Abstract

The influence of air turbulence on the long-range filamentation of femtosecond laser pulses has been numerically investigated. Simulations are performed for different parameters of air turbulence and laser pulses. Simulation results indicate that the diameter of filaments formed by free propagated fs laser pulse can be widened to mm level under air turbulence. However, the widening effect can be suppressed if the propagating distance before the on-set position of filamentation becomes shorter. The reduction of non-linear focal length can be realized by pre-focusing of the laser pulse or increasing of the laser intensity. The effect of the inner scale of air turbulence on the filamentation has also been studied.

©2008 Optical Society of America

1. Introduction

The filamentation of intense femtosecond (fs) laser pulses in the atmosphere [1, 2, 3, 4, 5] has attracted many interests of scientists during the last few years due to its potential applications such as atmospheric remote sensing and lighting control [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. For these practical applications, the laser pulse has to be launched into space of high altitude. Hence, a deeper understanding of filamentation in natural air is of great importance.

Most of the previous theoretical and numerical studies were devoted to femtosecond pulse propagation in uniform air. Only a few works considered the perturbation in the laser field induced by atmospheric turbulence and aerosols [17, 18, 19, 20]. The self-focusing distance is found to be averagely smaller than that in uniform atmosphere under turbulent conditions. The random moving focus in the transverse plane outlines a ‘curved’ filament along the propagation distance. Recent experiments [21, 22, 23] investigated the light filaments generated by the free propagated ps and fs laser beams and demonstrated that not only the filaments drifted in transverse plane, but also their diameters expanded to mm size in comparison with numerical simulation, which is usually simulated the ideal Gaussian pulse in uniform air. As a result, such differences should be related to the feature of natural air and the initial intensity perturbation of the laser pulse.

For deep investigation of the widening filamentation, we present in this paper the systematic simulation of filamentation in turbulent atmosphere. The widening of filament diameter to mm level was induced for freely propagated fs pulse under air turbulence. The effect of nonlinear focal length on the filamentation under air turbulence was also studied by varying the initial focusing condition and initial pulse duration.

2. Numerical simulation model

The classical equations describing the propagation of ultra-short laser pulses consist of a (3D+1)-dimensional extended nonlinear Schrödinger (NLS) equation for the electric field envelope, and the evolution equation for the local plasma density [24]:

Ez=i2kΔEik22Eτ2+ikn2|E|2E+iknEikωpe2(ρ)ω02Eβ(K)2|E|2K2E
ρt=β(K)Kh¯ω0E2K(1ρρat)

where n′ (x,y,z) describes random fluctuations of refractive index induced by air turbulence. These equations are expressed in the reference frame moving with the pulse group velocity (tt-z/νg), characterized by the central wave number k=2π0, where λ0=800 nm is the central wavelength of the laser beam in air. The terms on the right-hand side of Eq. (1) account for the transverse diffraction with Δ=∂2/∂x 2+∂2/∂y 2, the group velocity dispersion, the Kerr response of air, the turbulent effect, the defocusing induced by multiphoton ionization (MPI) and the power dissipation caused by multiphoton absorption (MPA) with coefficient k″=0.2 fs2/cm, n 2=3.2×10-19 cm2/W, β (K=8)=4.25×10-98cm-13/W7 at 800 nm. The number of photons needed to extract electrons from neutral atoms is K=8. The plasma frequency is ωpe=qe2ρmeε0 (qe, me, and ρ, are the electron charge, mass, and density, respectively), and the density of neutral atoms is ρat=2.7×1019 cm-3. We ignore the effect of self-steepening and space-time focusing. These effects mainly influence the temporal characteristics of the pulses which are not the main interest of our work. The previous study also reported that pulse spatial dynamics was little affected by self-steepening and space-time focusing when the input power was moderate, even for the very short pulse duration as 50fs [25].

In the simulation, equation (1) is solved using full-step (not split-step) Fast Fourier Transformation in transverse space and time dimensions. We use a square grid (256×256) with the step 0.117mm in the transverse section. The whole time interval was discretized into 64 points. The spatial resolution is enough to describe the mm size filaments and basically indicate the characteristics of thin filaments, although it is a little bit lower than that in Ref. [19], where the size of spatial grid is 0.08mm. We also performed testing simulation by increasing the number of spatial grids to 512. However, we found no significant change with higher resolution.

The effects of the air turbulence on the laser propagation are usually simulated using thin phase screens which perturb the phase of a propagating wavefront [26]. The chain of phase screens, located along the propagation direction, reproduces adequately the properties of a continuous medium. The laser pulse will propagate freely between the two neighboring phase screens. To describe a wide range of refractive-index fluctuation we use the von Kármán model spectrum [27]. The detail of the atmospheric turbulence model is presented in the Appendix. There are three important parameters: C 2 n is the structure constant which represents the strength of the turbulence; L 0 and lm are outer and inner scales of turbulence. The outer scale was set to be 1 m [18, 19, 27] in our simulation. We varied the inner scale of turbulence lm in the range of 0.5~1.5 mm and C 2 n in the range of 2.0×10-17~2.75×10-16 m-2/3. The separation distance between two neighbouring phase screens is 1 m. A sample phase screen with inner scale lm=1mm is shown in figure 1. The size of the screen is 30 mm×30 mm, 256×256 sample points, and the structure constant C 2 n=2.75×10-16 m-2/3.

 

Fig. 1. A sample phase screen. The size of the screen is 30 mm by 30 mm, 256 by 256 sample points, lm=1 mm, L 0=1 m and C 2 n=2.75×10-16 m-2/3.

