Abstract

A scheme to generate return-to-zero on-off keying (RZ-OOK) high speed all-optical pseudo random bit sequence (PRBS) based on quantum-dot semiconductor optical amplifiers (QD SOA) has been studied. By analyzing the performance of the core functional unit of this system, which is composed of QD SOA-based logic XOR and AND gates, as well as considering the saturation effect of the QD device and noise level of the system, we demonstrated the system’s capability of producing stable high speed optical PRBS signals. Results show that the performance of the system depends on a number of parameters, including relaxation lifetime from QD excited state to ground state, injected current density, bit repetition rate, signal pulse width and single pulse energy. For devices with relaxation time ~1.0 ps, injected current density >1.8 kA/cm2, single pulse energy <1.0 pJ with pulse width around 1.0 ps, the system is capable of PRBS generation at speeds of ~250 Gb/s.

©2009 Optical Society of America

1. Introduction

In future high speed all-optical communications, all-optical data processing will be important [1]. The pseudorandom bit sequence (PRBS), which were first introduced in electronics, are characterized by its simplicity of generation, good repeatability and statistical properties [2]. It thus received wide application, including in simulation of noise in signal transmission, data encryption/decryption, and in bit error rate testers (BERT) [3]. The recent achievements in photonics signal processing spurred more interest towards realizing high speed all-optical PRBS generation. In electronics, the concept of pseudorandom number generation is well established [2]. A pseudorandom bit sequence (PRBS) can be generated using a linear feedback shift register (LFSR) [3,4]. The PRBS sequence generated with a shift register of length m has a period of 2m-1. To generate a stable optical PRBS sequence using LFSR, an optical XOR logic gate is needed. In recent years, demonstrations of high speed all-optical XOR logic gates using different schemes were reported, including using semiconductor optical amplifier loop mirror (SLALOM) [5], ultrafast nonlinear interferometer (UNI) [6], and the SOA based Mach-Zehnder interferometer (SOA-MZI) [7,8]. Among these schemes, the quantum dot (QD) SOA-MZI based XOR gate is presently a suitable design for high data rates of ~250Gb/s [9].

2. QD device logic operation and theories

2.1 Design of the system

In our scheme, PRBS signals are generated using a linear feedback shift register (LFSR), shown in Fig. 1(a) . An LFSR has m data storing units (optical delay line in all-optical system), each unit is capable of storing one binary data bit for one clock period [10]. The whole system is synchronized with a clock. At each period, the nth and mth bit go through an XOR process [8]. Their XOR result gets reshaped and its wavelength is converted back to system’s operation wavelength through an AND gate, and then goes back to the front of LFSR. The output PRBS signals can be tapped from the end of the LFSR. Figure 1(b) shows the design of the logic functional unit. The main parts of this unit are two Mach-Zehnder interferometers (MZI) each arm of which has a semiconductor optical amplifier (SOA) with a quantum dot (QD) active region. The first MZI serves as an all-optical logic XOR gate for the two bits (m, n), while the other MZI serves as logic AND gate.

 

Fig. 1 Design of PRBS generator. (a): Block diagram of a LFSR (b): functional unit, including two QD-SOA MZIs operating as XOR and AND gate.

Download Full Size | PPT Slide | PDF

The principle of the logic XOR operation based on SOA-MZI has been discussed and analyzed [9,11,12]. In this setup, the data bits 1 and 2 (at λ1) are injected to two identical QD-SOA arms, a clock signal (at λ2) is equally split and fed into the two arms. The data bits modulate the gain and phase that the clock signal experiences in each of the QD-SOAs via cross gain modulation (XGM) and cross phase modulation(XPM) [13]. The frequency detuning between the control signal and the clock Δω should be smaller than the homogeneously broadened linewidth of a QD in order to ensure efficient XGM. A tunable optical delay line is used in one of the MZI arms so that the clock streams through the two arms acquire π phase difference at port d. In this way, when the two clock streams recombine at port d with their amplitude and phase modulated, they will interfere to produce different results under different conditions. If input to port a and b are the same (either both“0” or both“1”), the clock streams arriving at port d will experience the same gain and phase shift in the QD-SOAs and will undergo destructive interference due to the π phase difference between the arms and produce output result “0;” if input bits are different (one is “0” and the other is “1”), the clock streams will experience different gain and phase shift, and the interference result at port d will be “1.” This results in XOR operation.

