H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]
[PubMed]
H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
[Crossref]
[PubMed]
K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]
M. A. Foster1, A. C. Turner, J. E. Sharping1, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]
Q. Xu, V. R. Almeida, and M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30, 2733–2735 (2005).
[Crossref]
[PubMed]
R. L. Espinola, J. I. Dadap, R. M. Osgood Jr., S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
[Crossref]
[PubMed]
H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref]
[PubMed]
T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Tops. Quantum Electron. 11, 232–240 (2005).
[Crossref]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]
[PubMed]
H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728, (2005).
[Crossref]
[PubMed]
K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]
[PubMed]
Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-oninsulator waveguides,” Opt. Express 12, 4437–4442 (2004).
[Crossref]
[PubMed]
T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]
O. Boyraz and B. Jalali, “Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,” IEICE Elect. Express 1, 429–434 (2004).
[Crossref]
O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
[Crossref]
[PubMed]
V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
[Crossref]
H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]
T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]
R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in silicon waveguides,” Opt. Express 12, 2774–2780 (2004).
[Crossref]
[PubMed]
D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” Opt. Express 12, 149–160 (2004).
[Crossref]
[PubMed]
B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Commun. 16, 1061–1073 (1998).
[Crossref]
D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities,” IEEE Commun. Mag. 36, 56–61 (1998).
[Crossref]
D. Nesset, D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, “Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier,” Electron. Lett. 34, 107–108 (1998).
[Crossref]
T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[Crossref]
S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[Crossref]
G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic Press, New York, 1995).
Q. Xu, V. R. Almeida, and M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30, 2733–2735 (2005).
[Crossref]
[PubMed]
Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-oninsulator waveguides,” Opt. Express 12, 4437–4442 (2004).
[Crossref]
[PubMed]
K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]
D. Nesset, D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, “Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier,” Electron. Lett. 34, 107–108 (1998).
[Crossref]
K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]
K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]
V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
[Crossref]
R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in silicon waveguides,” Opt. Express 12, 2774–2780 (2004).
[Crossref]
[PubMed]
D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” Opt. Express 12, 149–160 (2004).
[Crossref]
[PubMed]
H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
[Crossref]
[PubMed]
H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]
[PubMed]
H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728, (2005).
[Crossref]
[PubMed]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]
T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[Crossref]
V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
[Crossref]
D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” Opt. Express 12, 149–160 (2004).
[Crossref]
[PubMed]
R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in silicon waveguides,” Opt. Express 12, 2774–2780 (2004).
[Crossref]
[PubMed]
T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[Crossref]
H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728, (2005).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]
[PubMed]
M. A. Foster1, A. C. Turner, J. E. Sharping1, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]
K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]
H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref]
[PubMed]
T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Tops. Quantum Electron. 11, 232–240 (2005).
[Crossref]
M. A. Foster1, A. C. Turner, J. E. Sharping1, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]
L. Pavesi and G. Guillot, Optical Interconnects - the silicon approach (Springer-Verlag, Heidelberg, 2006).
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]
[PubMed]
H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728, (2005).
[Crossref]
[PubMed]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]
K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]
H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref]
[PubMed]
T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Tops. Quantum Electron. 11, 232–240 (2005).
[Crossref]
V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
[Crossref]
R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in silicon waveguides,” Opt. Express 12, 2774–2780 (2004).
[Crossref]
[PubMed]
D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” Opt. Express 12, 149–160 (2004).
[Crossref]
[PubMed]
O. Boyraz and B. Jalali, “Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,” IEICE Elect. Express 1, 429–434 (2004).
[Crossref]
O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
[Crossref]
[PubMed]
T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[Crossref]
H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]
[PubMed]
H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728, (2005).
[Crossref]
[PubMed]
D. Nesset, D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, “Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier,” Electron. Lett. 34, 107–108 (1998).
[Crossref]
D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities,” IEEE Commun. Mag. 36, 56–61 (1998).
[Crossref]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]
G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004).
[Crossref]
H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]
[PubMed]
H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
[Crossref]
[PubMed]
Y.-H. Kuo, H. Rong, and M. Paniccia, “High bandwidth silicon ring resonator Raman amplifier,” IEEE 3rd International Conference on GroupIV Photonics, FB2, Ottawa, Sept. 2006.
D. Nesset, D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, “Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier,” Electron. Lett. 34, 107–108 (1998).
[Crossref]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]
T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]
T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]
M. A. Foster1, A. C. Turner, J. E. Sharping1, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]
Q. Xu, V. R. Almeida, and M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30, 2733–2735 (2005).
[Crossref]
[PubMed]
Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-oninsulator waveguides,” Opt. Express 12, 4437–4442 (2004).
[Crossref]
[PubMed]
H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]
[PubMed]
H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
[Crossref]
[PubMed]
H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728, (2005).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]
[PubMed]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]
L. Pavesi and D. J. Lockwood, Silicon Photonics (Spronger-Verlag, New York, 2004).
D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities,” IEEE Commun. Mag. 36, 56–61 (1998).
[Crossref]
D. Nesset, D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, “Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier,” Electron. Lett. 34, 107–108 (1998).
