Abstract

In this paper, we report two fiber-optic temperature sensors based on silica/polymer microfiber knot resonators (SMKR/PMKR). The structures of these sensors are composed of three layers, MgF2 crystal plate is adopted as the substrate, and the sensing knots are covered by a thin MgF2 slab to keep it steady and immunity to the environment fluctuations. Experimental results show that the temperature sensitivity of SMKR is ~52pm/°C within 30°C~700°C, while the sensitivity of PMKR is ~266pm/°C within 20°C~80°C. The temporal response of SMKR and PMKR sensors are less than 1 ms and 5 ms, respectively. These microfiber knot resonators can be used as miniature high temperature sensors with fast response. Higher resolution can be anticipated with further improvement of the Q factor of the microfiber knot resonators.

©2009 Optical Society of America

1. Introduction

Optical resonators based on microfibers/nanofibers have been attracting great attention owing to their high Q-factor, large coupling coefficient, low loss, etc. They have been widely used in the areas of optical sensing, optical communication, and photonics devices . The characteristics of microfiber resonators (MRs) in the form of knot, loop and coil have been under intensive investigation in the recent published literatures. (Various structures of microfiber resonators (MRs), including knot, loop and coil, have been investigated [13].) In this paper, the microfiber knot resonators (MKRs) used for temperature sensing are proposed and demonstrated. As both the length and refractive index of the MKR vary with temperature, the resonance wavelength is tuned by the temperature change. The dynamic range and resolution of the MKR temperature sensors made of silica/polymer microfibers have been investigated by experiment, respectively. Compared with other fiber optic temperature sensors, such as fiber Bragg grating [4] and Fabry-Perot interferometer [5], these MKR temperature sensors have advantages such as smaller size, higher resolution, faster response time, and lower cost.

2. Theory

In this section, we discuss the relationship between temperature and the resonance wavelength of the MKRs. By solving the coupled mode equations, the transmission property of light propagating along the MKR can be obtained. The free spectral range (FSR) of MKR can be given as [6]

FSRλ2/NgπD=λ2/NgL
where λ is the wavelength, Ng is the group index of the mode propagating in the microfiber, and L is the loop length. The quality factor (Q) of the resonator can be calculated as:

Q=λresFWHM

Here λres is the resonance wavelength and FWHM its full width at half-maximum. The typical Q of single-loop resonators is in the range 103–107 [7,8]. When the temperature changes, the length and index of the microfiber will be varied, leading to resonant wavelength shifts. In order to obtain the resonant wavelength in a dynamic temperature field, we calculate the derivative of Eq. (1) with respect to the temperature, thus the relationship can be evaluated as below

Δλ/λ=(ΔL/L+Δn/n)Temp.=(α+β+αf+βf)ΔT

Where, α is the coefficient of thermal expansion(CTE) of the microfiber, β=1/n(dn/dT) is the thermal-optical coefficient(TOC) of the microfiber, n is the effective index of the mode propagating in the microfiber, and Δnis refractive index variation with temperature. There,αfandβf represent the CTE and TOC of the bonding fluoropolymer respectively. According to Eq. (3), it is assumed that the resonance wavelength shift Δλis small compared with wavelengthλ, so Δλ could be considered to change linearly with the temperature variance. For the silica microfiber, αsis about5×107/°C, and βs is ~1×105/°C. For the polymer microfiber, αpis about5×105/°C, and βp is~10×105/°C. Therefore, the resonance wavelength shift of the PMKR is more sensitive than that of SMKR for the same temperature change.

