Abstract

The propagation of a tightly focused femtosecond laser pulse in air has been investigated. Unlike long-distance self-guided propagation of short laser pulses, a novel oval-like hollow distribution of the laser intensity is observed in the experiments and reproduced by the numerical simulations. The formation of the hollow structures can be explained by the interplay between ionization-induced refraction and Kerr self-focusing.

©2007 Optical Society of America

1. Introduction

The long-distance propagation of ultrashort laser pulses in air, sustained by the counterbalance between Kerr effect-induced self-focusing and plasma-induced defocusing, has been studied numerously recent years due to a number of applications in laser induced electrical discharge (guiding of lightning) [1, 2], remote sensing [3, 4], and so on [57]. Several models and mechanisms, such as self-waveguiding [8], moving focus [9], dynamical spatial replenishment [10], optically turbulent light guiding [11], even filamentation without self-channeling [12], have been proposed to understand the propagation and filamentation of femtosecond laser pulses. The interaction and organization of multiple filaments have also been studied [1316]. Laser pulses are usually focused by a lens with a focal length of about one meter long or just freely propagate in such experiments. When the power of the laser pulses exceeds the critical threshold of self-focusing, P cr=λ 2 0/2πn 0 n 2, where λ 0 is the laser wavelength in vacuum, n 0 and n 2 denote the linear and nonlinear refraction index of the air, long-distance filamentation propagation can be maintained. If laser pulses are tightly focused by a lens with short focal length, the laser intensity, rather than the laser power, will dominate the physical processes. The ionization of air molecules induced by the leading part of a laser pulse is much stronger, resulting in violent air breakdown near the focus. The succeeding part of the laser pulse will become divergent rapidly due to scattering and refraction induced by the transient plasma [1719]. However, no detailed description is available until now on the propagation of a femtosecond laser pulse through the breakdown plasma in air.

In this paper, the intensity distribution of a tightly focused ultra-short laser pulse near the focus is investigated numerically and experimentally. Such distribution is experimentally observed through the plasmas induced in the regions where the laser intensity is high enough to ionize significantly air molecules. The spatial distribution of these plasmas in their early stage is directly observed by the technique of time-resolved shadowgraph. It is found that the intensity distribution of the laser pulse evolves into an oval-like hollow structure, instead of a solid spot as one usually expects, due to the interplay between ionization-induced refraction, scattering and self-focusing.

2. Numerical simulations

To understand the propagation of a tightly focused femtosecond laser pulse, we have carried out numerical simulations using an extended nonlinear Schrödinger (NLS) equation which describes a slowly varying envelope of a linearly polarized laser electric field in the frame moving with the laser pulse. The NLS equation and the equation of the coupled electron density of the plasma created by multiphoton ionization and avalanche ionization can be written as

Ez=i12k0ΔEik"22Et2+ik0n22(E2+τk1te(tt')τkE(t')2dt')E
ik0ne2ncEσ2neEβ(K)2E2K2E,
net=β(K)Kω0E2K(1nenat)+σUineE2,

where z refers to the propagation distance, k 0=/λ 0 is the central wave number, and λ0=800 nm is the central wavelength of the laser pulse. Here the Laplacian operator Δ describes the beam transverse diffraction, and the remaining terms account for the group velocity dispersion with the coefficient of k =0.2 fs2/cm, the Kerr response of air composed of an instantaneous contribution with the nonlinear index of refraction n 2=3.2×10-19 cm2/W and the Raman delayed contribution with a relaxation time τ k=70fs [20, 21], the defocusing effect resulting from multiphoton and avalanche ionizations. The air is ionized with a mean ionization potential of U i=14.6 eV. The coefficients of multiphoton and avalanche ionizations are β (K)=1.27×10-126 cm17/W9 for the number of photons K=10 and σ=5.44×10-20 cm2, respectively. The critical plasma density is n c=1.7×1021 cm-3, and the density of neutral atoms is n at=2.7×1019 cm-3 in Eq. (1).

The initial laser filed distribution is E(r,t,z=0)=p×exp(r2r02t2τ02ik0r22f), where p=1+0.1×cos(6πr/r 0) is an intensity perturbation, which describes ununiformity of a real laser beam profile. r 0 and τ 0 denote the radius and the duration of the laser pulse, respectively. In our simulations a 150 fs linearly polarized laser pulse with cylindrical symmetry around the propagation axis z was focused by a lens with a focal length f=60 mm.