Download Full Size | PPT Slide | PDF

3. Numerical simulations and discussions

In order to reveal the effect of air turbulence on filamentation of fs laser pulse, we performed numerical simulations of propagation in uniform air without turbulence for comparison. In our simulation, a negative chirped pulse with 270 fs duration is used to generate long range filament. The initial beam waist is 10 mm and the pulse energy is 10 mJ. The laser pulse has a Gaussian shape in both spatial and temporal domains.

Figure 2(a) shows the isosurface of energy fluence of laser filament in unperturbed air. The energy fluence is normalized by the maximum in transverse plane for every propagation distance. From Fig. 2(a), we can see the beam smoothly self-focuses and form a thin filament at the distance of 45 m. The transverse intensity distribution of filament with no turbulence for different propagation distances is shown in Fig. 3 (a). The filament diameter, which is defined as full width at the half maximum of the energy fluence on the transverse cross section, is about 146 µm along the propagation distance, as shown in Fig. 4 (solid line). The 146 µm is the average filament diameter we obtained using Gaussian approximation of normalized transverse energy fluence distribution. Figure 2(b) and 2(c) show the energy fluence distribution in weak (C 2 n=2.7×10-17 m-2/3) and moderate (C 2 n=2.75×10-16 m-2/3) turbulent atmosphere respectively with the inner scale lm=1 mm. The beam profile was disturbed in the weak turbulent air (Fig. 2(b)) compared with the beam profile without turbulence in Fig. 2(a). However, the energy still fuses into one thin filament in Fig. 2(b). In figure 2(c), the beam is randomly nucleated and forming a bath of spiky filaments over shorter distances (<30 m) in moderate turbulence. The center of the beam wanders before the beam collapsing [18,19] and the energy fuses into one thin filament with widened diameter. Many small random local intensity peaks emerge after the propagation distance of 60 m. These small intensity peaks are formed due to the random dynamics of laser field and they disappear quickly. Only the continued and long channel is optical filament, whose length is much longer than the natural diffraction (Rayleigh) length for the beam waist of this optical filament. Figure 3(b) shows the transverse intensity distribution of filament with turbulence for different propagation distances. The beam diameter is about 1~2 mm in most part of the propagation track (Fig. 4 dashed line). The inner scale of turbulence in our simulation is 1 mm, which is relatively small to the transverse size of filament and much smaller than the background energy reservoir, which is extended to cm distance from the filament center for such long filament. As a result, the air turbulence causes phase perturbations on the energy background and this perturbation can be accumulated with propagation. The distortion of wave front can partly break the process of energy replenishment from background reservoir to the filament core [28]. Thus, this effect can lead the widening of filament size on large distance propagation and decrease of the filament intensity to 1012 W/cm2 which is around the ionization threshold of air. Fig. 5 shows peak electron densities for the femtosecond laser pulse in unperturbed air (a) and in moderate turbulent air (b) as a function of propagation distance z. We can find that the electron density generated in the widened filament is only at 100~101 level and the plasma is inefficient in saturating the self-focusing. The electron plasma generation does not play a critical role in the long distance propagation of free filaments. The beam size of the filament keeps stable if the parameters of the turbulence are the same. However, the trajectory of the filament depends on the random number generator used to define the phase screen. Thin filament with higher intensity generates a large spectral broadening due to self phase modulation. The spectral broadening which occurs during filamentation in unperturbed air (a) and in moderate turbulent air (b) is shown in Figure 6. The spectrum of the pulse is broadened in the case of unperturbed air despite the limited simulating spectral range (720 nm~880 nm). However, the pulse in strong turbulent air undergoes a much smaller spectral broadening due to the weak intensity of the filament (Fig. 6(b)).

 

Fig. 2. (a)The energy fluence distribution in unperturbed air. Energy fluence distribution in weak turbulent air with the structure constant C 2 n=2.0×10-17 m-2/3 (b) and in moderate turbulent air with the structure constant C 2 n=2.75×10-16 m-2/3 (c).

Download Full Size | PPT Slide | PDF

 

Fig. 3. The transverse intensity distribution of filament in unperturbed air (a) and in turbulent air (b) for different propagation distances. The structure constant of the turbulence air is C 2 n=2.75×10-16 m-2/3 and the inner scale lm is 1 mm.

Download Full Size | PPT Slide | PDF

 

Fig. 4. The full-width-half-maximum of the beam size in unperturbed air (solid line) and in moderate turbulent air (dashed line). The structure constant C 2 n is 2.75×10-16 m-2/3 and the inner scale of the turbulence lm is 1 mm.

Download Full Size | PPT Slide | PDF

 

Fig. 5. Peak electron densities for the femtosecond laser pulse in unperturbed air (a) and in moderate turbulent air (b) as a function of propagation distance z. The structure constant of the turbulence air is C 2 n=2.75×10-16 m-2/3 and the inner scale lm is 1 mm.

Download Full Size | PPT Slide | PDF

 

Fig. 6. Spectral broadening of the femtosecond laser pulse in unperturbed air (a) and in moderate turbulent air (b). The structure constant of the turbulence air is C 2 n=2.75×10-16 m-2/3 and the inner scale lm is 1 mm.

