Abstract

A thin film comprising parallel tilted nanorods was deposited by directing silver vapor obliquely towards a plane substrate. The reflection and transmission coefficients of the thin film were measured at three wavelengths in the visible regime for normal-illumination conditions, using ellipsometry and walk-off interferometry. The thin film was found to display a negative real refractive index. Since vapor deposition is a well-established industrial technique to deposit thin films, this finding is promising for large-scale production of negatively refracting metamaterials.

©2009 Optical Society of America

1. Introduction

Metamaterials are artificial composite materials that, by virtue of their microstructure, exhibit properties not exhibited by their component materials. Much excitement has been generated by negatively refracting metamaterials—typically consisting of coupled, metallic, subwavelength elements that simulate electric and magnetic dipoles—because of their unusual ability to manipulate visible light, infrared waves and microwaves [1,2]. In such a metamaterial, an electromagnetic wave propagates so that the direction of its energy flow is opposed to its phase velocity, a condition captured by the real part of the refractive index being negative.

Negatively refracting metamaterials in the microwave and terahertz regimes are periodic arrays of subwavelength elements comprising incomplete loops and straight wires [2,3]. In the near-infrared regime (wavelength λ~ 1.5 μm), arrays of parallel pairs of metal rods in a dielectric matrix material [4] and parallel pairs of dielectric rods in a metal matrix [5] have been used as those elements. Recently, a two-dimensionally periodic array of parallel silver nanowires embedded in alumina was shown to negatively refract in the visible regime (λ = 660 nm) [6].

Photonic applications of negative refraction shall be greatly facilitated by the availability of a simple technique that allows the fabrication of thin-film samples with large transverse area. With that goal in mind, we decided to use the oblique angle deposition (OAD) technique that emerged in the 1860s [7] and is now considered a workhorse technique in the optical-thin-film industry [8,9]. In an evacuated chamber, vapor from a solid is directed at an angle (deposition angle) to the normal to a flat substrate. The vapor is either thermally generated by heating the solid or by directing an energetic beam of electrons, ions, or photons towards the solid [8,9]. Initially, nucleation centers form randomly on the substrate [10]. Deposition conditions can be chosen so that, subsequently, nanorods grow preferentially towards the incoming vapor because of the self-shadowing effect [11,12]. The resulting thin film has long been recognized to be optically anisotropic [13], like a biaxial crystal [14].

2. Experimental procedures and results

We deposited thin films comprising parallel, tilted silver nanorods on 2-inch square substrates of fused silica by electron-beam evaporation. The chamber containing the substrate and the solid silver was pumped to a base pressure of 4×10-6 Pa prior to each deposition. The deposition rate was maintained at 0.3 nm/s and the deposition angle was set at 86°. A quartz thickness monitor set next to the substrate was used to control the deposition rate and the thickness of the film.

Figure 1 presents a top-view scanning electron microscopic (SEM) image of a silver thin film deposited by us. Clearly, this thin film is an ensemble of parallel tilted nanorods. The film thickness is 240 nm, as observed from the cross-section SEM image. The angle between the normal to the substrate and the tilt of the nanorods is 66° ± 5°. The average length and diameter of the nanorods are 650 nm and 80 nm, respectively.

In order to ascertain the quality of the silver thin film, we illuminated it normally and measured the transmittance for two linear polarization states of the illuminating light: (i) p-polarization, when the electric field has a component parallel to the nanorods, and (ii) s-polarization, when the electric field is perpendicular to the nanorods, as shown in Fig. 1. Figure 2 contains the spectra of the two transmittances, Tp and Ts, over the 300-to-850-nm wavelength range. The peaks at λ = 324 nm and 321 nm, respectively, of Tp and Ts are in accord with measured and calculated spectra of absorbances of silver thin films [15].

 

Fig. 1. (a) Schematic indicating the normal illumination by linearly polarized light of a silver thin film comprising parallel tilted nanorods. The electric field of the illuminating light either has a component parallel to the nanorods (E⃗p).or is perpendicular to the nanorods (E⃗s). (b) Two scanning-electron-microscopic (SEM) images of the thin film.

Download Full Size | PPT Slide | PDF

 

Fig. 2. Measured spectra of the transmittances Tp,s = ∣τp,s2 when the silver thin film is illuminated normally.