The simulated peak intensity distributions for laser pulses with different energies 0.5, 3.0 and 5.0 mJ are shown in the first column of Fig. 1. The laser pulses are incident from the left. The vacuum (geometrical) focus is at propagation distance z=6 cm. For very low laser energy (0.5 mJ), a filament starting from the vacuum focus is induced, while for higher energies (3.0 and 5.0 mJ) a distinct hollow intensity distribution is formed. The spatiotemporal evolution and the cross sections of the peak intensity distribution at the centre of the pulse for a 3 mJ pulse are also given in Fig. 1 at propagation distances of z=5.9, 6.0, 6.1, and 6.2 cm. (the second and the third columns of Fig. 1). Although the tail of the pulse is split slightly, it still focuses to a spot at z=5.9 cm before the geometrical focus because of the low laser intensity and weak plasma effect. As the laser pulse propagates near the focus, the air molecules are ionized strongly, leading to a high density and high temperature plasma. Note that this breakdown plasma is triggered mainly due to the tight focusing of the lens rather than the self-focusing of the laser beam. The front of the leading part of the laser pulse propagates as the low energy case. However, the succeeding main part is strongly refracted by the breakdown plasma, resulting in a divergent beam with an annular structure (z=6.0, 6.1 cm). This leads to the reduction of the on-axis laser intensity and electron density. After further propagation, the self-focusing overtakes the defocusing and the main part of the beam tends to refocus, instead of to completely disperse (z=6.2 cm). For a free propagation femtosecond laser pulse or a pulse focused by a long focal length (~m) lens, such defocusing-refocusing cycles is responsible for long distance filamentation propagation. However, for very tightly focused laser pulses studied here, the cycling cannot be maintained due to the strong instability and energy loss induced by the intense breakdown. One can see for the 5.0 mJ laser pulse, the self-focusing can only occur before the entire beam is completely dispersed. The dynamical process including air breakdown, diffraction of the laser pulse by the plasma, its subsequent self-focusing due to Kerr effect, and its final dispersion, leads to the observed oval-like hollow structure of the laser intensity. Notice that this transient structure is different from the plasma bubbles or the shock wave-induced bubbles caused by plasma hydrodynamics, which are produced at tens or hundreds of nanoseconds later [22].

For a Gaussian laser pulse, the trailing part of the pulse may catch up with the peak, leading to self-steepening effect in the trailing part [23, 24]. This is because the velocity of the peak of the pulse is smaller than that of the trailing tail of the pulse, due to the intensity dependent change of refractive index Δn=n 2 I. In our situations, the peak intensity of the laser pulse is about 1.2×1014 W/cm2. The intensity of the trailing part at t=75fs is about 0.6×1014 W/cm2. The propagation distance of the laser pulse over which the trailing part catches up with the peak is estimated to be 1.2 m. This distance is much longer than the spatial scale (several millimeters) in our simulations and experiments. Therefore, the self-steepening effect is not taken into account in our model.

 figure: Fig. 1.

Fig. 1. Simulated spatial distributions of the peak intensity (the first column) for laser pulses with different energies of 0.5 (a), 3.0 (b), and 5.0 mJ (c). The spatiotemporal evolutions (the second columns) and the cross sections of the peak intensity distribution at the centre of the pulse (the third columns) for a 3.0 mJ pulse at propagation distances of z=5.9, 6.0, 6.1, and 6.2 cm.

Download Full Size | PPT Slide | PDF

3. Experimental setup

Ultrafast shadowgraphy technique with femtosecond time-resolution was used to visualize the early stage (without hydrodynamic expansion) of the laser-induced plasma in air. The spatial distribution of such plasma is directly related to the laser pulse intensity distribution since air molecules are ionized only in the regions with high enough laser intensity. The experiment was carried out with a Ti: sapphire laser system, which generates 150 fs pulses with a maximum energy of 5.0 mJ at a wavelength of 800 nm. The schematic setup of the experiments is shown in Fig. 2. The main laser beam was focused by a lens with a focal length of f=60 mm (which is the same as used in the simulations). This focal length is much shorter than those used in previous studies of laser long-distance propagation in air, in which the focal lengths are usually several meters [25, 26]. This tight focus leads to very strong air breakdown. A small portion of the laser beam split from the main laser beam, and after being frequency-doubled by a BBO crystal to 400 nm, was used as a probe beam. The probe beam passed the plasma at 90° with respect to the axis of the main beam. The plasma was imaged by a microscope coupled with a 16 bit CCD camera perpendicular to the main beam axis. The spatial resolution limited by the CCD size is 1 µm. The temporal resolution, determined by the duration of the probe pulse, is better than 150 fs. Varying the delay of the probe pulse with respect to the main pulse on successive shots permitted mapping of the evolution of the plasmas channel as a function of time.

 figure: Fig. 2.