Download Full Size | PPT Slide | PDF

For convenience of indoor experiments, a converging lens is always required to reduce the propagation distance before the on-set position of filaments is formed. Figure 7 shows the energy fluence distribution when a laser pulse with 10mJ energy is prefocused by lenses of focal length 4 m (a), 6 m (b), and 8 m (c). Although the turbulent air is the same as the free propagation (Fig. 2(b)), it can be seen from Fig. 7 that the transverse widths of the filaments are very small for all focal conditions, which agrees well with both numerical and experimental results [29, 30]. Earlier experiment [31] shows that for filamentation of prefocused laser pulse, the size of energy background is about 1mm, which is comparable to the inner scale of air turbulence. In this case, the energy background is slightly influenced by the turbulent air. The dynamic energy exchange between the filament and background is successfully taking place to form a thin filament, as that happens in unperturbed air. The influence of the air turbulence reduces with the decrease of the on-set position of filamentation. This is consistent with the experiment of Ref. [17] which reported that a thin filament can be generated by a prefocusing beam even in strong turbulent air.

 

Fig. 7. The energy fluence distribution of the prefocused laser pulse propagating through turbulent atmosphere. The focal lengths of the convex lenses are (a) 4m, (b) 6m and (c) 8m. The structure constant of the turbulence air C 2 n is 2.75×10-16 m-2/3 and the inner scale lm is 1.0 mm.

Download Full Size | PPT Slide | PDF

Another method to reduce the on-set position of filamentation is to increase the peak power of the laser pulses, which is related to the pulse duration. Figure 8 (a, b) shows the energy fluence distribution of unchirped pulse (50 fs) and chirped pulse (100 fs) in turbulent air, with the structure constant C 2 n=2.75×10-16 m-2/3. We can see in Fig. 8 that the filamentation starts at different propagation distance depending on the pulse duration. For shorter laser pulse duration (Fig. 8 (a) and (b)), the peak power of laser pulse becomes higher, and the distance required for generation of filaments becomes shorter. This effect can also reduce the accumulating influence of turbulent air. So thin filament with diameter 0.15 mm ~ 0.2 mm can be obtained in this case, which is similar to the case of prefocused laser pulses. It has been confirmed by earlier experiments that thin filament can also be formed by free propagated fs laser pulses, when the nonlinear focal length was in several meters range [25]. However, without the initial focusing, the multifilamentation takes place due to the perturbation of laser wave front.

The role of inner scale of the turbulence has also been studied. Figure 9 shows the energy fluence distribution of the laser propagation through turbulent atmosphere with different inner scale lm=0.7 mm (a), 1.5 mm (b). The structure constant is fixed on 2.75×10-16 m-2/3. Turbulent atmosphere is comprised of many small turbulent “lenses” with diameters comparable to the inner scale of the turbulence. These lenses can decrease the overall spatial coherence of the laser beam. However, the laser field can keep the local coherence in the spatial range of inner scale. When the inner scale is small (Fig. 9(a)), i.e., lm=0.7 mm, background energy can not effectively replenish the filament core. Then the diameter of the filament keeps wide. When the inner scale is large, (Fig. 9(b)), i.e., lm=1.5 mm, more laser energy can be self-focused into filament. As a result, thin filament can be formed.

 

Fig. 8. The energy fluence distribution of the laser pulse with different pulse duration in turbulent atmosphere. The pulse duration of unchirped pulse is 50fs (a) and 100fs pulse (b) is negative chirped. The structure constant of the turbulence air C 2 n is 2.75×10-16 m-2/3 and the inner scale lm is 1.0 mm.

Download Full Size | PPT Slide | PDF

 

Fig. 9. The energy fluence distribution of the laser pulse propagating through atmosphere with different lm: (a) 0.7 mm, (b) 1.5 mm. The structure constant of the turbulence air C 2 n is 2.75×10-16 m-2/3.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, we have numerically investigated the influence of the air turbulence on the long-range fs laser filamentation in detail. Air turbulence causes random fluctuations of refractive index of the atmosphere. Widening filament of hundred meters is induced by the perturbation of air turbulence. Thin filament in turbulent air can be formed by prefocused laser pulse, due to the much shorter distance required for generation of filament. In addition, our simulation indicates that the perturbation of the air turbulence is increased with the decrease of the inner scale lm.

Appendix

The von Kármán models of atmospheric turbulence, as used in the present calculation, is adopted from Refs. [26,27]. In this model, the power spectral density Φn (k, z) of the refractive index fluctuation of the atmosphere [27] is:

Φnkz=0.033Cn2(k2+k02)116exp(k2km2)

where C 2 n is the structure constant which represents the strength of the turbulence and k is the three-dimensional spatial wavenumber, k=kx2+ky2+kz2 . The critical wavenumbers correspond to turbulence scale lengths L 0=2π/k 0 and lm=2π/km, where L 0 and lm are outer and inner scales of turbulence respectively. For k<k 0, Φn (k, z) is limited by k 0, and for k>km, Φn (k, z) would be quickly forced to zero.

The generation of phase screen θ′ (x,y) can be realized by filtering a Gaussian white noise process with the square root of the power spectral density, followed by an inverse Fourier transform, using

θxy=k2πΔz++dkxdkyexp[i(kxx+kyy)]Φn12(kx,ky)a(kx,ky)

where a(kx,ky) is a zero-mean unit-variance Hermitian complex Gaussian white noise process.