3. Sensor fabrication

The silica microfibers used in this work are fabricated by flame-heated taper-drawing of a single-mode fiber [9], while polymer (poly-methyl methacrylate, PMMA) microfibers are fabricated by direct drawing of solvated polymers that have been reported elsewhere [10]. These microfibers with minimum diameter of <200 nm and length up to millimeters showed smooth outer surface morphology without pronounced bending or obvious structural defects. They can be bent with much smaller radius of curvature than that of standard optical fibers to form more compact optical structures. Figure 1(a) and (b) show the microscope images of a 190μm-diameter SMKR with 1.7μm-diameter silica microfiber and a 98μm-diameter PMKR with 2.1μm-diameter PMMA microfiber, respectively.

 figure: Fig. 1

Fig. 1 (a) Photograph of the SMKR with diameter of ~190μm and 1.7μm-diameter microfiber. (b) Photograph of the PMKR with the diameter of ~98μm and 2.1μm-diameter microfiber. (c) Schematic diagram of the MKRs temperature sensing structures

Download Full Size | PPT Slide | PDF

As the microfibers provide large proportion evanescent field outside the fiber core, it should be a low refractive index transmission medium to support the MKR. Therefore, a MgF2 crystal plate with refractive index of ~1.37 is adopted as the substrate of the MKR due to its low refractive index and good thermal conductivity. The MKRs are assembled by manipulating with two fiber-tapers under a microscope. A microfiber taper, which is used as the collecting fiber, is arranged adjacent to the freestanding end of SMKR to form a coupler. The two microfibers can attract tightly via Van Der Waals and electrostatic attractive force in the coupling region, as shown in Fig. 1(c). There need two microfiber tapers, each connected to one of the free-standing ends of the PMKR. The microfiber tapers serve as the launching and collecting fibers by evanescent wave coupling. Finally, the SMKR/PMKR structures were covered with a thin MgF2 slab with a thickness of 300μm, which providing a gentle means of holding the sensing structure in place and immunity to environment fluctuations.

4. Experiments and results

To investigate the performance of these MKR temperature sensors, firstly we tested the output spectrum of the MKRs. Figure 2 shows typical transmission spectra of the silica and polymer microfiber knots with diameters of 190μm and 98μm, respectively. The 190μm-diameter knot, assembled with 1.7μm-diameter silica microfiber (refractive index ~1.45), has a Q factor of ~12000 and a FSR of ~3.9nm. The 98μm-diameter knot, assembled with 2.1μm-diameter polymer microfiber (refractive index ~1.49),, shows a Q factor of ~8000 and a FSR of ~7.4nm. The Q factors obtained from these knot resonators are close to or higher than those reported for microfiber loop resonators [11].

 figure: Fig. 2

Fig. 2 Transmission spectra of a 98μm-diameter microfiber knot using a 2.1μm-diameter polymer microfiber (Red line) and a 190μm-diameter microfiber knot assembled using a 1.7μm-diameter silica microfiber (Blue line).

Download Full Size | PPT Slide | PDF

4.1 Static temperature experiment

In order to investigate the static temperature resolution of the two MKRs, an experimental system was constructed firstly. A broadband ASE laser was used as the light source. Light passing through the MKRs will generate the resonant signals. An optical spectrum analyzer, OSA (ANDO-AQ6317B) was used for detecting the output spectra of these temperature sensors. While a hotplate with 0.5°C temperature resolution and range from 30°C to 850°C was used for heating the MKRs. The SMKR sensor was first heated by a temperature step of 1°C. The temperature sensitivity of the SMKR is about 52pm/°C. As shown in Fig. 3 , from 420°Cto 425°C, the total shift of the resonance wavelength is ~260pm and the maximum extinction ratio is >10dB. Figure 4 illustrates the relationship between temperature and resonance wavelength drift over the temperature range from 30°C to 700°C by heating the SMKR with 10°C in each step. The result shows good linearity between temperature and resonant wavelength shift.

 figure: Fig. 3

Fig. 3 Spectra of SMKR at temperature of 420°C and 425°C (inset shows a single resonance peak).

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Static temperature response of the SMKR.

Download Full Size | PPT Slide | PDF

For the PMKR, as shown in Fig. 5 , the experimental measured sensitivity of −266pm/°C, can be obtained over the temperature range from 20°C to 80°C in heating process is indicated by solid dots, and cooling process is indicated by hollow dots, as shown in Fig. 6 . Because the thermal expansion coefficient and thermal-optical coefficient of the polymer microfibers are larger than that of the silica microfibers, the temperature sensitivity of PMKR is more than five times larger than that of SMKR.

 figure: Fig. 5

Fig. 5 Spectra of PMKR at temperature of 60°C and 65°C(inset shows a single resonance peak) .

