

A. Brenier, G. Jia, and C. Tu, “Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd+ crystal,” J. Phys.: Condens. Matter 16, 9103–9108 (2004).
[Crossref]

Jia, G. H.

Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, “High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,” Appl. Phys. B 93, 327–330 (2008).
[Crossref]

Jia, P.

F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[Crossref]

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[Crossref]

Kaminskii, A. A.

G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, “Highly efficient 1.3-μm second-Stokes PbWO4 Raman laser,” Opt. Lett. 28, 426–428 (2003).
[Crossref] [PubMed]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

Kannari, F.

N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74, 521–527 (2002).
[Crossref]

Kasamatsu, T.

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[Crossref]

Kaz, A.

Keller, U.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[Crossref]

Kouta, H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

Kubecek, V.

J. Šulc, H. Jelínková, V. Kubecek, K. Nejezchleb, and K. Blažek, “Comparison of different composite Nd:YAG rods thermal properties under diode pumping,” Proc. SPIE 4630, 128–134 (2002).
[Crossref]

Kück, S.

I. Sokölska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B 71, 893–896 (2000).

Kuwano, Y.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

Lan, Y. P.

Y. F. Chen, Y. C. Chen, S. W. Chen, and Y. P. Lan, “High-power efficient diode-pumped passively Q-switched Nd:YVO4/KTP/Cr4+:YAG eye-safe laser,” Opt. Commun. 234, 337–342 (2004).
[Crossref]

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser, Appl. Phys. B 76, 263–266 (2003).
[Crossref]

Li, J. H.

Li, S. T.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[Crossref]

F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[Crossref]

Li, T.

Z. Zhuo, T. Li, X Li, and H. Yang, “Investigation of Nd:YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser,” Opt. Commun. 274, 176–181 (2007).
[Crossref]

Li, X

Z. Zhuo, T. Li, X Li, and H. Yang, “Investigation of Nd:YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser,” Opt. Commun. 274, 176–181 (2007).
[Crossref]

Lin, J. P.

Lin, W. X.

Lin, Z. Z.

Liu, B.

F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[Crossref]

Liu, Y.

Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, “High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,” Appl. Phys. B 93, 327–330 (2008).
[Crossref]

Liu, Z. J.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[Crossref]

Lu, J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

Lukasiewicz, T.

I. Sokölska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B 71, 893–896 (2000).

MacDonald, M. P.

M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178, 383–393 (2000).
[Crossref]

Marshall, L. R.

Melchior, H.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[Crossref]

Murai, T.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

Nejezchleb, K.

J. Šulc, H. Jelínková, V. Kubecek, K. Nejezchleb, and K. Blažek, “Comparison of different composite Nd:YAG rods thermal properties under diode pumping,” Proc. SPIE 4630, 128–134 (2002).
[Crossref]

Neuenschwander, B.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[Crossref]

Paschotta, R.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[Crossref]

Pask, H. M.

J. A. Piper and H. M. Pask, “Crysatalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
[Crossref]

Piper, J. A.

J. A. Piper and H. M. Pask, “Crysatalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

Roos, M. B.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[Crossref]

Sennaroglu, A.

A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers,” Prog. Quantum Electron. 26, 287–352 (2002).
[Crossref]

Shao, Z. H.

Z. P. Wang, D. W. Hu, X. Fang, H. J. Zhang, X. G. Xu, J. Y. Wang, and Z. H. Shao, “Eye-safe Raman laser at 1.5 μm based on BaWO4 crystal,” Chin. Phys. Lett. 25, 122–124 (2008).
[Crossref]

Shi, F.

Sokölska, I.

I. Sokölska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B 71, 893–896 (2000).

Su, F. F.

F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[Crossref]

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[Crossref]

Su, K. W.

Su, R. B.

Šulc, J.

J. Šulc, H. Jelínková, V. Kubecek, K. Nejezchleb, and K. Blažek, “Comparison of different composite Nd:YAG rods thermal properties under diode pumping,” Proc. SPIE 4630, 128–134 (2002).
[Crossref]

Suzuki, S.

N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74, 521–527 (2002).
[Crossref]

Taguchi, N.

M. Tsunekane, N. Taguchi, and H. Inaba, “Improvement of thermal effects in a diode-end-pumped, composite Tm:YAG rod with undoped ends,” Appl. Opt. 38, 1788–1791 (1999).
[Crossref]

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[Crossref]

Takei, N.

N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74, 521–527 (2002).
[Crossref]

Tsai, S. W.

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser, Appl. Phys. B 76, 263–266 (2003).
[Crossref]

Tsunekane, M.

M. Tsunekane, N. Taguchi, and H. Inaba, “Improvement of thermal effects in a diode-end-pumped, composite Tm:YAG rod with undoped ends,” Appl. Opt. 38, 1788–1791 (1999).
[Crossref]

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[Crossref]

Tu, C.

A. Brenier, G. Jia, and C. Tu, “Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd+ crystal,” J. Phys.: Condens. Matter 16, 9103–9108 (2004).
[Crossref]

Tu, C. Y.

Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, “High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,” Appl. Phys. B 93, 327–330 (2008).
[Crossref]

Ueda, K.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

Wang, H. T.

Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, “High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,” Appl. Phys. B 93, 327–330 (2008).
[Crossref]

Wang, J. Y.

Z. P. Wang, D. W. Hu, X. Fang, H. J. Zhang, X. G. Xu, J. Y. Wang, and Z. H. Shao, “Eye-safe Raman laser at 1.5 μm based on BaWO4 crystal,” Chin. Phys. Lett. 25, 122–124 (2008).
[Crossref]

Wang, Q.

Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, “High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,” Appl. Phys. B 93, 327–330 (2008).
[Crossref]

Wang, Q. P.