The discrete formulation of (A2) is

θ(jΔx,lΔy)=n=0Nxm=0Ny[anm+ibnm]exp[2π(jnNx+lmNy)]

where Δx and Δy are the desired intervals. Nx and Ny are integer indices. a(n,m) and b(n,m) are discrete zero-mean Gaussian variables. The variances are

a2(n,m)=b2(n,m)=ΔkxΔkyΦθ(nΔkx,mΔky)
Φθ(Δkx,Δky)=2πk2ΔzΦn(kx,ky,kz=0)

The minimum spatial frequency of the phase screen generated by the FFT-method is 1/ΔxNx. The lower frequency information of the phase screen is given by

θSH(jΔx,lΔy)=p=1Npn=11m=11[a(n,m,p)+ib(n,m,p)]exp[2πi(jn3pNx+lm3pNy)]

where Np is the subharmonic levels. a(n, m, p) and b(n, m, p) are discrete zero-mean Gaussian variables, whose variances are

a2(n,m,p)=b2(n,m,p)=ΔkxpΔkypΦθ(nΔkxp,mΔkyp)

where Δkxpkx/3p, Δkypky/3p.

The total phase screen is the sum of (A3) and (A4)

θ(jΔx,lΔy)=θ(jΔx,lΔy)+θSH(jΔx,y)

And the random fluctuations of refractive index induced by air turbulence is

n=θ(jΔx,lΔy)kz

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos 60621063, 10634020, 60478047, 10734130 and 10521002), the National Key Basic Research Special Foundation of China under Grant No 2007CB815101, No 2006CB806007, and the National Hi-tech ICF Programme.

References and links

1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femotosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995). [CrossRef]   [PubMed]  

2. J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000). [CrossRef]  

3. S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004). [CrossRef]  

4. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phy. Rev. Lett. 83, 2939–2941 (1999). [CrossRef]  

5. L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004). [CrossRef]  

6. P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

7. S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, “Control of the filamentation distance and pattern in long-range atmospheric propagation,” Opt. Express 16, 2279–2784 (2007).

8. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2007). [CrossRef]  

9. M. Kolesik, E. M. Wright, and J. V. Moloney, “Supercontinuum and third-harmonic generation accompanying optical filamentation as first-order scattering processes,” Opt. Lett. 32, 2816–2818 (2007). [CrossRef]   [PubMed]  

10. T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008) [CrossRef]  

11. X. M. Zhao, J. C. Diels, C. Y. Wang, and J. M. Elizondo, “Femtosecond ultraviolet laser pulse induced lighting discharges in gases,” IEEE J. Quant. Electron. 31, 599–612 (1995). [CrossRef]  

12. B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999). [CrossRef]  

13. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

14. V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003). [CrossRef]  

15. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004). [CrossRef]  

16. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004). [CrossRef]  

17. R. Ackermann, G. Méjean, J. Kasparian, J. Yu, E. Salmon, and J. -P. Wolf, “Laser filaments generated and transmitted in highly turbulent air,” Opt. Lett. 31, 86–88 (2006). [CrossRef]   [PubMed]  

18. V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher,” Quantum. Electron. 29, 911–915 (1999). [CrossRef]  

19. S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002). [CrossRef]  

20. W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,” Appl. Phys. B 75, 595–599 (2002). [CrossRef]  

21. G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004). [CrossRef]  

22. G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005). [CrossRef]  

23. Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006). [CrossRef]  

24. T. T. Xi, X. Lu, and J. Zhang, “Interaction of Light Filaments Generated by Femtosecond Laser Pulses in Air,” Phys. Rev. Lett. 96, 025003 (2006). [CrossRef]   [PubMed]  

25. A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, “Infrared femtosecond light filaments in air: simulations and experiments,” J. Opt. Soc. Am. B , 19, 1117–1131 (2002). [CrossRef]  

26. E. M. Johanson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372 (1994). [CrossRef]  

27. V. I. Tatarski: The Effects of the Turbulence Atmosphere on the Wave Propagation (Natinoal Technical Information Services, US Department of Commerce, Springfield, VA1971).

28. W. Liu, J. -F. Gravel, F. Théberge, A. Becker, and S. L. Chin, “Background reservoir its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80, 857–860 (2005). [CrossRef]  

29. Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006). [CrossRef]   [PubMed]  

30. H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002). [CrossRef]  

31. F. Theberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femotosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995).
    [Crossref] [PubMed]
  2. J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
    [Crossref]
  3. S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
    [Crossref]
  4. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phy. Rev. Lett. 83, 2939–2941 (1999).
    [Crossref]
  5. L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
    [Crossref]
  6. P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).
  7. S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, “Control of the filamentation distance and pattern in long-range atmospheric propagation,” Opt. Express 16, 2279–2784 (2007).
  8. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2007).
    [Crossref]
  9. M. Kolesik, E. M. Wright, and J. V. Moloney, “Supercontinuum and third-harmonic generation accompanying optical filamentation as first-order scattering processes,” Opt. Lett. 32, 2816–2818 (2007).
    [Crossref] [PubMed]
  10. T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008)
    [Crossref]
  11. X. M. Zhao, J. C. Diels, C. Y. Wang, and J. M. Elizondo, “Femtosecond ultraviolet laser pulse induced lighting discharges in gases,” IEEE J. Quant. Electron. 31, 599–612 (1995).
    [Crossref]
  12. B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
    [Crossref]
  13. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).
  14. V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003).
    [Crossref]
  15. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
    [Crossref]
  16. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
    [Crossref]
  17. R. Ackermann, G. Méjean, J. Kasparian, J. Yu, E. Salmon, and J. -P. Wolf, “Laser filaments generated and transmitted in highly turbulent air,” Opt. Lett. 31, 86–88 (2006).
    [Crossref] [PubMed]
  18. V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher,” Quantum. Electron. 29, 911–915 (1999).
    [Crossref]
  19. S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002).
    [Crossref]
  20. W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,” Appl. Phys. B 75, 595–599 (2002).
    [Crossref]
  21. G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).
    [Crossref]
  22. G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
    [Crossref]
  23. Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006).
    [Crossref]
  24. T. T. Xi, X. Lu, and J. Zhang, “Interaction of Light Filaments Generated by Femtosecond Laser Pulses in Air,” Phys. Rev. Lett. 96, 025003 (2006).
    [Crossref] [PubMed]
  25. A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, “Infrared femtosecond light filaments in air: simulations and experiments,” J. Opt. Soc. Am. B,  19, 1117–1131 (2002).
    [Crossref]
  26. E. M. Johanson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372 (1994).
    [Crossref]
  27. V. I. Tatarski: The Effects of the Turbulence Atmosphere on the Wave Propagation (Natinoal Technical Information Services, US Department of Commerce, Springfield, VA1971).
  28. W. Liu, J. -F. Gravel, F. Théberge, A. Becker, and S. L. Chin, “Background reservoir its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80, 857–860 (2005).
    [Crossref]
  29. Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006).
    [Crossref] [PubMed]
  30. H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
    [Crossref]
  31. F. Theberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
    [Crossref]