[Crossref]
D. Nesset, D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, “Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier,” Electron. Lett. 34, 107–108 (1998).
[Crossref]
T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[Crossref]
T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Tops. Quantum Electron. 11, 232–240 (2005).
[Crossref]
B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Commun. 16, 1061–1073 (1998).
[Crossref]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]
D. Nesset, D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, “Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier,” Electron. Lett. 34, 107–108 (1998).
[Crossref]
D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities,” IEEE Commun. Mag. 36, 56–61 (1998).
[Crossref]
H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]
H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]
[PubMed]
H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]
[PubMed]
H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728, (2005).
[Crossref]
[PubMed]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]
Y.-H. Kuo, H. Rong, and M. Paniccia, “High bandwidth silicon ring resonator Raman amplifier,” IEEE 3rd International Conference on GroupIV Photonics, FB2, Ottawa, Sept. 2006.
L. Pavesi and G. Guillot, Optical Interconnects - the silicon approach (Springer-Verlag, Heidelberg, 2006).
L. Pavesi and D. J. Lockwood, Silicon Photonics (Spronger-Verlag, New York, 2004).
H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]
[PubMed]
V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
[Crossref]
D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” Opt. Express 12, 149–160 (2004).
[Crossref]
[PubMed]
R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in silicon waveguides,” Opt. Express 12, 2774–2780 (2004).
[Crossref]
[PubMed]
B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Commun. 16, 1061–1073 (1998).
[Crossref]
G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004).
[Crossref]
H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]
[PubMed]
H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
[Crossref]
[PubMed]
H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728, (2005).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]
[PubMed]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]
[PubMed]
H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]
Y.-H. Kuo, H. Rong, and M. Paniccia, “High bandwidth silicon ring resonator Raman amplifier,” IEEE 3rd International Conference on GroupIV Photonics, FB2, Ottawa, Sept. 2006.
M. A. Foster1, A. C. Turner, J. E. Sharping1, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]
M. A. Foster1, A. C. Turner, J. E. Sharping1, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]
K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]
T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Tops. Quantum Electron. 11, 232–240 (2005).
[Crossref]
H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref]
[PubMed]
K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]
T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[Crossref]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]
H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref]
[PubMed]
T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Tops. Quantum Electron. 11, 232–240 (2005).
[Crossref]
T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Tops. Quantum Electron. 11, 232–240 (2005).
[Crossref]
H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref]
[PubMed]
T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Tops. Quantum Electron. 11, 232–240 (2005).
[Crossref]
T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]
T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]
K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]
T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Tops. Quantum Electron. 11, 232–240 (2005).
[Crossref]
H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref]
[PubMed]
M. A. Foster1, A. C. Turner, J. E. Sharping1, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]
K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]
H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref]
[PubMed]
T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Tops. Quantum Electron. 11, 232–240 (2005).
[Crossref]
Q. Xu, V. R. Almeida, and M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30, 2733–2735 (2005).
[Crossref]
[PubMed]
Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-oninsulator waveguides,” Opt. Express 12, 4437–4442 (2004).
[Crossref]
[PubMed]
H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]
[PubMed]
K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]
T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Tops. Quantum Electron. 11, 232–240 (2005).
[Crossref]
H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref]
[PubMed]
S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[Crossref]
T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]
V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in silicon using Raman induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004).
[Crossref]
H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]
T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]
D. Nesset, D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, “Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier,” Electron. Lett. 34, 107–108 (1998).
[Crossref]
D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities,” IEEE Commun. Mag. 36, 56–61 (1998).
[Crossref]
B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Commun. 16, 1061–1073 (1998).
[Crossref]
T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Tops. Quantum Electron. 11, 232–240 (2005).
[Crossref]
K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]
O. Boyraz and B. Jalali, “Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,” IEICE Elect. Express 1, 429–434 (2004).
[Crossref]
T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[Crossref]
S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[Crossref]
H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]
[PubMed]
H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728, (2005).
[Crossref]
[PubMed]
M. A. Foster1, A. C. Turner, J. E. Sharping1, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]
H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
[Crossref]
[PubMed]
R. L. Espinola, J. I. Dadap, R. M. Osgood Jr., S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
[Crossref]
[PubMed]
H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref]
[PubMed]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[Crossref]
[PubMed]
Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-oninsulator waveguides,” Opt. Express 12, 4437–4442 (2004).
[Crossref]
[PubMed]
R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in silicon waveguides,” Opt. Express 12, 2774–2780 (2004).
[Crossref]
[PubMed]
D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” Opt. Express 12, 149–160 (2004).
[Crossref]
[PubMed]
H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]
[PubMed]
O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
[Crossref]
[PubMed]
K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]
L. Pavesi and D. J. Lockwood, Silicon Photonics (Spronger-Verlag, New York, 2004).
G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004).
[Crossref]
L. Pavesi and G. Guillot, Optical Interconnects - the silicon approach (Springer-Verlag, Heidelberg, 2006).
G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic Press, New York, 1995).
Y.-H. Kuo, H. Rong, and M. Paniccia, “High bandwidth silicon ring resonator Raman amplifier,” IEEE 3rd International Conference on GroupIV Photonics, FB2, Ottawa, Sept. 2006.