Fig. 2. Schematic of experimental setup. A small portion of the laser beam split from the main beam was frequency-doubled and used to probe the plasma channels. M1–M6 are the reflective mirrors.

Download Full Size | PPT Slide | PDF

The air molecules around the focus will be ionized by the main laser pulse through filed ionization mechanisms in several femtoseconds. The instantaneous change of the electron density (or the refractive index) due to the rapid ionization will deflect the probe light rays that pass the ionized regions, forming shadow images of the plasma channels on CCD camera. In the experiments the delay time of the probe pulse with respect to the main laser pulse was within 5 picoseconds. The hydrodynamic motion of the plasma is negligible in such a short timescale. The shadowgrams taken within the picosecond timescale represent two-dimensional spatial intensity distributions of the main pulse because only the regions where the main pulse passes through and ionizes air molecules instantaneously perturb the probe beam; While the regions which are not on the trajectory of the main beam or where the laser intensity is not enough strong to significantly ionize air molecules, will not induce any shadow on the CCD camera. Thus, the spatiotemporal evolution of the intensity distribution of the main laser pulse can be visualized directly by a series of snapshots of the transient plasma channel at different delay times.

4. Experimental results and discussions

Our simulations indicate that two strong breakdown regions will be present along the laser propagation axis due to the tight focusing of the lens and the refocusing of the laser pulse itself. This is confirmed by observing fluoresce images of the breakdown plasma when the probe beam is switched off. Figure 3 shows a typical time-integrated fluorescent image of the plasma channel produced by a 1.5 mJ main laser pulse. Two bright regions appear as predicted by the simulations. We believe that the first brighter region is generated by the lens and the second one by the refocusing of the laser pulse.

 figure: Fig. 3.

Fig. 3. Typical fluoresce image of the plasma channel generated by a 1.5 mJ laser pulse.

Download Full Size | PPT Slide | PDF

Figure 4 shows the evolution of the plasma channel generated by a 2.3 mJ laser pulse after the geometrical focus at delays 0, 0.7, 1.5 and 2.4 ps. The time zero is defined as the time when the filaments just can be detectable on the CCD. No hydrodynamic motion can be developed in such short time scale.

 figure: Fig. 4.

Fig. 4. Time series of shadowgrams showing the spatiotemporal distributions of the 2.3mJ/150fs laser pulse after the geometric focus at different delays 0, 0.7, 1.5 and 2.4 ps.

Download Full Size | PPT Slide | PDF

There are two main features shown in Fig. 4. The first one is the irregularity of the ionization front. When a laser beam with intensity higher than the ionization threshold propagates in a natural gas, a moving interface is formed between neutral gas and induced plasma. This gas-plasma interface is called ionization front. One can see that the ionization front induced by the leading edge of the laser pulse is moving from the left to the right at the velocity of the light. The ionization front is not a perfect plane due to filamentation and beam breakup. Such an irregular ionization front is not desirable for the application of frequency up-shift [2729].

The second feature shown in Fig. 4 is that the plasma channel evolves into a hollow structure. The shadowgraphs are actually correlated to the laser intensity distributions, because only the regions with high enough intensity to induce plasma diffract and absorb probe pulse intensity, which leads to shadow features in the CCD camera. The hollow plasma channels indicate that most laser energy is distributed at the ring of the laser beam. The main beam becomes divergent due to the diffraction on the plasma near the geometrical focus [19] (0 ps and 0.7 ps). However the beam becomes collimated (1.5ps) and tends to focus again (2.4 ps) due to Kerr effect. More details can be found in Fig. 5, which shows the shadowgraphs for the main pulses with different laser energies. The position of the geometrical focus is marked by the blue solid line in Fig. 5(a) and 5(b). As predicted by the simulations a single filament is generated for the 0.5 mJ laser pulse. While for the 5.0 mJ pulse an oval-like bubble structure with many tiny filaments at the beginning of the channel is observed. This is also similar to the theoretical result in Fig. 1(c). The field of view of the imaging system is not wide enough to hold the entire bubble due to the CCD size limitation. In order to see the bubble tail we moved the CCD detector in the prorogation direction of the main pulse by 1mm. Figure 5(c) shows the tail part of the bubble induced by the 2.3 mJ laser pulse [The geometrical focus is out of the filed of view in (c)]. One can see clearly the refocusing of the laser pulse at the bubble tail. The whole beam is diffused and no well defined structure is formed after the refocusing point. This is unlike the organized filamentation with many cycles of defocusing-refocusing.

 figure: Fig. 5.

