Abstract

A theoretical threshold model based on the spherical wave assumption for a pulsed double-pass pumped singly resonant confocal positive-branch unstable optical parametric oscillator (OPO) has been proposed. It is demonstrated that this model is also applicable to the plane-parallel resonator in the special case. The OPO threshold as a function of important parameters such as the cavity magnification factor, cavity physical length, crystal length, pump pulsewidth, output coupler reflectance and crystal position inside the resonator has been presented. Experimental data show the good agreement with the results obtained from the theoretical model.

©2004 Optical Society of America

1. Introduction

Optical parametric oscillators (OPOs) are very attractive solid-state sources for the generation of eye-safe wavelengths. Significant improvements in the performance of the OPOs have taken place in the past few years, largely owing to the development of high-quality nonlinear optical crystal and efficient pump laser sources [13]. One of the greatest challenges for OPOs in the long-range laser applications is to obtain good beam quality along with high energy, i.e. high-brightness OPOs are required.

Plano-parallel resonators are the most commonly used cavities for OPOs with simple construction and excellent efficiency. However, they typically produce large beam divergence and consequently low brightness. A confocal positive-branch unstable resonator is a wonderful optical solution to the conflicting demands of high beam quality and high energy in OPO [4]. The unstable resonator effectively filters out laser modes with high-spatial-frequency components by a combination of laser-mode magnification and feedback of only the lowest-order spatial modes. But the high-loss characteristic limits the unstable resonator to high-gain systems. Thanks to the advances in high-nonlinearity crystal growth technology, unstable resonator becomes the ideal cavity for high-energy OPO with large-volume mode and high beam quality. It has been theoretically [5, 6] and experimentally [711] demonstrated that the confocal positive-branch unstable resonators generate near-to-diffraction-limited signal beams.

The threshold of nanosecond OPO devices is an important parameter for many practical applications. Compared with plane-parallel resonator, although advantage in improving beam quality has indeed been outstanding, threshold of unstable resonator remains rather high [10]. This is mainly due to geometrical loss caused by mode expansion in the unstable resonator. The theoretical threshold model given by Brosnan and Byer (for short as BB model) is based on the plane-wave assumption and applicable to a singly resonant plane-parallel resonator OPO [12]. Although the threshold analysis in Ref. [13] introduces a loss coefficient, the plane-wave basis is also assumed there. It is demonstrated that there is only one unique pair of conjugate points for a given unstable resonator and wave traveling in any direction inside the resonator is considered as a spherical wave coming from the corresponding conjugate point [4]. Therefore the threshold theoretical model based on plane-wave assumption is no longer valid for the unstable OPO. To date there has been no detailed theoretical threshold study for a confocal unstable OPOs as far as we know.

In this paper, Section 2 details the derivation of our threshold model based on the spherical wave assumption for a confocal positive-branch unstable resonator OPO. Our model gives the threshold pump peak intensity and threshold pump energy as a function of important parameters such as the cavity magnification factor M, cavity physical length L, full width half maximum (FWHM) of the input pump pulse intensity T, crystal length lc , output mirror reflectance to signal R, pump beam radius rp and separation between crystal to output mirror L 2. The results obtained from our model are presented and compared with those of BB model and experimental values in Section 3.

2. The theoretical model

In this section a model is proposed to describe the threshold pump intensity and threshold pump energy of a pulsed double-pass pumped confocal unstable singly resonant oscillator (SRO).

 

Fig. 1. Confocal unstable singly resonant OPO. The Input Mirror M1 is a concave mirror, which is highly reflecting at the signal wavelength and highly transmitting at the pump and idler wavelengths. The output coupler M2 is a convex mirror, which is highly reflective at the pump wavelength, highly transmitting at the idler wavelength, and has signal reflectance R.