Download Full Size | PPT Slide | PDF

 figure: Fig. 6

Fig. 6 Static temperature response of the PMKR in the heating and cooling processes.

Download Full Size | PPT Slide | PDF

4.2 Temporal response experiments

At small diameters of the fibers, the previously derived thermal equation represented an insufficiently detailed model of the physical processes involved. Hence, the thermal equation is modeled using the approximation of a thin rod in the one-dimensional case. Validity using the 1-D case rather than the 3-D is verified by the thermal thinness condition. The relaxation time in heating and cooling processes of these sensors can be described by the lumped system equation [12]. For these cylindrical microfibers with radius r, the relaxation time equation can be described as [13,14]:

t=cρr/2h

Here ρis the density of the fiber material, cpis the specific heat, h is the convection heat-transfer coefficient. For the silica microfibers considered in this paper, we use the following values of parameters:h400W/(m2K), cs=837J/(kgK), ρ=2200kg/m3, r=0.85μm, which yields the relaxation time:ts3ms. Comparing with the PMMA polymer microfiber, h5×104cal/scm2°C,cp=0.2cal/g°C,ρ=1.14g/cm3, r=1.05μm, so the relaxation time: tp24ms. For a regular optical fiber having a diameter 100 times greater, the relaxation time is proportionally enlarged to 0.3s.

In the temporal response experiments, the MKRs were illuminated and heated periodically by controlling the tunable CO2 laser pulse (the maximum impulse frequency is 25kHz and single impulse relaxation time is less than 40µs) duration and repetition rate. The schematic diagram is shown in Fig. 7 . A tunable laser(Agilent 8164A) was tuned to 1576.5 nm, which corresponds to a steep resonance region near the slope is maximum, then we controlled the impulse ON/OFF of the CO2 laser beam to heat the MKRs and recorded the time dependence of transmitted power corresponding to this region of the spectrum, as shown in Fig. 8 . From the laser ON to reach thermal steady state, the experimental measured relaxation times are ts<5ms and tp<25ms respectively, which is in good agreement with the theoretical values. However, as we know, the characteristic intrinsic response time of a microfiber is τ=r2cρ/2K, where K is the heat conductivity of silica or PMMA [12]. For a 1.7μm diameter silica microfiber,τs2.5μs, for the 2.1µm PMMA microfiber, τp25μs. In order to model and approach the intrinsic temporal responses of the MKRs, we preheated them with a period of time by a thermostatic hot plate. After thermal equilibration, the SMKR was heated by the square-wave modulated CO2 laser beam with frequency of 50Hz and the duty cycle of 50%. Considering the relaxation time of PMKR is longer than that of SMKR, the PMKR was modulated by CO2 laser beam with frequency of 20Hz and the duty cycle is 20%. The approximate response times of the MKRs can be obtained, as shown in Fig. 9

 figure: Fig. 7

Fig. 7 The experimental system of temporal response for Silica/Polymer MKR

Download Full Size | PPT Slide | PDF

 figure: Fig. 8

Fig. 8 The relaxation time of the transmitted power corresponding to ON/OFF of the CO2 laser beam.

Download Full Size | PPT Slide | PDF

 figure: Fig. 9

Fig. 9 Dynamic response time of the power corresponding to squared modulation of the CO2 laser beam.

Download Full Size | PPT Slide | PDF

5. Conclusion

In conclusion, we have demonstrated two novel fiber-optic temperature sensors based on microfiber knot resonators with high Q-factor made of silica and polymer microfibers. These tiny temperature sensors have advantages of high-resolution,fast response, compact size, and low cost. The silica microfiber knot resonators sensor has a temperature sensitivity of ~52pm/°C, and can stand high temperature of up to 700°C with the response time less than 1ms, while the polymer microfiber knot resonators sensor has a temperature sensitivity of ~266pm/°C, with achieved the response time about 5ms. Such types of miniature temperature sensors could find important applications where micro space, high-resolution and fast temperature response is essential, such as in thermal property study of nano-devices, chemical, biomaterial and MEMS.