Fig. 5. Shadowgrams for the laser pulses with different energies 0.5 mJ (a), 5.0 mJ (b) and 2.3 mJ (c). The position of the geometrical focus is marked by the blue solid line in (a) and (b).

Download Full Size | PPT Slide | PDF

5. Summary

The dynamics of the propagation and interaction in air of a tightly focused femtosecond laser pulse has been investigated numerically and experimentally. It is found that the intensity distribution of the laser pulse, visualized directly by the femtosecond time-resolved shadowgraphy technique, evolves to an oval-like hollow structure instead of a solid spot near the geometrical focus. Such structure is formed due to the interplay between the diffraction induced by the breakdown plasma and the refocusing induced by Kerr effect. The main results form the experimental observations can be reproduced by the numerical simulations.

Acknowledgments

This work was supported by the NSFC (Grant No. 10675164, 60621063, 10634020 and 60478047), and National Basic Research Program of China (973 Program) (Grant No. 2007CB815102).

References and links

1. M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002). [CrossRef]  

2. R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004). [CrossRef]  

3. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004). [CrossRef]  

4. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002). [CrossRef]  

5. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003). [CrossRef]   [PubMed]  

6. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007) and references therein. [CrossRef]  

7. A. Couairon and A. Mysyrowicz, “Femtosecond flamentation in transparent media,” Phys. Rep. 441, 47–189 (2007) and references therein. [CrossRef]  

8. E.T.J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz,“Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996). [CrossRef]   [PubMed]  

9. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997). [CrossRef]   [PubMed]  

10. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998). [CrossRef]  

11. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999). [CrossRef]  

12. A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. D. Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903–253906 (2004). [CrossRef]   [PubMed]  

13. G. Mechain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 35003–35006 (2004). [CrossRef]  

14. L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002). [CrossRef]  

15. T. T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 25003–25006 (2006). [CrossRef]  

16. G. Fibich and S. Eisenmann, “Control of multiple filamentation in air,” Opt. Lett. 29, 1772–1774 (2004). [CrossRef]   [PubMed]  

17. J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, J.-P. Wolf, J. Kasparian, and R. Sauerbrey, “Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air,” Opt. Lett. 26, 533–535 (2001). [CrossRef]  

18. A. J. Mackinnon, M. Borghesi, A. Iwase, M. W. Jones, G. J. Pert, S. Rae, K. Burnett, and O. Willi, “Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets,” Phys. Rev. Lett. 76, 1473–1476 (1996). [CrossRef]   [PubMed]  

19. P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marquès, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999). [CrossRef]  

20. J. R. Penano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E 68, 56502–56517 (2003). [CrossRef]  

21. J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997). [CrossRef]  

22. J. F. Kielkopf, “Laser-produced plasma bubble,” Phys. Rev. E 63, 16411–164116 (2000). [CrossRef]  

23. F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967). [CrossRef]  

24. J. E. Rothenberg, “Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses,” Opt. Lett. 17, 1340–1342 (1992). [CrossRef]   [PubMed]  

25. S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001). [CrossRef]   [PubMed]  

26. H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002). [CrossRef]  

27. J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997). [CrossRef]  

28. R. L. Savage Jr., C. Joshi, and W. B. Mori, “Frequency upconversion of electromagnetic radiation upon transmission into an ionization front,” Phys. Rev.Lett. 68, 946–949 (1992). [CrossRef]   [PubMed]  