Download Full Size | PPT Slide | PDF

The confocal positive-branch unstable OPO, formed by concave mirror M1 and convex mirror M2, is schematically in Fig. 1, where signal field Es is assumed to be resonant. The pump is collimatedly coupled in through M1, and the signal is partially coupled out through M2. R1 and R2 are curvature radii of input mirror and output mirror, respectively (R2 is with a minus sign for the convex mirror case). The cavity physical length is set by L=(R 1+R 2)/2+lc (1-1/ns ) to satisfy confocal condition, where s n is the refractive index to signal of the nonlinear crystal. Owing to the geometrical magnification of the unstable resonator, the signal beam is expanded during one round trip by the cavity magnification factor M=-R 1/R 2. As shown in Fig. 1, L 1 and L 2 describe separation between input mirror center to front surface of nonlinear crystal and between back surface of nonlinear crystal to output mirror center, respectively.

The property of confocal positive-branch unstable resonator determines that one of the conjugate points is positioned at infinity and the other one is confocal point F. Therefore forward wave in the resonator is considered as plane wave and backward wave is regarded as spherical wave from the confocal point. A primary advantage of this configuration is that it automatically produces a collimated output beam.

2.1 SRO single pass gain solution based on spherical wave

In our model, the wave field profile is assumed to be circular symmetrical around z-axis. The spherical wave field traveling in the unstable resonator with the wave-vector k⃗ which has two components: longitudinal component kz and transverse component kr , is defined by

Ej(r,z,t)=12[Ej(r,z)·ei(kzz+krrωt)+c.c]

where

Ej(r,z)=Aj(r0,z)Mj(z)j=p,s,i

is a Fourier component of the optical electric field of pump, signal or idler. Here r and z are not independent variables, which have the relation of r=r 0+θjz. r 0 is the corresponding transverse coordinate at the entrance to the crystal, i.e., z=0. θj =2α/nj shown in the Fig. 1 is the refractive angle in the crystal for the incidence 2α and nj is the refractive index of the nonlinear crystal at angular frequency ωj . Mj(z) describes the magnification factor to beam diameter, and is defined as the ratio of distance between considered point (r,z) and confocal point to distance between the corresponding incident point (r 0,0) and confocal point, or equivalently Mj(z)=r/r 0.

From Maxwell’s equations [14], we can get

2Ej(r,z,t)μ0σEj(r,z,t)tμ0ε02Ej(r,z,t)t2=μ02Pj(r,z,t)t2

Substitute Eq. (1) into Eq. (3) for each frequency component, in the slowly varying amplitude approximation and no consideration of diffraction and walk-off which can be ignored in the case of the noncritically phase-matched operation, the equations describing the nonlinear optical parametric oscillation are given by

{Es(r,z)z+αsEs(r,z)=iNsEp(r,z)Ei*(r,z)eiΔkrreiΔkzzEi(r,z)z+αiEi(r,z)=iNiEp(r,z)Es*(r,z)eiΔkrreiΔkzzEp(r,z)z+αpEp(r,z)=iNpEs(r,z)Ei(r,z)eiΔkrreiΔkzz

where

αj=μ0σjωj2kj1+θj2+iθj2kjz2

is the absorption coefficient and the interaction coefficient is

Nj=ωjdeffnjc1+θj2

where deff is the effective nonlinear coefficient of the crystal.

Here the wave-vector mismatch Δk⃗ contains two components: longitudinal component Δkz =kpz -ksz -kiz and transverse component Δkr =kpr -ksr -kir . Due to ignorable small difference, θs of pump, signal and idler waves for the same incident can be considered equal. Therefore the factor ei(Δkrr+Δkzz) describing the influence of wave-vector mismatch in Eq. (4) is rewritten as ei(Δkrr0)eiΔkz, where Δk′=(1+θ 2kz is defined as equivalent longitudinal wave-vector mismatch.

In the assumption of no pump depletion which is reasonable near threshold, Ap (r 0,z) maintains constant along z-direction, it can be written as Ap (r 0). Substitute Eq. (2) into Eq. (4), yields

{As(r,z)z+αsAs(r,z)=iNsAp(r)Ai*(r,z)eiΔkrr0eiΔkzAi(r,z)z+αiAi(r,z)=iNiAp(r)As*(r,z)eiΔkrr0eiΔkz

where Mj (z)/Mp(z)Mk(z)≈1, j,k=s,i is employed.