Download Full Size | PPT Slide | PDF

The silver thin film is equivalent to a continuum at sufficiently large wavelengths in relation to the nanorod diameter and spacing. Because of its morphological anisotropy due to the conditions of deposition, the equivalent continuum must be orthorhombic [13,16]. It should have linear dielectric and magnetic properties. In general, the equivalent relative permittivity tensor ε⃡ of the film then must have three distinct eigenvalues, and so must the equivalent relative permeability tensor μ⃡, but both tensors will have the same set of three eigenvectors. When the film is illuminated normally, different combinations of the eigenvalues of these tensors appear for the two polarization states [16]. We label the combinations εp and μp for the p-polarization state, and εs and μs for the s-polarization state, as presented in the Appendix.

For a specific linear polarization state, the refractive index nν=ενμν=nν+inν" and the relative intrinsic impedance ην=μν/εν=ην+iην" are complex-valued functions of the wavelength, where i = √-1 and ν = p, s. Both nν and ην can be determined after measuring the reflection coefficient rν and the transmission coefficient τν of the silver thin film of thickness d as follows [17,18]:

ην=±(1+rν)2τν2(1rν)2τν2,ην>0,
nν=λ2πdcos1(1rν2+τν22τν).

The two reflection coefficients rp, s and the two transmission coefficients τp, s were measured at specific wavelengths using an ellipsometer [19] and a walk-off interferometer [20]. A diode laser operating at 532-nm, 639-nm or 690-nm wavelength was used as the source of monochromatic light. The ellipsometer used is a PSA (Polarizer-Sample-Analyzer) system built by J.A. Woollam Co. When normally incident light passes through the PSA system, the ellipsometric parameters can be measured by detecting the transmitted light as the analyzer rotates. The measured ellipsometric parameters yield the ratio τp/τs.

Walk-off interferometry was used to measure τs and both reflection coefficients. In this technique, the incident laser beam is separated into two beams—one s-polarized and the other p-polarized. One of the polarized beams is normally incident on the sample (silver thin film) and the other polarized beam is incident on the bare substrate; the two reflected and transmitted beams combine and produce interference. The polarization state of the combined beam yields the absolute phase of the reflection coefficient or the transmission coefficient associated with a specific polarization state. Finally, τp can be derived from the measured τs and the ratio τp/τs. Measured data at the three wavelengths are provided in Table 1.

Tables Icon

Table 1. Measured data. The ratio τp/ τs was measured using an ellipsometer. The coefficients τp , τs, and rs were measured by walk-off interferometry.

The values of the refractive indices np, s and the relative intrinsic impedances ηp, s derived from Eqs. (1) and (2) using the measured values of rp,s and τp,s at the three wavelengths are presented in Table 2. Since none of the six data sets satisfies either the condition nν = l/ην or the condition nν = ην, the silver thin film must have both equivalent dielectric and magnetic properties different from those of vacuum. The relative permittivities εp,s and the relative permeabilities μp,s, calculated using the relationships εν = nν/ην and μν = nν ην, are also listed in Table 2.

Tables Icon

Table 2. Equivalent refractive indices, relative intrinsic impedances, relative permittivities, and relative permeabilities for a silver thin film comprising parallel tilted nanorods.

The imaginary parts of εp,s and μp,s are positive in Table 2, which is appropriate for a passive material when an exp(-iωt) time-dependence is used with ω as the angular frequency and t as time. As the real parts of both εs and μs are also positive, the real part of ns > 0 at all three wavelengths. However, while the real parts of μp are positive, the real parts of εp are negative at all three wavelengths. The absolute real part and the imaginary part of εp increase with wavelength, similar to that predicted by the plasmonic-type permittivity model for composites containing thin-wire metal inclusions [21,22].

Consistently with the requirement that the imaginary part of np > 0 for attenuation in a passive medium [23], we get the real part of the equivalent refractive index for p-polarization to be negative over a wide range of wavelengths in the visible regime: np = -0.705 at λ = 532 nm, np = -0.476 at λ = 639 nm, and np = -0.552 at λ = 690 nm. Clearly, np < 0 for light of green, yellow, orange, and red colors. This is our chief result.