29. S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and M. E. Jones, “Photon accelerator,” Phys. Rev. Lett. 62, 2600–2603 (1989). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
    [Crossref]
  2. R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
    [Crossref]
  3. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
    [Crossref]
  4. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002).
    [Crossref]
  5. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
    [Crossref] [PubMed]
  6. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007) and references therein.
    [Crossref]
  7. A. Couairon and A. Mysyrowicz, “Femtosecond flamentation in transparent media,” Phys. Rep. 441, 47–189 (2007) and references therein.
    [Crossref]
  8. E.T.J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz,“Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
    [Crossref] [PubMed]
  9. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
    [Crossref] [PubMed]
  10. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
    [Crossref]
  11. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
    [Crossref]
  12. A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. D. Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903–253906 (2004).
    [Crossref] [PubMed]
  13. G. Mechain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 35003–35006 (2004).
    [Crossref]
  14. L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
    [Crossref]
  15. T. T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 25003–25006 (2006).
    [Crossref]
  16. G. Fibich and S. Eisenmann, “Control of multiple filamentation in air,” Opt. Lett. 29, 1772–1774 (2004).
    [Crossref] [PubMed]
  17. J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, J.-P. Wolf, J. Kasparian, and R. Sauerbrey, “Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air,” Opt. Lett. 26, 533–535 (2001).
    [Crossref]
  18. A. J. Mackinnon, M. Borghesi, A. Iwase, M. W. Jones, G. J. Pert, S. Rae, K. Burnett, and O. Willi, “Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets,” Phys. Rev. Lett. 76, 1473–1476 (1996).
    [Crossref] [PubMed]
  19. P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marquès, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
    [Crossref]
  20. J. R. Penano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E 68, 56502–56517 (2003).
    [Crossref]
  21. J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
    [Crossref]
  22. J. F. Kielkopf, “Laser-produced plasma bubble,” Phys. Rev. E 63, 16411–164116 (2000).
    [Crossref]
  23. F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
    [Crossref]
  24. J. E. Rothenberg, “Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses,” Opt. Lett. 17, 1340–1342 (1992).
    [Crossref] [PubMed]
  25. S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
    [Crossref] [PubMed]
  26. H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002).
    [Crossref]
  27. J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
    [Crossref]
  28. R. L. Savage, C. Joshi, and W. B. Mori, “Frequency upconversion of electromagnetic radiation upon transmission into an ionization front,” Phys. Rev.Lett. 68, 946–949 (1992).
    [Crossref] [PubMed]
  29. S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and M. E. Jones, “Photon accelerator,” Phys. Rev. Lett. 62, 2600–2603 (1989).
    [Crossref] [PubMed]

2007 (2)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007) and references therein.
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond flamentation in transparent media,” Phys. Rep. 441, 47–189 (2007) and references therein.
[Crossref]

2006 (1)

T. T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 25003–25006 (2006).
[Crossref]

2004 (5)

G. Fibich and S. Eisenmann, “Control of multiple filamentation in air,” Opt. Lett. 29, 1772–1774 (2004).
[Crossref] [PubMed]

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. D. Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903–253906 (2004).
[Crossref] [PubMed]

G. Mechain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 35003–35006 (2004).
[Crossref]

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

2003 (2)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

J. R. Penano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E 68, 56502–56517 (2003).
[Crossref]

2002 (4)

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

2001 (2)

J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, J.-P. Wolf, J. Kasparian, and R. Sauerbrey, “Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air,” Opt. Lett. 26, 533–535 (2001).
[Crossref]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
[Crossref] [PubMed]

2000 (1)

J. F. Kielkopf, “Laser-produced plasma bubble,” Phys. Rev. E 63, 16411–164116 (2000).
[Crossref]

1999 (2)

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marquès, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

1998 (1)

1997 (3)

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
[Crossref] [PubMed]

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
[Crossref]

1996 (2)

E.T.J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz,“Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
[Crossref] [PubMed]

A. J. Mackinnon, M. Borghesi, A. Iwase, M. W. Jones, G. J. Pert, S. Rae, K. Burnett, and O. Willi, “Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets,” Phys. Rev. Lett. 76, 1473–1476 (1996).
[Crossref] [PubMed]

1992 (2)

R. L. Savage, C. Joshi, and W. B. Mori, “Frequency upconversion of electromagnetic radiation upon transmission into an ionization front,” Phys. Rev.Lett. 68, 946–949 (1992).
[Crossref] [PubMed]

J. E. Rothenberg, “Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses,” Opt. Lett. 17, 1340–1342 (1992).
[Crossref] [PubMed]

1989 (1)

S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and M. E. Jones, “Photon accelerator,” Phys. Rev. Lett. 62, 2600–2603 (1989).
[Crossref] [PubMed]

1967 (1)

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
[Crossref]

Ackermann, R.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

Amiranoff, F.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marquès, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

André, Y.-B.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

Ange, G.

Antonetti, A.

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
[Crossref]

Badiche, X.

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
[Crossref]

Bergé, L.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007) and references therein.
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
[Crossref] [PubMed]

Bergmann, V.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

Blasco, F.