2008 (1)

T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008)
[Crossref]

2007 (3)

2006 (5)

R. Ackermann, G. Méjean, J. Kasparian, J. Yu, E. Salmon, and J. -P. Wolf, “Laser filaments generated and transmitted in highly turbulent air,” Opt. Lett. 31, 86–88 (2006).
[Crossref] [PubMed]

Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006).
[Crossref]

T. T. Xi, X. Lu, and J. Zhang, “Interaction of Light Filaments Generated by Femtosecond Laser Pulses in Air,” Phys. Rev. Lett. 96, 025003 (2006).
[Crossref] [PubMed]

Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006).
[Crossref] [PubMed]

F. Theberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

2005 (2)

W. Liu, J. -F. Gravel, F. Théberge, A. Becker, and S. L. Chin, “Background reservoir its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80, 857–860 (2005).
[Crossref]

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
[Crossref]

2004 (6)

G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).
[Crossref]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

2003 (1)

V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003).
[Crossref]

2002 (4)

S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002).
[Crossref]

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,” Appl. Phys. B 75, 595–599 (2002).
[Crossref]

A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, “Infrared femtosecond light filaments in air: simulations and experiments,” J. Opt. Soc. Am. B,  19, 1117–1131 (2002).
[Crossref]

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

2000 (1)

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
[Crossref]

1999 (3)

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phy. Rev. Lett. 83, 2939–2941 (1999).
[Crossref]

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
[Crossref]

V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher,” Quantum. Electron. 29, 911–915 (1999).
[Crossref]

1995 (2)

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femotosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995).
[Crossref] [PubMed]

X. M. Zhao, J. C. Diels, C. Y. Wang, and J. M. Elizondo, “Femtosecond ultraviolet laser pulse induced lighting discharges in gases,” IEEE J. Quant. Electron. 31, 599–612 (1995).
[Crossref]

1994 (1)

E. M. Johanson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372 (1994).
[Crossref]

Ackermann, R.

R. Ackermann, G. Méjean, J. Kasparian, J. Yu, E. Salmon, and J. -P. Wolf, “Laser filaments generated and transmitted in highly turbulent air,” Opt. Lett. 31, 86–88 (2006).
[Crossref] [PubMed]

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Akozbek, N.

V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003).
[Crossref]

Amico, C. D.

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
[Crossref]

G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).
[Crossref]

André, Y. -B.

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
[Crossref]

G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).
[Crossref]

Becker, A.

F. Theberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

W. Liu, J. -F. Gravel, F. Théberge, A. Becker, and S. L. Chin, “Background reservoir its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80, 857–860 (2005).
[Crossref]

V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003).
[Crossref]

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,” Appl. Phys. B 75, 595–599 (2002).
[Crossref]

Béjot, P.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Bergé, L.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, “Infrared femtosecond light filaments in air: simulations and experiments,” J. Opt. Soc. Am. B,  19, 1117–1131 (2002).
[Crossref]

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Blanchot, N.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Bonacina, L.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Bonville, O.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Boscheron, A.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Bourayou, R.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

Bowden, C. M.

V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003).
[Crossref]

Braun, A.

Brodeur, A.

V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher,” Quantum. Electron. 29, 911–915 (1999).
[Crossref]

Canal, P.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Castaldi, M.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Champeaux, S.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Chien, C. Y.

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
[Crossref]

Chin, S. L.

F. Theberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

W. Liu, J. -F. Gravel, F. Théberge, A. Becker, and S. L. Chin, “Background reservoir its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80, 857–860 (2005).
[Crossref]

V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003).
[Crossref]

S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002).
[Crossref]

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,” Appl. Phys. B 75, 595–599 (2002).
[Crossref]

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
[Crossref]

V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher,” Quantum. Electron. 29, 911–915 (1999).
[Crossref]

Comtois, D.

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
[Crossref]

Couairon, A.

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
[Crossref]

G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).
[Crossref]

A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, “Infrared femtosecond light filaments in air: simulations and experiments,” J. Opt. Soc. Am. B,  19, 1117–1131 (2002).
[Crossref]

Desparois, A.

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
[Crossref]

Diels, J. C.

X. M. Zhao, J. C. Diels, C. Y. Wang, and J. M. Elizondo, “Femtosecond ultraviolet laser pulse induced lighting discharges in gases,” IEEE J. Quant. Electron. 31, 599–612 (1995).
[Crossref]

Du, D.

Eisenmann, S.