The measured figure of merit -np/np lies between 0.3 and 0.65 over the 532-to-690-nm wavelength range. This figure of merit could be adjusted to more favorable values for device application by suitably changing the deposition angle and/or by filling in the void spaces in the thin film with a gain medium [24], both of which are topics for further research. Although our finding of a negative real part of a refractive index strictly holds for normal illumination, relying on the analytic continuation of reflection and transmission coefficients with respect to the angle of illumination, we expect negative refraction to be shown for p-polarized light for a restricted range of oblique-illumination conditions as well. Further characterization of the silver thin films is being carried out.

3. Concluding remarks

We conclude that a widely used and a well-established thin-film technique called oblique angle deposition can be used to deposit thin films that can refract visible light negatively, and that this negative refraction can occur over a broad range of wavelengths. The OAD technique is particularly suitable for depositing multilayered stacks commonly employed as optical filters and mirrors [9]. Incorporation of layers of a gain medium to offset attenuation is possible with the OAD technique.

Appendix: Equations for propagation of light in the silver thin film

Let us use a Cartesian coordinate system (x,y,z) with the substrate as the plane z = 0, and let the nanorods grow in the xz plane, inclined at an angle β to the z axis. Then the effective relative permittivity and relative permeability tensors of the silver thin film can be written in matrix form as follows [16]:

ε=[sinβ0cosβ010cosβ0sinβ][ε1000ε2000ε3][sinβ0cosβ010cosβ0sinβ],
μ=[sinβ0cosβ010cosβ0sinβ][μ1000μ2000μ3][sinβ0sinβ010cosβ0sinβ].

Both tensors have the same set of three eigenvectors, but they have different eigenvalues. The eigenvalues are the entries in the diagonal matrices on the right sides of Eqs. (3) and (4). When the silver thin film is illuminated normally, the electromagnetic fields induced inside it do not vary with x and y, and the frequency-domain Maxwell equations simplify as follows [16]:

dExdz=μ0μpHy(i)ppolarizationstatedHydz=ε0εpEyEz=Exε1ε32ε1ε3εpsin2β},
dEydz=μ0μsHx(i)spolarizationstatedHxdz=ε0εsEyHz=Hxμ1μ32μ1μ3μssin2β}.

In these equations, ε 0 and μ 0 are the permittivity and permeability, respectively, of vacuum;

μp=μ2,εp=ε1ε3ε1cos2β+ε3sin2β,μs=μ1μ2μ1cos2β+μ3sin2β,andεs=ε2.

Acknowledgments

YJJ, CWY and JTL thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC 96-2221-E- 027-051-MY3. AL thanks the Charles Godfrey Binder Endowment at Penn State for partial support.

References and links

1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004). [CrossRef]   [PubMed]  

2. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007). [CrossRef]  

3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]   [PubMed]  

4. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]  

5. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef]   [PubMed]  

6. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008). [CrossRef]   [PubMed]  

7. D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes Publications, Norwich, NY, USA, 2003).

8. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, Bristol, United Kingdom, 2001), Chap. 9. [CrossRef]  

9. P. W. Baumeister, Optical Coating Technology (SPIE, Bellingham, WA, USA, 2004), Chap. 9. [CrossRef]  

10. H. van Kranenburg and C. Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data,” Mater. Sci. Eng. R 11, 295–354 (1994). [CrossRef]  

11. H. König and G. Helwig, “Über die Struktur schrä;g aufgedampfter Schichten und ihr Einfluβ auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten,” Optik 6, 111–124 (1950).

12. R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008). [CrossRef]  

13. A. Kundt, “Ueber die electromagnetische Drehung der Polarisationsebene des Lichtes im Eisen,” Ann. Phys. Chem. Lpz. 27, 191–202 (1886). [CrossRef]  

14. J. F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, United Kingdom, 1985).

15. Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2007). [CrossRef]  

16. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, USA, 2004), Chaps. 2 and 7.

17. D. R. Smith and S. Schultz, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]  

18. P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649–661 (2003). [CrossRef]   [PubMed]  

19. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light(Elsevier, Amsterdam, The Netherlands, 1977).