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
[Crossref]

Borghesi, M.

A. J. Mackinnon, M. Borghesi, A. Iwase, M. W. Jones, G. J. Pert, S. Rae, K. Burnett, and O. Willi, “Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets,” Phys. Rev. Lett. 76, 1473–1476 (1996).
[Crossref] [PubMed]

Bourayou, R.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

Brodeur, A.

Burnett, K.

A. J. Mackinnon, M. Borghesi, A. Iwase, M. W. Jones, G. J. Pert, S. Rae, K. Burnett, and O. Willi, “Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets,” Phys. Rev. Lett. 76, 1473–1476 (1996).
[Crossref] [PubMed]

Chen, Z. L.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002).
[Crossref]

Chessa, P.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marquès, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Chien, C. Y.

Chin, S. L.

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond flamentation in transparent media,” Phys. Rep. 441, 47–189 (2007) and references therein.
[Crossref]

G. Mechain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 35003–35006 (2004).
[Crossref]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
[Crossref] [PubMed]

Curley, P. F.

Dawson, J. M.

S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and M. E. Jones, “Photon accelerator,” Phys. Rev. Lett. 62, 2600–2603 (1989).
[Crossref] [PubMed]

De Wispelaere, E.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marquès, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

DeMartini, F.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
[Crossref]

Dias, J. M.

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
[Crossref]

Dorchies, F.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marquès, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Dos Santos, A.

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
[Crossref]

Dubietis, A.

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. D. Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903–253906 (2004).
[Crossref] [PubMed]

Eisenmann, S.

Eislöffel, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Fibich, G.

Franco, M.

G. Mechain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 35003–35006 (2004).
[Crossref]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
[Crossref] [PubMed]

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

Franco, M. A.

Frey, S.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Fujii, T.

Gaizauskas, E.

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. D. Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903–253906 (2004).
[Crossref] [PubMed]

Grillon, G.

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

E.T.J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz,“Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
[Crossref] [PubMed]

Gustafson, T. K.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
[Crossref]

Hafizi, B.

J. R. Penano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E 68, 56502–56517 (2003).
[Crossref]

Hamoniaux, G.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marquès, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Hatzes, A. P.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Ilkov, F. A.

Iwase, A.

A. J. Mackinnon, M. Borghesi, A. Iwase, M. W. Jones, G. J. Pert, S. Rae, K. Burnett, and O. Willi, “Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets,” Phys. Rev. Lett. 76, 1473–1476 (1996).
[Crossref] [PubMed]

Jones, M. E.

S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and M. E. Jones, “Photon accelerator,” Phys. Rev. Lett. 62, 2600–2603 (1989).
[Crossref] [PubMed]

Jones, M. W.

A. J. Mackinnon, M. Borghesi, A. Iwase, M. W. Jones, G. J. Pert, S. Rae, K. Burnett, and O. Willi, “Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets,” Phys. Rev. Lett. 76, 1473–1476 (1996).
[Crossref] [PubMed]

Joshi, C.

R. L. Savage, C. Joshi, and W. B. Mori, “Frequency upconversion of electromagnetic radiation upon transmission into an ionization front,” Phys. Rev.Lett. 68, 946–949 (1992).
[Crossref] [PubMed]

Kalkner, W.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

Kandidov, V. P.

Kasparian, J.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007) and references therein.
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, J.-P. Wolf, J. Kasparian, and R. Sauerbrey, “Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air,” Opt. Lett. 26, 533–535 (2001).
[Crossref]

Katsouleas, T.

S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and M. E. Jones, “Photon accelerator,” Phys. Rev. Lett. 62, 2600–2603 (1989).
[Crossref] [PubMed]

Kelley, P. L.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
[Crossref]

Kielkopf, J. F.

J. F. Kielkopf, “Laser-produced plasma bubble,” Phys. Rev. E 63, 16411–164116 (2000).
[Crossref]

Klingbeil, L.

Kolesik, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

Kosareva, O. G.

Kumm, T.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

Lange, R.

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

Laux, U.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Lederer, F.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

Li, Y. J.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002).
[Crossref]

Li, Y. T.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002).
[Crossref]

Lopes, N.

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
[Crossref]

Lu, X.

T. T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 25003–25006 (2006).
[Crossref]

Mackinnon, A. J.

A. J. Mackinnon, M. Borghesi, A. Iwase, M. W. Jones, G. J. Pert, S. Rae, K. Burnett, and O. Willi, “Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets,” Phys. Rev. Lett. 76, 1473–1476 (1996).
[Crossref] [PubMed]

Malka, V.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marquès, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Marquès, J. R.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marquès, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Mechain, G.