We assume the absorption coefficients of signal and idler waves are equal, or αs =αiα. Satisfying the boundary condition of zero idler field at the entrance to the crystal, the solution to Eq. (7) is

As(r0,z)=eαzeiΔkz2As(r0,0)[cosh(g(r0)z)iΔk2g(r0)sinh(g(r0)z)]

where

g(r0)=NsNiAp(r0)2(Δk2)2

The input pump intensity is temporal-spatial Gaussian defined by Ip(r,t)=Ip0·e(tτp)2·e(rrp)2, where τp is the 1/e intensity halfwidth of the pump pulse. For a pulsed OPO operation where pump duration is much longer than one round-trip time of the cavity, or τp ≫2[L+(np -1)lc ]/c, the pump intensity can be assumed to be constant during a single cavity transit.

The phase mismatch Δk′ in Eq. (8) can be ignored for the non-critical phase matching case. That is reasonable because 1) for the noncritically phase-matched operation, the acceptance of the crystal is generally rather large. As shown in Fig.1, the refractive angle θ in the crystal increases with the incident position r 0 and its maximum value is generally no more than several tens milliradian and commonly within the acceptance of the crystal. 2) The phase mismatch Δk′ can be written as a function of θ 2 in the case of the noncritical phase matching. Therefore it is concluded that the phase mismatch increases with the incident transverse position r 0. Generally the threshold pump intensity is high enough to make g0(r0)=NsNiAp(r0)2Δk2 when a small r 0 is considered. The phase mismatch influences the edge part of a spatially Gaussian gain determined by the Gauss-profile pump more strongly than the central part. However signal field is generally assumed Gaussian. So the contribution to total signal power from the edge part is far less than power from the central part. Therefore the assumption of no phase mismatch is generally reasonable for the noncritical phase-matched case.

Taking Eq. (2) into Eq. (8) and ignore phase mismatch, the signal field at the end of the crystal is

Es(Ms(lc)r,lc)=eαlcEs(r,0)Ms(lc)cosh(β0lce(r2rp)2)

where

β0=2NsNinpcε0Ip0e(tτp)2

is a time dependent gain coefficient.

Note that although Eq. (10) is derived from the nonlinear parametric interaction equations based on spherical wave, it is also applicable to the case of plane wave when M′(z)=1 and θ=0.

2.2 One round-trip in the resonator

As discussed above, the forward waves traveling in a confocal unstable resonator are the plane waves propagating along z-direction. Let Msf (z)≡1 and θ=0 in Eq. (10) and assume that perfect phase matching is satisfied, the signal field at the end of the nonlinear crystal on the forward transit is

Esf(r,lc)=Esf(r,0)·eαflc·cosh(βflce(r2rp)2)

where αf is the forward field absorption coefficient. The forward parametric gain coefficient is

βf=2NsfNifnpcε0Ip0e(tτp)2

where

Njf=ωjdeffcnj,j=s,i

is the forward interaction coefficients

Here Esf (r,0) describe the signal field at the entrance to the crystal on the forward transit. The signal wave grows from an initial Gaussian noise. For m th cavity transit, suppose the initial signal field before the input mirror is Estart(r)=Estart0e(r2rs)2. For the case of plane wave and no air depletion, we know Esf (r,0)=Estart (r).

After the reflection of output mirror, the signal field before the output mirror is

Esrb(r)=R·Esf(r,lc)

and we let γ 0 be the ratio of backward to forward pump field, the pump field before the output mirror at the start of the backward transit is

Eprb(r)=γ0·Epf(r)

According to characteristic of spherical wave, the wave field at the entrance of the crystal on the backward transit is

Ejb(M1r,0)=Ejrb(r)M1

where M 1=1+2L 2/|R 2| is defined as the magnification factor to wave traveling from output mirror to the back surface of nonlinear crystal. If we let wave field in the crystal on the backward transit be Ejb (r(z),z)=Ajb (r 0,z)/M 2j(z), where

M2j(z)=1+2nj(R2+2L2)z

describes the magnification factor to wave traveling from the back surface of nonlinear crystal to the arbitrary z-plane in the crystal.