After a band-pass filter centered at λ2, the XOR result of data 1 and 2 enters the input port “e” of a logic AND gate. The LSFR operation begins by using a trigger as input to the arm of the MZI (AND function). The clock signal (at wavelength λ1 is injected into the center port. In our case, we want to reshape the XOR result, so we choose to make AND operation between XOR result and “1.” This bit “1” is from a clock pulse train centered at λ1, injected to port “f.” After another band-pass filter centered at λ1, the AND result represents a reshaped replica of the XOR result, and its wavelength is converted back to that circulating in the LFSR.

The PRBS sequence generated using this scheme has a repetition bit period of T = 2m-1. Basically, the PRBS sequences are different from truly random bit sequences in that the latter has a continuous spectrum while the former has a discrete spectrum with harmonics [14]. As m increases the generated PRBS spectrum becomes more and more continuous and the output can better represent a truly random signal.

2.2 QD-SOA rate equations and nonlinear effects

The device we chose here is the InAs/GaAs QD-SOA, with InAs quantum dots embedded in GaAs layers [13,1518]. This type of device has a typical gain of ~15 dB gain around 1550nm band, with noise figure as low as 7 dB [17]. The device gain is nearly polarization-independent [18].

The optical gain and carrier transfer between the wetting layer, the QD excited state (ES) and the QD ground state (GS) is schematically shown in Fig. 2 . The device gain is determined by the carrier density of the QD ground state. As the wetting layer serves as the only recipient of the pump current, while QD excited state serves as a carrier reservoir for the ground state with ultra fast carrier relaxation to the latter, their carrier densities and transition rates can affect the device gain.

 

Fig. 2 The transition diagram of InAs/GaAs QD-SOA.

Download Full Size | PPT Slide | PDF

The carrier transitions between various states in the QD-SOA is described by the following rate Eqs. [19-20]:

dwdt=IeVNwmwτwrwτwe(1h)+NesmNwmhτew(1w)
dhdt=hτesr+NwmNesmwτwe(1h)hτew(1w)+NgsmNesmfτge(1h)hτeg(1f)
dfdt=fτgsrfτge(1h)+NesmNgsmhτeg(1f)ΓdAda(2f1)1NgsmS(t)ω
where w, h and f are the occupation probability of the wetting layer, the QD excited state and ground state, respectively, Nwm, Nesm and Ngsm are the maximum density of carriers in each state. τar(“a” being “w,” “es” or “gs”) is the spontaneous radiation lifetime of each state, τabis the relaxation lifetime between any two states “a” and “b”, I is the injected bias current, Γd is the active layer confinement factor, Ad is the effective cross-sectional area of the active layer and S(t) is the total input light power.

Apart from carrier density pulsation, the gain of SOA also includes the contribution from nonlinear processes, including carrier heating (CH) and spectral hole-burning (SHB) effects. The linear gain coefficient is a linear function of ground state carrier density Ng:

gl=Γda(NgNt)
where Nt is the transparent GS carrier density. The suppression of the gain coefficient brought by nonlinear CH and SHB effects can be expressed as:
g(t)=gl+ΔgCH+ΔgSHB
To a first order approximation, ΔgCH and ΔgSHB are proportional to instantaneous light intensity S(t) [21,25]:
ΔgCH=εCHgS(t)
ΔgSHB=εSHBgS(t)
where εCH and εSHB are the gain suppression factors for carrier heating and spectral hole burning effect, respectively. From (5-7) we can get [2123]:
g(t)=Γda(NNt)1+(εCH+εSHB)S(t)
The injected light and temperature change due to carrier heating also changes the refractive index of the active region, and thus a phase change to any probe wave injected.
ϕ(t)=12(αGl(t)+αCHΔGCH(t))
where Gl(t)=eg(t)l is the linear gain factor of the device with l being the effective length of the active layer, α andαCHare the linewidth enhancement factors of the device corresponding to band-to-band transition and carrier heating process, respectively [24,25].