G. Mechain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 35003–35006 (2004).
[Crossref]

Méchain, G.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

Méjean, G.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

Mendonça, J. T.

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
[Crossref]

Mlejnek, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[Crossref]

Moloney, J. V.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[Crossref]

Mondelain, D.

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002).
[Crossref]

J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, J.-P. Wolf, J. Kasparian, and R. Sauerbrey, “Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air,” Opt. Lett. 26, 533–535 (2001).
[Crossref]

Mora, P.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marquès, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Mori, W. B.

R. L. Savage, C. Joshi, and W. B. Mori, “Frequency upconversion of electromagnetic radiation upon transmission into an ionization front,” Phys. Rev.Lett. 68, 946–949 (1992).
[Crossref] [PubMed]

S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and M. E. Jones, “Photon accelerator,” Phys. Rev. Lett. 62, 2600–2603 (1989).
[Crossref] [PubMed]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond flamentation in transparent media,” Phys. Rep. 441, 47–189 (2007) and references therein.
[Crossref]

G. Mechain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 35003–35006 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
[Crossref] [PubMed]

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
[Crossref]

E.T.J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz,“Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
[Crossref] [PubMed]

Nibbering, E.

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

Nibbering, E.T.J.

Niedermeier, S.

Nuter, R.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007) and references therein.
[Crossref]

Oliveira e Silva, L.

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
[Crossref]

Penano, J. R.

J. R. Penano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E 68, 56502–56517 (2003).
[Crossref]

Pert, G. J.

A. J. Mackinnon, M. Borghesi, A. Iwase, M. W. Jones, G. J. Pert, S. Rae, K. Burnett, and O. Willi, “Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets,” Phys. Rev. Lett. 76, 1473–1476 (1996).
[Crossref] [PubMed]

Prade, B.

G. Mechain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 35003–35006 (2004).
[Crossref]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
[Crossref] [PubMed]

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

Prade, B. S.

Rae, S.

A. J. Mackinnon, M. Borghesi, A. Iwase, M. W. Jones, G. J. Pert, S. Rae, K. Burnett, and O. Willi, “Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets,” Phys. Rev. Lett. 76, 1473–1476 (1996).
[Crossref] [PubMed]

Rethmeier, K.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

Ripoche, J.-F.

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

Rodriguez, M.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

Rohwetter, P.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

Rothenberg, J. E.

Salin, F.

Salmon, E.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

Sauerbrey, R.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, J.-P. Wolf, J. Kasparian, and R. Sauerbrey, “Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air,” Opt. Lett. 26, 533–535 (2001).
[Crossref]

Savage, R. L.

R. L. Savage, C. Joshi, and W. B. Mori, “Frequency upconversion of electromagnetic radiation upon transmission into an ionization front,” Phys. Rev.Lett. 68, 946–949 (1992).
[Crossref] [PubMed]

Schaper, S.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

Scholz, A.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Serafim, P.

J. R. Penano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E 68, 56502–56517 (2003).
[Crossref]

Sheng, Z. M.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002).
[Crossref]

Skupin, S.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007) and references therein.
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

Sprangle, P.

J. R. Penano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E 68, 56502–56517 (2003).
[Crossref]

Stecklum, B.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Stelmaszczyk, K.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

Stenz, C.

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
[Crossref]

Tamosauskas, G.

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. D. Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903–253906 (2004).
[Crossref] [PubMed]

Teng, H.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002).
[Crossref]

Ting, A.

J. R. Penano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E 68, 56502–56517 (2003).
[Crossref]

Townes, C. H.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
[Crossref]

Trapani, P. D.

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. D. Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903–253906 (2004).
[Crossref] [PubMed]

Tzortzakis, S.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
[Crossref] [PubMed]

Volk, R.

Wei, Z. Y.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002).
[Crossref]

Weise, B.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

Wilks, S. C.

S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and M. E. Jones, “Photon accelerator,” Phys. Rev. Lett. 62, 2600–2603 (1989).
[Crossref] [PubMed]

Wille, H.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

Willi, O.

A. J. Mackinnon, M. Borghesi, A. Iwase, M. W. Jones, G. J. Pert, S. Rae, K. Burnett, and O. Willi, “Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets,” Phys. Rev. Lett. 76, 1473–1476 (1996).
[Crossref] [PubMed]

Wolf, J.-P.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007) and references therein.
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, J.-P. Wolf, J. Kasparian, and R. Sauerbrey, “Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air,” Opt. Lett. 26, 533–535 (2001).
[Crossref]

Wöste, L.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

Wright, E. M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[Crossref]

Xi, T. T.