S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, “Control of the filamentation distance and pattern in long-range atmospheric propagation,” Opt. Express 16, 2279–2784 (2007).

Eislöffel, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

Elizondo, J. M.

X. M. Zhao, J. C. Diels, C. Y. Wang, and J. M. Elizondo, “Femtosecond ultraviolet laser pulse induced lighting discharges in gases,” IEEE J. Quant. Electron. 31, 599–612 (1995).
[Crossref]

Extermann, J.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Fibich, G.

S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, “Control of the filamentation distance and pattern in long-range atmospheric propagation,” Opt. Express 16, 2279–2784 (2007).

Franco, M.

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
[Crossref]

G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).
[Crossref]

A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, “Infrared femtosecond light filaments in air: simulations and experiments,” J. Opt. Soc. Am. B,  19, 1117–1131 (2002).
[Crossref]

Frey, S.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

Fujii, T.

T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008)
[Crossref]

Fukuchi, T.

T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008)
[Crossref]

Gavel, D. T.

E. M. Johanson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372 (1994).
[Crossref]

Golubstov, I. S.

V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003).
[Crossref]

Golubtsov, I. S.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,” Appl. Phys. B 75, 595–599 (2002).
[Crossref]

Goto, N.

T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008)
[Crossref]

Gravel, J. -F.

W. Liu, J. -F. Gravel, F. Théberge, A. Becker, and S. L. Chin, “Background reservoir its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80, 857–860 (2005).
[Crossref]

Guet, C.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Hao, Z. Q.

Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006).
[Crossref] [PubMed]

Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006).
[Crossref]

Hartmann, O.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Hatzes, A. P.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

Iwasaki, A.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,” Appl. Phys. B 75, 595–599 (2002).
[Crossref]

Johanson, E. M.

E. M. Johanson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372 (1994).
[Crossref]

Johnston, T. W.

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
[Crossref]

Kandidov, V. P.

V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003).
[Crossref]

S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002).
[Crossref]

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,” Appl. Phys. B 75, 595–599 (2002).
[Crossref]

V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher,” Quantum. Electron. 29, 911–915 (1999).
[Crossref]

Kasparian, J.

J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2007).
[Crossref]

R. Ackermann, G. Méjean, J. Kasparian, J. Yu, E. Salmon, and J. -P. Wolf, “Laser filaments generated and transmitted in highly turbulent air,” Opt. Lett. 31, 86–88 (2006).
[Crossref] [PubMed]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
[Crossref]

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Katzir, Y.

S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, “Control of the filamentation distance and pattern in long-range atmospheric propagation,” Opt. Express 16, 2279–2784 (2007).

Kieffer, J. C.

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
[Crossref]

Kolesik, M.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Supercontinuum and third-harmonic generation accompanying optical filamentation as first-order scattering processes,” Opt. Lett. 32, 2816–2818 (2007).
[Crossref] [PubMed]

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phy. Rev. Lett. 83, 2939–2941 (1999).
[Crossref]

Korn, G.

Kosareva, O.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,” Appl. Phys. B 75, 595–599 (2002).
[Crossref]

Kosareva, O. G.

V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003).
[Crossref]

S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002).
[Crossref]

V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher,” Quantum. Electron. 29, 911–915 (1999).
[Crossref]

La Fontaine, B.

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
[Crossref]

Lascoux, N.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Laux, U.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

Lederer, F.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

Lepage, C.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Li, Y. J.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Li, Y. T.

Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006).
[Crossref] [PubMed]

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Ling, W. J.

Liu, W.

W. Liu, J. -F. Gravel, F. Théberge, A. Becker, and S. L. Chin, “Background reservoir its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80, 857–860 (2005).
[Crossref]

V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003).
[Crossref]

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,” Appl. Phys. B 75, 595–599 (2002).
[Crossref]

Liu, W. W.

F. Theberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Liu, X.

Liu, Y. Q.

Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006).
[Crossref]

Louzon, E.

S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, “Control of the filamentation distance and pattern in long-range atmospheric propagation,” Opt. Express 16, 2279–2784 (2007).

Lu, X.

Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006).
[Crossref]

T. T. Xi, X. Lu, and J. Zhang, “Interaction of Light Filaments Generated by Femtosecond Laser Pulses in Air,” Phys. Rev. Lett. 96, 025003 (2006).
[Crossref] [PubMed]

Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006).
[Crossref] [PubMed]

Marmande, L.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Mazataud, E.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Mecure, H. P.

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
[Crossref]

Méjean, G.

R. Ackermann, G. Méjean, J. Kasparian, J. Yu, E. Salmon, and J. -P. Wolf, “Laser filaments generated and transmitted in highly turbulent air,” Opt. Lett. 31, 86–88 (2006).
[Crossref] [PubMed]

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
[Crossref]

G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).
[Crossref]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

Mennerat, G.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Miki, M.

T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008)
[Crossref]

Mlejnek, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phy. Rev. Lett. 83, 2939–2941 (1999).
[Crossref]

Moloney, J. V.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Supercontinuum and third-harmonic generation accompanying optical filamentation as first-order scattering processes,” Opt. Lett. 32, 2816–2818 (2007).
[Crossref] [PubMed]

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phy. Rev. Lett. 83, 2939–2941 (1999).
[Crossref]

Moret, M.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Mourou, G.

Mysyrowicz, A.

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
[Crossref]

G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).
[Crossref]

A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, “Infrared femtosecond light filaments in air: simulations and experiments,” J. Opt. Soc. Am. B,  19, 1117–1131 (2002).
[Crossref]

Nemoto, Koshichi

T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008)
[Crossref]

Oishi, Y.