Usually, αCH1for QD-SOAs. When the two clock streams recombine at the output port, their interference power can be expressed as:

Pout(t)=Pclk(t)4[G1(t)+G2(t)+2G1(t)G2(t))cos(ϕ1(t)ϕ2(t)+ϕ0)]
where Pclk is the input clock signal light power, G1(t)and G2(t)are the total gain factors of the two MZI arms respectively, ϕ0=πis the initial phase difference added by tunable optical delay line located in one of the MZI arms.

During the signal transmission in QD-SOA device, the amplified spontaneous emission (ASE) can reduce the output signal to noise ratio (SNR) in addition to that due to pattern effect of the gain response. The signal SNR in each QD-SOA can be expressed as [14]:

SNR(l)=FSNR(0)
where SNR(0)is the SNR at the input of QD-SOA, SNR(l)is the SNR at the output of QD-SOA, F is the noise figure .

3. Simulation results

The all optical PRBS generation by a 7-bit optical LFSR is simulated by modeling the logic XOR and logic AND operations in the QD-SOAs. The parameters used in our simulation are typical values reported by experimental results [2228]. The device parameters used in the model are listed in Table 1 . We studied the performance of the PRBS generator as a function of some key parameter values, including FWHM pulse width, single pulse energy, transition lifetime τegfrom QD excited state to ground state and injected pump current density.

Tables Icon

Table 1. Values of parameters used in simulation

A simulated PRBS output at operation speed 250 Gb/s is shown in Fig. 3 (a) , its eye-diagram is also plotted in Fig. 3 (b). The eye-diagram shows a clear open eye illustrating the stability of the scheme.

 

Fig. 3 (a) Simulation result of PRBS sequences generated using 7-bit LFSR, operating at 250 Gb/s; (b) The eye-diagram of this result. FWHM pulse width is 1.0 ps, injected current density is 1.8 kA/cm2

Download Full Size | PPT Slide | PDF

The quality factor for the output data waveform can be expressed as Q=S1S0σ1+σ0, where S0andS1are the average peak power values of all the output “0”s and “1”s, respectively; σ0andσ1 are the standard deviations of these two groups of values.

For Q > 6, BER is less than 10−9 [29]. In order to study the influence of several crucial device parameter values on the output quality of the PRBS result, we tried fixing all other conditions and calculated the Q factors by varying one of the parameters within a practical range. We studied the Q dependence on FWHM pulse width, single pulse energy, transition lifetime τegand injected pump current density respectively. The calculated results showing Q as a function of these varying parameters are shown in Fig. 4 .

 

Fig. 4 (a) Calculated Q factor values of the output at 250 Gb/s. Q values for different trigger pulse widths as the injected current density changed are shown, single pulse energy is fixed at 0.8 pJ, τe-g is set at 1.0 ps. (b) Calculated Q factors of PRBS operation as τe-g varies between 200 fs and 5.0 ps, injected current density is fixed at 1.8 kA/cm2, single pulse energy is 0.8 pJ. (c) Calculated Q values as single pulse energy of the initial input data vary between 0.1 pJ and 1.6 pJ, injected current density is 1.8 kA/cm2 and τe-g is taken as 1.0 ps.