T. T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 25003–25006 (2006).
[Crossref]

Yang, H.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002).
[Crossref]

Yu, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges using laser-induced ionized filaments,” Opt. Lett. 27, 772–774 (2002).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, J.-P. Wolf, J. Kasparian, and R. Sauerbrey, “Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air,” Opt. Lett. 26, 533–535 (2001).
[Crossref]

Zhang, J.

T. T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 25003–25006 (2006).
[Crossref]

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002).
[Crossref]

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002).
[Crossref]

Appl. Phys. Lett. (1)

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J.-P. Wolf, and L. Wöste, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85, 5781–5783 (2004).
[Crossref]

Eur. Phys. J. AP (1)

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. AP 20, 183–190 (2002).
[Crossref]

Opt. Commun. (1)

J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n2 in air,” Opt. Commun. 135, 310–314 (1997).
[Crossref]

Opt. Lett. (7)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond flamentation in transparent media,” Phys. Rep. 441, 47–189 (2007) and references therein.
[Crossref]

Phys. Rev. (1)

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164, 312–323 (1967).
[Crossref]

Phys. Rev. E (4)

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406–016409 (2002).
[Crossref]

J. R. Penano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E 68, 56502–56517 (2003).
[Crossref]

J. F. Kielkopf, “Laser-produced plasma bubble,” Phys. Rev. E 63, 16411–164116 (2000).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometric-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Phys. Rev. Lett. (10)

A. J. Mackinnon, M. Borghesi, A. Iwase, M. W. Jones, G. J. Pert, S. Rae, K. Burnett, and O. Willi, “Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets,” Phys. Rev. Lett. 76, 1473–1476 (1996).
[Crossref] [PubMed]

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marquès, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. D. Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903–253906 (2004).
[Crossref] [PubMed]

G. Mechain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 35003–35006 (2004).
[Crossref]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–225005 (2002).
[Crossref]

T. T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 25003–25006 (2006).
[Crossref]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470–5473 (2001).
[Crossref] [PubMed]

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, “Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts,” Phys. Rev. Lett. 78, 4773–4776 (1997).
[Crossref]

S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and M. E. Jones, “Photon accelerator,” Phys. Rev. Lett. 62, 2600–2603 (1989).
[Crossref] [PubMed]

Phys. Rev.Lett. (1)

R. L. Savage, C. Joshi, and W. B. Mori, “Frequency upconversion of electromagnetic radiation upon transmission into an ionization front,” Phys. Rev.Lett. 68, 946–949 (1992).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007) and references therein.
[Crossref]

Science (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Simulated spatial distributions of the peak intensity (the first column) for laser pulses with different energies of 0.5 (a), 3.0 (b), and 5.0 mJ (c). The spatiotemporal evolutions (the second columns) and the cross sections of the peak intensity distribution at the centre of the pulse (the third columns) for a 3.0 mJ pulse at propagation distances of z=5.9, 6.0, 6.1, and 6.2 cm.
Fig. 2.
Fig. 2. Schematic of experimental setup. A small portion of the laser beam split from the main beam was frequency-doubled and used to probe the plasma channels. M1–M6 are the reflective mirrors.
Fig. 3.
Fig. 3. Typical fluoresce image of the plasma channel generated by a 1.5 mJ laser pulse.
Fig. 4.
Fig. 4. Time series of shadowgrams showing the spatiotemporal distributions of the 2.3mJ/150fs laser pulse after the geometric focus at different delays 0, 0.7, 1.5 and 2.4 ps.
Fig. 5.
Fig. 5. Shadowgrams for the laser pulses with different energies 0.5 mJ (a), 5.0 mJ (b) and 2.3 mJ (c). The position of the geometrical focus is marked by the blue solid line in (a) and (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E z = i 1 2 k 0 Δ E i k " 2 2 E t 2 + i k 0 n 2 2 ( E 2 + τ k 1 t e ( t t ' ) τ k E ( t ' ) 2 d t ' ) E
i k 0 n e 2 n c E σ 2 n e E β ( K ) 2 E 2 K 2 E ,
n e t = β ( K ) K ω 0 E 2 K ( 1 n e n at ) + σ U i n e E 2 ,

Metrics