F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[Crossref]

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[Crossref]

Wang, Z. P.

Z. P. Wang, D. W. Hu, X. Fang, H. J. Zhang, X. G. Xu, J. Y. Wang, and Z. H. Shao, “Eye-safe Raman laser at 1.5 μm based on BaWO4 crystal,” Chin. Phys. Lett. 25, 122–124 (2008).
[Crossref]

Weber, H. P.

M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178, 383–393 (2000).
[Crossref]

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[Crossref]

Weber, R.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[Crossref]

Xiao, G. H.

G. H. Xiao, M. Bass, and M. Acharekar, “Passively Q-switched solid-state lasers with intracavity optical parametric oscillators,” IEEE J. Quantum Electron. 34, 2241–2245 (1998).
[Crossref]

Xu, C. H.

Xu, X. G.

Z. P. Wang, D. W. Hu, X. Fang, H. J. Zhang, X. G. Xu, J. Y. Wang, and Z. H. Shao, “Eye-safe Raman laser at 1.5 μm based on BaWO4 crystal,” Chin. Phys. Lett. 25, 122–124 (2008).
[Crossref]

Yang, H.

Z. Zhuo, T. Li, X Li, and H. Yang, “Investigation of Nd:YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser,” Opt. Commun. 274, 176–181 (2007).
[Crossref]

Zeng, W. R.

Zhang, C.

F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[Crossref]

Zhang, H. J.

Z. P. Wang, D. W. Hu, X. Fang, H. J. Zhang, X. G. Xu, J. Y. Wang, and Z. H. Shao, “Eye-safe Raman laser at 1.5 μm based on BaWO4 crystal,” Chin. Phys. Lett. 25, 122–124 (2008).
[Crossref]

Zhang, S. S.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[Crossref]

Zhang, X. Y.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[Crossref]

F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[Crossref]

Zheng, H.

Zhuang, J.

Zhuo, Z.

Z. Zhuo, T. Li, X Li, and H. Yang, “Investigation of Nd:YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser,” Opt. Commun. 274, 176–181 (2007).
[Crossref]

Zverev, P. G.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev “Solid state laser with raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (4)

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser, Appl. Phys. B 76, 263–266 (2003).
[Crossref]

I. Sokölska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B 71, 893–896 (2000).

N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74, 521–527 (2002).
[Crossref]

Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, “High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,” Appl. Phys. B 93, 327–330 (2008).
[Crossref]

Appl. Phys. Lett. (2)

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66, 3549–3551 (1995).
[Crossref]

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[Crossref]

Chin. Phys. Lett. (1)

Z. P. Wang, D. W. Hu, X. Fang, H. J. Zhang, X. G. Xu, J. Y. Wang, and Z. H. Shao, “Eye-safe Raman laser at 1.5 μm based on BaWO4 crystal,” Chin. Phys. Lett. 25, 122–124 (2008).
[Crossref]

IEEE J. Quantum Electron. (3)

G. H. Xiao, M. Bass, and M. Acharekar, “Passively Q-switched solid-state lasers with intracavity optical parametric oscillators,” IEEE J. Quantum Electron. 34, 2241–2245 (1998).
[Crossref]

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[Crossref]

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[Crossref]

J. A. Piper and H. M. Pask, “Crysatalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D: Appl. Phys. 39, 2090–2093 (2006).
[Crossref]

J. Phys.: Condens. Matter (1)

A. Brenier, G. Jia, and C. Tu, “Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd+ crystal,” J. Phys.: Condens. Matter 16, 9103–9108 (2004).
[Crossref]

Opt. Commun. (4)

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001).
[Crossref]

Y. F. Chen, Y. C. Chen, S. W. Chen, and Y. P. Lan, “High-power efficient diode-pumped passively Q-switched Nd:YVO4/KTP/Cr4+:YAG eye-safe laser,” Opt. Commun. 234, 337–342 (2004).
[Crossref]

M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, “Reducing thermal lensing in diode-pumped laser rods,” Opt. Commun. 178, 383–393 (2000).
[Crossref]

Z. Zhuo, T. Li, X Li, and H. Yang, “Investigation of Nd:YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser,” Opt. Commun. 274, 176–181 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Proc. SPIE (1)

J. Šulc, H. Jelínková, V. Kubecek, K. Nejezchleb, and K. Blažek, “Comparison of different composite Nd:YAG rods thermal properties under diode pumping,” Proc. SPIE 4630, 128–134 (2002).
[Crossref]

Prog. Quantum Electron. (3)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
[Crossref]

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev “Solid state laser with raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[Crossref]

A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers,” Prog. Quantum Electron. 26, 287–352 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup of a diode-end-pumped actively Q-switched Nd:YVO4 Raman laser.
Fig. 2.
Fig. 2. Dependences of thermal lensing power on input pump power for conventional and double-end diffusion-bonded Nd:YVO4 CW laser at 1342 nm.
Fig. 3.
Fig. 3. Optical spectrum of the diode-pumped actively Q-switch Nd:YVO4 self-Raman laser.
Fig. 4.
Fig. 4. The average output power at 1525 nm with respect to the input pump power at pulse repetition rates of 20 and 40 kHz shown as the down-triangle and circle symbols respectively for the double-end diffusion-bonded Nd:YVO4 crystal and that at 20 kHz shown as the square symbol for a conventional Nd:YVO4 crystal reported by Chen [9].
Fig. 5.
Fig. 5. Temporal characteristics of the fundamental and Raman pulses at a pulse repetition rate of 40 kHz with a pump power of 17.2 W.
Fig. 6.
Fig. 6. Temporal characteristics of the fundamental and Raman pulses at a pulse repetition rate of 20 kHz with a pump power of 17.2 W.

Metrics