Download Full Size | PPT Slide | PDF

As shown in Fig. 4 (a), by fixing initial input single pulse energy at 0.8 pJ and τeg = 1.0 ps, we see a Q factor improvement with increasing current density for J<1.8 kA/cm2. This quality improvement can be explained as follows: with increased current injection, more carriers are injected to the wetting layer, thus each energy level in the quantum dot can recover to its initial carrier density faster after carrier depletion following optical pulse injection and amplification. This can reduce the pattern effect following the logic operations. When J increases above a certain level (~2.2 kA/cm2), the Q value saturates. The smaller pulse width (less energy and hence less carrier depletion) also results in better performance (higher Q). From Fig. 4 (b) we see a decrease in output quality (Q-factor) with an increasing QD excited state to ground state transition lifetime τe-g. The transition lifetime (τe-g) determines the speed of gain and phase recovery in the active region, thus shorter transition time results in higher gain and phase recovery and less patterning effect. Figure 4 (c) shows that as the single pulse energy increases within the range between 0.1 pJ and 1.6 pJ, output quality will gradually decrease, this occurs because as the energy of single injected pulse increases, more carrier in the conduction band will be depleted due to stimulated emission, and the QD energy states will take much longer to recover to their carrier density levels and thus impairs the output quality. Meanwhile, the pulse energy should not be as low as possible either, because the smaller it is, the more difficult it will be to practically produce input data and clock signals at required levels. So output PRBS would be best if the system was operated with initial single pulse energy between 0.6 and1.0 pJ.

4. Conclusion and discussion

A method for all-optical pseudorandom bit sequence generation using a linear feedback shift register was proposed and simulated. The device included Mach-Zehnder interferometers with quantum dot semiconductor optical amplifiers in each arm to realize logic XOR and AND operations. We used an amplifier rate equation model together with nonlinear gain saturation theory to simulate the PRBS generation. The quality factor Q for different device parameter values and conditions, including injected current density, transition lifetime between QD excited state and ground state, pulse width and single pulse energy, has been studied and discussed. Results showed that for high speed operation, the system has the best output quality when the injected current density is >1.8 kA/cm2, single pulse energy~0.6-1.0 pJ, and pulse width ~1.0 ps. The scheme is potentially suitable for PRBS generation at ~250 Gb/s with Q value >8.

References and links

1. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000). [CrossRef]  

2. S. W. Golomb, Shift Register Sequences (Holden-Day, San Francisco, 1967).

3. K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004). [CrossRef]  

4. J. M. Senior, Optical Fibre Communications – Principles and Practice (Prentice-Hall, London, 1985).

5. T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999). [CrossRef]  

6. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000). [CrossRef]  

7. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000). [CrossRef]  

8. H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002). [CrossRef]  

9. H. Sun, Q. Wang, H. Dong, and N. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13(6), 1892–1899 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-1892. [CrossRef]   [PubMed]  

10. M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003). [CrossRef]  

11. Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009). [CrossRef]  

12. H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008). [CrossRef]  

13. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004). [CrossRef]  

14. N. K. Dutta, and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, Singapore, 2006).

15. K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998). [CrossRef]  

16. T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000). [CrossRef]  

17. T. Akiyama, and M. Sugawara, “Quantum-dot semiconductor optical amplifiers,” in Proceedings of the IEEE95, (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 1757–1766.

18. P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008). [CrossRef]  

19. T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001). [CrossRef]  

20. J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(23), 2538–2540 (2006). [CrossRef]  

21. A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997). [CrossRef]  

22. P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001). [CrossRef]  

23. T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000). [CrossRef]  

24. J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006). [CrossRef]  

25. O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005). [CrossRef]  

26. A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005). [CrossRef]  

27. D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008). [CrossRef]  

28. T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999). [CrossRef]  

29. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

References

  • View by:
  • |
  • |
  • |

  1. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
    [Crossref]
  2. S. W. Golomb, Shift Register Sequences (Holden-Day, San Francisco, 1967).
  3. K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004).
    [Crossref]
  4. J. M. Senior, Optical Fibre Communications – Principles and Practice (Prentice-Hall, London, 1985).
  5. T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
    [Crossref]
  6. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
    [Crossref]
  7. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
    [Crossref]
  8. H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
    [Crossref]
  9. H. Sun, Q. Wang, H. Dong, and N. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13(6), 1892–1899 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-1892 .
    [Crossref] [PubMed]
  10. M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
    [Crossref]
  11. Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
    [Crossref]
  12. H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
    [Crossref]
  13. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
    [Crossref]
  14. N. K. Dutta, and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, Singapore, 2006).
  15. K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
    [Crossref]
  16. T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
    [Crossref]
  17. T. Akiyama, and M. Sugawara, “Quantum-dot semiconductor optical amplifiers,” in Proceedings of the IEEE95, (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 1757–1766.
  18. P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
    [Crossref]
  19. T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
    [Crossref]
  20. J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(23), 2538–2540 (2006).
    [Crossref]
  21. A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
    [Crossref]
  22. P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
    [Crossref]
  23. T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
    [Crossref]
  24. J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
    [Crossref]
  25. O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005).
    [Crossref]
  26. A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
    [Crossref]
  27. D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
    [Crossref]
  28. T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
    [Crossref]
  29. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