T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008)
[Crossref]

Palchan, T.

S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, “Control of the filamentation distance and pattern in long-range atmospheric propagation,” Opt. Express 16, 2279–2784 (2007).

Patissou, L.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Pein, H.

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
[Crossref]

Peschel, U.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

Petit, S.

S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002).
[Crossref]

Prade, B.

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
[Crossref]

G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).
[Crossref]

A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, “Infrared femtosecond light filaments in air: simulations and experiments,” J. Opt. Soc. Am. B,  19, 1117–1131 (2002).
[Crossref]

Prevot, V.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Raffestin, D.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Ribolzi, J.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Rizk, F. A. M.

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
[Crossref]

Rodriguez, M.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

Rohwetter, P.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

Salamé, R.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Salmon, E.

R. Ackermann, G. Méjean, J. Kasparian, J. Yu, E. Salmon, and J. -P. Wolf, “Laser filaments generated and transmitted in highly turbulent air,” Opt. Lett. 31, 86–88 (2006).
[Crossref] [PubMed]

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
[Crossref]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Sauerbrey, R.

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
[Crossref]

G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
[Crossref]

Scholz, A.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

Sheng, Z.M.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Simard, P. T.

F. Theberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Sivan, Y.

S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, “Control of the filamentation distance and pattern in long-range atmospheric propagation,” Opt. Express 16, 2279–2784 (2007).

Skupin, S.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

Squier, J.

Stecklum, B.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

Stelmaszczyk, K.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

Talebpour, A.

S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002).
[Crossref]

Tamarov, M. P

S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002).
[Crossref]

Tamarov, M. P.

V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher,” Quantum. Electron. 29, 911–915 (1999).
[Crossref]

Tatarski, V. I.

V. I. Tatarski: The Effects of the Turbulence Atmosphere on the Wave Propagation (Natinoal Technical Information Services, US Department of Commerce, Springfield, VA1971).

Ten, H.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Theberge, F.

F. Theberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Théberge, F.

W. Liu, J. -F. Gravel, F. Théberge, A. Becker, and S. L. Chin, “Background reservoir its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80, 857–860 (2005).
[Crossref]

Tzortzakis, S.

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
[Crossref]

G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).
[Crossref]

A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, “Infrared femtosecond light filaments in air: simulations and experiments,” J. Opt. Soc. Am. B,  19, 1117–1131 (2002).
[Crossref]

Vidal, F.

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
[Crossref]

Wang, C. Y.

X. M. Zhao, J. C. Diels, C. Y. Wang, and J. M. Elizondo, “Femtosecond ultraviolet laser pulse induced lighting discharges in gases,” IEEE J. Quant. Electron. 31, 599–612 (1995).
[Crossref]

Wang, Z. H.

Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006).
[Crossref]

Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006).
[Crossref] [PubMed]

Wei, Z. Y.

Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006).
[Crossref] [PubMed]

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Wolf, J. P.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

Wolf, J. -P.

R. Ackermann, G. Méjean, J. Kasparian, J. Yu, E. Salmon, and J. -P. Wolf, “Laser filaments generated and transmitted in highly turbulent air,” Opt. Lett. 31, 86–88 (2006).
[Crossref] [PubMed]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

Wolf, J.-P.

Wöste, L

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

Wöste, L.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

Wright, E. M.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Supercontinuum and third-harmonic generation accompanying optical filamentation as first-order scattering processes,” Opt. Lett. 32, 2816–2818 (2007).
[Crossref] [PubMed]

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phy. Rev. Lett. 83, 2939–2941 (1999).
[Crossref]

Xi, T. T.

Yang, H.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Yang, J.

S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002).
[Crossref]

Yu, J.

R. Ackermann, G. Méjean, J. Kasparian, J. Yu, E. Salmon, and J. -P. Wolf, “Laser filaments generated and transmitted in highly turbulent air,” Opt. Lett. 31, 86–88 (2006).
[Crossref] [PubMed]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

Yuan, X. H.

Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006).
[Crossref] [PubMed]

Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006).
[Crossref]

Zhang, J.

Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006).
[Crossref]

T. T. Xi, X. Lu, and J. Zhang, “Interaction of Light Filaments Generated by Femtosecond Laser Pulses in Air,” Phys. Rev. Lett. 96, 025003 (2006).
[Crossref] [PubMed]

Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006).
[Crossref] [PubMed]

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Zhang, Z.

Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006).
[Crossref]

Zhao, X. M.

X. M. Zhao, J. C. Diels, C. Y. Wang, and J. M. Elizondo, “Femtosecond ultraviolet laser pulse induced lighting discharges in gases,” IEEE J. Quant. Electron. 31, 599–612 (1995).
[Crossref]

Zheng, Z. L.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

Zheng, Z. Y.

Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006).
[Crossref] [PubMed]

Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006).
[Crossref]

Zhidkov, A.

T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008)
[Crossref]

Zhong, J. Y.

Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006).
[Crossref]

Zigler, A.

S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, “Control of the filamentation distance and pattern in long-range atmospheric propagation,” Opt. Express 16, 2279–2784 (2007).