20. A. V. Kildishev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refractive index in optics of metal-dielectric composites,” J. Opt. Soc. Am. B 23, 423–433 (2006). [CrossRef]  

21. J. B. Pendry, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996). [CrossRef]   [PubMed]  

22. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4758–4809 (1998). [CrossRef]  

23. R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315–317 (2004). [CrossRef]  

24. S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [Crossref] [PubMed]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007).
    [Crossref]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
    [Crossref]
  5. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
    [Crossref] [PubMed]
  6. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
    [Crossref] [PubMed]
  7. D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes Publications, Norwich, NY, USA, 2003).
  8. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, Bristol, United Kingdom, 2001), Chap. 9.
    [Crossref]
  9. P. W. Baumeister, Optical Coating Technology (SPIE, Bellingham, WA, USA, 2004), Chap. 9.
    [Crossref]
  10. H. van Kranenburg and C. Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data,” Mater. Sci. Eng. R 11, 295–354 (1994).
    [Crossref]
  11. H. König and G. Helwig, “Über die Struktur schrä;g aufgedampfter Schichten und ihr Einfluβ auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten,” Optik 6, 111–124 (1950).
  12. R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
    [Crossref]
  13. A. Kundt, “Ueber die electromagnetische Drehung der Polarisationsebene des Lichtes im Eisen,” Ann. Phys. Chem. Lpz. 27, 191–202 (1886).
    [Crossref]
  14. J. F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, United Kingdom, 1985).
  15. Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2007).
    [Crossref]
  16. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, USA, 2004), Chaps. 2 and 7.
  17. D. R. Smith and S. Schultz, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [Crossref]
  18. P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649–661 (2003).
    [Crossref] [PubMed]
  19. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light(Elsevier, Amsterdam, The Netherlands, 1977).
  20. A. V. Kildishev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refractive index in optics of metal-dielectric composites,” J. Opt. Soc. Am. B 23, 423–433 (2006).
    [Crossref]
  21. J. B. Pendry, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
    [Crossref] [PubMed]
  22. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4758–4809 (1998).
    [Crossref]
  23. R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315–317 (2004).
    [Crossref]
  24. S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003).
    [Crossref]

2008 (2)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
[Crossref]

2007 (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007).
[Crossref]

Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2007).
[Crossref]

2006 (1)

2005 (2)

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

2004 (2)

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315–317 (2004).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

2003 (2)

P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649–661 (2003).
[Crossref] [PubMed]

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003).
[Crossref]

2002 (1)

D. R. Smith and S. Schultz, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4758–4809 (1998).
[Crossref]

1996 (1)

J. B. Pendry, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

1994 (1)

H. van Kranenburg and C. Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data,” Mater. Sci. Eng. R 11, 295–354 (1994).
[Crossref]

1950 (1)

H. König and G. Helwig, “Über die Struktur schrä;g aufgedampfter Schichten und ihr Einfluβ auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten,” Optik 6, 111–124 (1950).

1886 (1)

A. Kundt, “Ueber die electromagnetische Drehung der Polarisationsebene des Lichtes im Eisen,” Ann. Phys. Chem. Lpz. 27, 191–202 (1886).
[Crossref]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light(Elsevier, Amsterdam, The Netherlands, 1977).

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light(Elsevier, Amsterdam, The Netherlands, 1977).

Baumeister, P. W.

P. W. Baumeister, Optical Coating Technology (SPIE, Bellingham, WA, USA, 2004), Chap. 9.
[Crossref]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Cai, W.

Chaney, S. B.

Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2007).
[Crossref]

Chettiar, U. K.

Depine, R. A.

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315–317 (2004).
[Crossref]

Drachev, V. P.

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Helwig, G.

H. König and G. Helwig, “Über die Struktur schrä;g aufgedampfter Schichten und ihr Einfluβ auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten,” Optik 6, 111–124 (1950).

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4758–4809 (1998).
[Crossref]

Kildishev, A. V.

König, H.

H. König and G. Helwig, “Über die Struktur schrä;g aufgedampfter Schichten und ihr Einfluβ auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten,” Optik 6, 111–124 (1950).

Kundt, A.

A. Kundt, “Ueber die electromagnetische Drehung der Polarisationsebene des Lichtes im Eisen,” Ann. Phys. Chem. Lpz. 27, 191–202 (1886).
[Crossref]

Lakhtakia, A.

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315–317 (2004).
[Crossref]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, USA, 2004), Chaps. 2 and 7.

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Lodder, C.