2009 (1)

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[Crossref]

2008 (3)

H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
[Crossref]

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[Crossref]

2006 (2)

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[Crossref]

J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(23), 2538–2540 (2006).
[Crossref]

2005 (3)

H. Sun, Q. Wang, H. Dong, and N. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13(6), 1892–1899 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-1892 .
[Crossref] [PubMed]

O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005).
[Crossref]

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

2004 (2)

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004).
[Crossref]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[Crossref]

2003 (1)

M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
[Crossref]

2002 (1)

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[Crossref]

2001 (2)

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[Crossref]

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[Crossref]

2000 (5)

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

1999 (2)

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[Crossref]

1998 (1)

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

1997 (1)

A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[Crossref]

Akiyama, T.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

Arakawa, Y.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[Crossref]

Avramopoulous, H.

M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
[Crossref]

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Berg, T.

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[Crossref]

Bimberg, D.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[Crossref]

Bintjas, C.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Bischoff, S.

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[Crossref]

Borri, P.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[Crossref]

Bossert, D.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[Crossref]

Burkhard, H.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Chen, H.

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[Crossref]

Chuang, S. L.

J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(23), 2538–2540 (2006).
[Crossref]

Cong, D.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[Crossref]

Coquelin, A.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

Dagens, B.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

Dall’Ara, R.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Dong, H.

Dutta, N.

Dutta, N. K.

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[Crossref]

Ebe, H.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[Crossref]

Ezra, Y. B.

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[Crossref]

Fiore, A.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

Fischer, M.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[Crossref]

Fjelde, T.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

Fuchs, B.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[Crossref]

Gaborit, F.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

Galbraith, I.

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[Crossref]

Guekos, G.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Guillemot, I.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

Han, H.

H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
[Crossref]

Hansmann, S.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Haridim, M.

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[Crossref]

Hatori, N.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[Crossref]

Hatziefremidis, A.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Heirichsdorff, F.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[Crossref]

Houbavlis, T.

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004).
[Crossref]

M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Hvam, J. M.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[Crossref]

Ishida, M.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[Crossref]

Ishikawa, H.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Jaques, J.

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[Crossref]

Kalyvas, M.

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004).
[Crossref]

M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
[Crossref]

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Kim, J.

J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(23), 2538–2540 (2006).
[Crossref]

Kloch, A.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

Kovsh, A.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[Crossref]

Krestnikov, I.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[Crossref]

Kuwatsuka, H.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

Laemmlin, M.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

Langbein, W.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[Crossref]

Ledentsov, N.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

Lembrikov, B. I.

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[Crossref]

Lester, L.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[Crossref]

Leuthold, J.

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[Crossref]

Li, L.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

Magnusdottir, I.

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[Crossref]

Malloy, K.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[Crossref]

Mao, M.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[Crossref]

Martinez, A.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[Crossref]

Meccozi, A.

A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[Crossref]

Merghem, K.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[Crossref]

Mork, J.

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[Crossref]

A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[Crossref]

Mukai, K.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Nakata, Y.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Newell, T.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[Crossref]

Nilsson, H. H.

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[Crossref]

O’Reilly, E.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

Occhi, L.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Ohtsubo, K.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Otsubo, K.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[Crossref]

Patriarche, G.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

Piccirilli, A. B.

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[Crossref]

Poingt, F.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

Provost, J.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[Crossref]

Qasaimeh, O.