Appl. Phys. B (7)

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
[Crossref]

V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003).
[Crossref]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[Crossref]

S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002).
[Crossref]

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,” Appl. Phys. B 75, 595–599 (2002).
[Crossref]

G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).
[Crossref]

W. Liu, J. -F. Gravel, F. Théberge, A. Becker, and S. L. Chin, “Background reservoir its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80, 857–860 (2005).
[Crossref]

Appl. Phys. Lett. (2)

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[Crossref]

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

IEEE J. Quant. Electron. (1)

X. M. Zhao, J. C. Diels, C. Y. Wang, and J. M. Elizondo, “Femtosecond ultraviolet laser pulse induced lighting discharges in gases,” IEEE J. Quant. Electron. 31, 599–612 (1995).
[Crossref]

IEEE Trans. Plasma Sic. (1)

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phy. Rev. Lett. (2)

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phy. Rev. Lett. 83, 2939–2941 (1999).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004).
[Crossref]

Phys. Plasmas (1)

T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008)
[Crossref]

Phys. Rev. E (5)

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004).
[Crossref]

Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006).
[Crossref]

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002).
[Crossref]

F. Theberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

Phys. Rev. Lett. (1)

T. T. Xi, X. Lu, and J. Zhang, “Interaction of Light Filaments Generated by Femtosecond Laser Pulses in Air,” Phys. Rev. Lett. 96, 025003 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

E. M. Johanson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372 (1994).
[Crossref]

Quantum. Electron. (1)

V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher,” Quantum. Electron. 29, 911–915 (1999).
[Crossref]

Other (1)

V. I. Tatarski: The Effects of the Turbulence Atmosphere on the Wave Propagation (Natinoal Technical Information Services, US Department of Commerce, Springfield, VA1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. A sample phase screen. The size of the screen is 30 mm by 30 mm, 256 by 256 sample points, lm =1 mm, L 0=1 m and C 2 n =2.75×10-16 m-2/3.
Fig. 2.
Fig. 2. (a)The energy fluence distribution in unperturbed air. Energy fluence distribution in weak turbulent air with the structure constant C 2 n =2.0×10-17 m-2/3 (b) and in moderate turbulent air with the structure constant C 2 n =2.75×10-16 m-2/3 (c).
Fig. 3.
Fig. 3. The transverse intensity distribution of filament in unperturbed air (a) and in turbulent air (b) for different propagation distances. The structure constant of the turbulence air is C 2 n =2.75×10-16 m-2/3 and the inner scale lm is 1 mm.
Fig. 4.
Fig. 4. The full-width-half-maximum of the beam size in unperturbed air (solid line) and in moderate turbulent air (dashed line). The structure constant C 2 n is 2.75×10-16 m-2/3 and the inner scale of the turbulence lm is 1 mm.
Fig. 5.
Fig. 5. Peak electron densities for the femtosecond laser pulse in unperturbed air (a) and in moderate turbulent air (b) as a function of propagation distance z. The structure constant of the turbulence air is C 2 n =2.75×10-16 m-2/3 and the inner scale lm is 1 mm.
Fig. 6.
Fig. 6. Spectral broadening of the femtosecond laser pulse in unperturbed air (a) and in moderate turbulent air (b). The structure constant of the turbulence air is C 2 n =2.75×10-16 m-2/3 and the inner scale lm is 1 mm.
Fig. 7.
Fig. 7. The energy fluence distribution of the prefocused laser pulse propagating through turbulent atmosphere. The focal lengths of the convex lenses are (a) 4m, (b) 6m and (c) 8m. The structure constant of the turbulence air C 2 n is 2.75×10-16 m-2/3 and the inner scale lm is 1.0 mm.
Fig. 8.
Fig. 8. The energy fluence distribution of the laser pulse with different pulse duration in turbulent atmosphere. The pulse duration of unchirped pulse is 50fs (a) and 100fs pulse (b) is negative chirped. The structure constant of the turbulence air C 2 n is 2.75×10-16 m-2/3 and the inner scale lm is 1.0 mm.
Fig. 9.
Fig. 9. The energy fluence distribution of the laser pulse propagating through atmosphere with different lm : (a) 0.7 mm, (b) 1.5 mm. The structure constant of the turbulence air C 2 n is 2.75×10-16 m-2/3.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E z = i 2 k Δ E i k 2 2 E τ 2 + i k n 2 | E | 2 E + i k n E i k ω p e 2 ( ρ ) ω 0 2 E β ( K ) 2 | E | 2 K 2 E
ρ t = β ( K ) K h ¯ ω 0 E 2 K ( 1 ρ ρ a t )
Φ n k z = 0.033 C n 2 ( k 2 + k 0 2 ) 11 6 exp ( k 2 k m 2 )
θ x y = k 2 πΔ z + + d k x d k y exp [ i ( k x x + k y y ) ] Φ n 1 2 ( k x , k y ) a ( k x , k y )
θ ( j Δ x , l Δ y ) = n = 0 N x m = 0 N y [ a n m + i b n m ] exp [ 2 π ( j n N x + l m N y ) ]
a 2 ( n , m ) = b 2 ( n , m ) = Δ k x Δ k y Φ θ ( n Δ k x , m Δ k y )
Φ θ ( Δ k x , Δ k y ) = 2 π k 2 Δ z Φ n ( k x , k y , k z = 0 )
θ S H ( j Δ x , l Δ y ) = p = 1 N p n = 1 1 m = 1 1 [ a ( n , m , p ) + i b ( n , m , p ) ] exp [ 2 π i ( j n 3 p N x + l m 3 p N y ) ]
a 2 ( n , m , p ) = b 2 ( n , m , p ) = Δ k x p Δ k y p Φ θ ( n Δ k x p , m Δ k y p )
θ ( j Δ x , l Δ y ) = θ ( j Δ x , l Δ y ) + θ S H ( j Δ x , y )
n = θ ( j Δ x , l Δ y ) k z

Metrics