Acknowledgement

This work is supported by the Key Project of National Natural Science Foundation of China under Grant 60537040.

References and links

1. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005). [CrossRef]  

2. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006). [CrossRef]  

3. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007). [CrossRef]   [PubMed]  

4. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997). [CrossRef]  

5. Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006). [CrossRef]  

6. D. G. Rabus, “Integrated Ring Resonators”, Springer Series in Optical Sciences. Berlin, Heidelberg, NewYork: Springer, 2007.

7. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006). [CrossRef]  

8. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004). [CrossRef]   [PubMed]  

9. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef]   [PubMed]  

10. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008). [CrossRef]   [PubMed]  

11. X. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007). [CrossRef]   [PubMed]  

12. A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998). [CrossRef]  

13. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006). [CrossRef]  

14. M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
    [Crossref]
  2. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [Crossref]
  3. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [Crossref] [PubMed]
  4. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
    [Crossref]
  5. Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [Crossref]
  6. D. G. Rabus, “Integrated Ring Resonators”, Springer Series in Optical Sciences. Berlin, Heidelberg, NewYork: Springer, 2007.
  7. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
    [Crossref]
  8. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004).
    [Crossref] [PubMed]
  9. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  10. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
    [Crossref] [PubMed]
  11. X. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
    [Crossref] [PubMed]
  12. A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
    [Crossref]
  13. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
    [Crossref]
  14. M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005).
    [Crossref] [PubMed]

2008 (1)

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (4)

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

2005 (2)

M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005).
[Crossref] [PubMed]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[Crossref]

2004 (1)

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

1998 (1)

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

1997 (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Brambilla, G.

Chen, Y.

DiGiovanni, D. J.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

Dulashko, Y.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[Crossref]

M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004).
[Crossref] [PubMed]

Fini, J. M.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[Crossref]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Grellier, A. J. C.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Gu, F. X.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Guo, X.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Hale, A.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[Crossref]

M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004).
[Crossref] [PubMed]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Horak, P.

Jiang, X.

Jiang, X. S.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Pannel, C. N.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Rao, Y. J.

Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Sumetsky, M.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Tong, L. M.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

X. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[Crossref] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Vienne, G.

X. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[Crossref] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Xu, F.

Yang, D. R.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Yang, Q.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Yin, X. F.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Zayer, N. K.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Zhang, L.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[Crossref]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

IEEE J. Lightwave Technol. (1)

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Nano Lett. (1)

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Opt. Lett. (1)

Other (1)

D. G. Rabus, “Integrated Ring Resonators”, Springer Series in Optical Sciences. Berlin, Heidelberg, NewYork: Springer, 2007.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Photograph of the SMKR with diameter of ~190μm and 1.7μm-diameter microfiber. (b) Photograph of the PMKR with the diameter of ~98μm and 2.1μm-diameter microfiber. (c) Schematic diagram of the MKRs temperature sensing structures
Fig. 2
Fig. 2 Transmission spectra of a 98μm-diameter microfiber knot using a 2.1μm-diameter polymer microfiber (Red line) and a 190μm-diameter microfiber knot assembled using a 1.7μm-diameter silica microfiber (Blue line).
Fig. 3
Fig. 3 Spectra of SMKR at temperature of 420°C and 425°C (inset shows a single resonance peak).
Fig. 4
Fig. 4 Static temperature response of the SMKR.
Fig. 5
Fig. 5 Spectra of PMKR at temperature of 60°C and 65°C(inset shows a single resonance peak) .
Fig. 6
Fig. 6 Static temperature response of the PMKR in the heating and cooling processes.
Fig. 7
Fig. 7 The experimental system of temporal response for Silica/Polymer MKR
Fig. 8
Fig. 8 The relaxation time of the transmitted power corresponding to ON/OFF of the CO2 laser beam.
Fig. 9
Fig. 9 Dynamic response time of the power corresponding to squared modulation of the CO2 laser beam.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FSRλ2/NgπD=λ2/NgL
Q=λresFWHM
Δλ/λ=(ΔL/L+Δn/n)Temp.=(α+β+αf+βf)ΔT
t=cρr/2h

Metrics