O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005).
[Crossref]

Ramdane, A.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[Crossref]

Renaud, M.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

Ridha, P.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

Rossetti, M.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

Schares, L.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Shoji, H.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Simoyama, T.

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

Stathopoulos, T.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Stintz, A.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[Crossref]

Stubkjaer, K. E.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

Sugawara, M.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[Crossref]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Sun, H.

Theophilopoulos, G.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Uskov, A.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

Vazquez, J. M.

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[Crossref]

Wada, O.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

Wang, Q.

Wolfson, D.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

Ye, P.

H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
[Crossref]

Yiannopoulous, K.

M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
[Crossref]

Yokoyama, N.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Zhang, F.

H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
[Crossref]

Zhang, J.

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[Crossref]

Zhang, M.

H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
[Crossref]

Zhu, G.

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[Crossref]

Zoiros, K.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Zoiros, K. E.

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004).
[Crossref]

Appl. Phys. Lett. (2)

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[Crossref]

Electron. Lett. (4)

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[Crossref]

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[Crossref]

IEEE J. Quantum Electron. (2)

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[Crossref]

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[Crossref]

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (5)

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[Crossref]

J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(23), 2538–2540 (2006).
[Crossref]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[Crossref]

Int. J. Electron. Commun. (1)

M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
[Crossref]

Opt. Commun. (2)

H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
[Crossref]

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

Opt. Express (1)

Opt. Quantum Electron. (3)

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004).
[Crossref]

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005).
[Crossref]

Phys. Rev. B (1)

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[Crossref]

Other (5)

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

N. K. Dutta, and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, Singapore, 2006).

T. Akiyama, and M. Sugawara, “Quantum-dot semiconductor optical amplifiers,” in Proceedings of the IEEE95, (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 1757–1766.

J. M. Senior, Optical Fibre Communications – Principles and Practice (Prentice-Hall, London, 1985).

S. W. Golomb, Shift Register Sequences (Holden-Day, San Francisco, 1967).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Design of PRBS generator. (a): Block diagram of a LFSR (b): functional unit, including two QD-SOA MZIs operating as XOR and AND gate.
Fig. 2
Fig. 2 The transition diagram of InAs/GaAs QD-SOA.
Fig. 3
Fig. 3 (a) Simulation result of PRBS sequences generated using 7-bit LFSR, operating at 250 Gb/s; (b) The eye-diagram of this result. FWHM pulse width is 1.0 ps, injected current density is 1.8 kA/cm2
Fig. 4
Fig. 4 (a) Calculated Q factor values of the output at 250 Gb/s. Q values for different trigger pulse widths as the injected current density changed are shown, single pulse energy is fixed at 0.8 pJ, τe-g is set at 1.0 ps. (b) Calculated Q factors of PRBS operation as τe-g varies between 200 fs and 5.0 ps, injected current density is fixed at 1.8 kA/cm2, single pulse energy is 0.8 pJ. (c) Calculated Q values as single pulse energy of the initial input data vary between 0.1 pJ and 1.6 pJ, injected current density is 1.8 kA/cm2 and τe-g is taken as 1.0 ps.

Tables (1)

Tables Icon

Table 1 Values of parameters used in simulation

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

dwdt=IeVNwmwτwrwτwe(1h)+NesmNwmhτew(1w)
dhdt=hτesr+NwmNesmwτwe(1h)hτew(1w)+NgsmNesmfτge(1h)hτeg(1f)
dfdt=fτgsrfτge(1h)+NesmNgsmhτeg(1f)ΓdAda(2f1)1NgsmS(t)ω
gl=Γda(NgNt)
g(t)=gl+ΔgCH+ΔgSHB
ΔgCH=εCHgS(t)
ΔgSHB=εSHBgS(t)
g(t)=Γda(NNt)1+(εCH+εSHB)S(t)
ϕ(t)=12(αGl(t)+αCHΔGCH(t))
Pout(t)=Pclk(t)4[G1(t)+G2(t)+2G1(t)G2(t))cos(ϕ1(t)ϕ2(t)+ϕ0)]
SNR(l)=FSNR(0)

Metrics