H. van Kranenburg and C. Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data,” Mater. Sci. Eng. R 11, 295–354 (1994).
[Crossref]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, Bristol, United Kingdom, 2001), Chap. 9.
[Crossref]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Markos, P.

Mattox, D. M.

D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes Publications, Norwich, NY, USA, 2003).

Messier, R.

R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
[Crossref]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, USA, 2004), Chaps. 2 and 7.

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, United Kingdom, 1985).

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4758–4809 (1998).
[Crossref]

J. B. Pendry, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4758–4809 (1998).
[Crossref]

Sarychev, A. K.

Schultz, S.

D. R. Smith and S. Schultz, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

D. R. Smith and S. Schultz, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Soukoulis, C. M.

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4758–4809 (1998).
[Crossref]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

van Kranenburg, H.

H. van Kranenburg and C. Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data,” Mater. Sci. Eng. R 11, 295–354 (1994).
[Crossref]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Yuan, H.-K.

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Zhang, X.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Zhang, Z.-Y.

Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2007).
[Crossref]

Zhao, Y.-P.

Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2007).
[Crossref]

Ann. Phys. Chem. Lpz. (1)

A. Kundt, “Ueber die electromagnetische Drehung der Polarisationsebene des Lichtes im Eisen,” Ann. Phys. Chem. Lpz. 27, 191–202 (1886).
[Crossref]

J. Appl. Phys. (1)

Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2007).
[Crossref]

J. Nanophoton. (1)

R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4758–4809 (1998).
[Crossref]

Mater. Sci. Eng. R (1)

H. van Kranenburg and C. Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data,” Mater. Sci. Eng. R 11, 295–354 (1994).
[Crossref]

Microwave Opt. Technol. Lett. (1)

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315–317 (2004).
[Crossref]

Nature Photon. (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optik (1)

H. König and G. Helwig, “Über die Struktur schrä;g aufgedampfter Schichten und ihr Einfluβ auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten,” Optik 6, 111–124 (1950).

Phys. Rev. B (2)

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003).
[Crossref]

D. R. Smith and S. Schultz, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Phys. Rev. Lett. (2)

J. B. Pendry, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Science (3)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

Other (6)

J. F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, United Kingdom, 1985).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light(Elsevier, Amsterdam, The Netherlands, 1977).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, USA, 2004), Chaps. 2 and 7.

D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes Publications, Norwich, NY, USA, 2003).

H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, Bristol, United Kingdom, 2001), Chap. 9.
[Crossref]

P. W. Baumeister, Optical Coating Technology (SPIE, Bellingham, WA, USA, 2004), Chap. 9.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. (a) Schematic indicating the normal illumination by linearly polarized light of a silver thin film comprising parallel tilted nanorods. The electric field of the illuminating light either has a component parallel to the nanorods (E⃗p ).or is perpendicular to the nanorods (E⃗s ). (b) Two scanning-electron-microscopic (SEM) images of the thin film.
Fig. 2.
Fig. 2. Measured spectra of the transmittances Tp,s = ∣τp,s 2 when the silver thin film is illuminated normally.

Tables (2)

Tables Icon

Table 1. Measured data. The ratio τp / τs was measured using an ellipsometer. The coefficients τp , τs , and rs were measured by walk-off interferometry.

Tables Icon

Table 2. Equivalent refractive indices, relative intrinsic impedances, relative permittivities, and relative permeabilities for a silver thin film comprising parallel tilted nanorods.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ην=±(1+rν)2τν2(1rν)2τν2 , ην>0,
nν=λ2πd cos1 (1rν2+τν22τν) .
ε=[sinβ0cosβ010cosβ0sinβ][ε1000ε2000ε3][sinβ0cosβ010cosβ0sinβ],
μ=[sinβ0cosβ010cosβ0sinβ][μ1000μ2000μ3][sinβ0sinβ010cosβ0sinβ].
dExdz=μ0μpHy(i)ppolarizationstatedHydz=ε0εpEyEz=Exε1ε32ε1ε3εpsin2β } ,
dEydz=μ0μsHx(i)spolarizationstatedHxdz=ε0εsEyHz=Hxμ1μ32μ1μ3μssin2β } .
μp=μ2,εp=ε1ε3ε1cos2β+ε3sin2β,μs=μ1μ2μ1cos2β+μ3sin2β,andεs=ε2.

Metrics