From Eq. (10), in the assumption of no wave-vector mismatch, or Δk′=0, the signal field at the end of the crystal on the backward transit is

Esb(M2s(lc)r,lc)=eαblceiΔk'lc2Esb(r,0)M2s(lc)cosh(βblce(r2M1rp)2)

where αb is the backward field absorption coefficient. The backward parametric gain coefficient is

βb=2NsbNibnpcεo·γ02Ip0M12e(t/τp)2

where

Njb=ωjdeffnjc1+θj2,j=s,i

is the backward interaction coefficients

The property of spherical wave determines the signal field propagating to the plane before the input mirror is

Esround(M3sr)=Esb(r,lc)M3s

where M 3s=1+2ns L 1/(M 1 ns |R 2|+2lc ) is defined as the magnification factor to wave traveling from the front surface of the nonlinear crystal to input mirror on the backward transit.

According to Eqs. (12), (15), (17) and (19), the signal field after one round trip in the confocal unstable resonator is given by

Esround(r)=Re(αf+αb)lcEstart0e(r2Mrs)2Mcosh(βflce(r2Mrp)2)cosh(βblce(r2Mrp)2)

where M=M 3s M 2s (lc ) M 1 is the cavity geometrical magnification factor and has been verified to be equal to -R 1/R 2.

If we let γ=γ 0/M 1 and assume θs =θi =2r/Mns |R 2|, the backward parametric gain coefficient can be written as

βb=γβf·[12(MR2ns)2r2]

where approximation (1+θ2)11θ22 has been used.

After one round trip in the unstable resonator, the signal spot size rs is narrowed by the Gauss-profile parametric gain and broadened by the geometrical magnification of unstable resonator and diffraction. Here we simply assume the balance of three influence factors is achieved. For m th transit, the initial signal power is

Pm1=0(12nscε0)·Estart(r)2·2πrdr=(12nscε0)·Estart02·πrs2

and the signal power after one round trip using Eq. (23) is

Pm=0(12nscε0)·Esround(r)22πrdr
=RM2e2(αf+αb)lc(2π2nscε0)·Estart02·0e(rMrs)2cosh2(βflce(r2Mrp)2)cosh2(βblce(r2Mrp)2)rdr

The signal power using Eq. (24) and the relation cosh2 φe 2φ/4+1/2 is

Pm=Pm1{Re2(αf+αb)lc[116(rs1rs)2e2βflc(1+γ)+18(rs2rs)2e2βflcγ+18(rs3rs)2e2βflc+14]}

where

{1rs12=1rs2+βflc(1+γ)rp2+4βflcγ(R2ns)21rs22=1rs2+βflcγrp2+4βflcγ(R2ns)21rs32=1rs2+βflcrp2

Equation (27) can be easily iterated numerically to compute threshold, incrementing pump peak intensity until a defined threshold is reached. We adopt the threshold definition in Ref. [12], where threshold has been defined as a signal energy of 100µJ, giving a threshold power to noise power ratio of ln(Pm/P 0)=33. Note that Eq. (27) is also suitable to the case of plane-parallel resonator when M=1 and R 2=-∞ are taken.

The threshold energy is calculated by integration over the temporal and spatial pump intensity profile and given by

Q=00Ip(r,t)dt2πrdr=Ip0π1.5rp2τp

In our threshold model, there are no mirrors acting on the idler field. If there were some weak idler feedback, the backward gain would be affected by this but it would be too small to consider after that.

3. Results and discussion

3.1 Theoretical calculations

In this section, the threshold model results are compared to BB model and experimental measurements for a 1.064µm pumped KTP OPO. We investigate the threshold is determined as a function of cavity magnification factor, cavity physical length, crystal length, output coupler reflectance to signal, pump pulsewidth and crystal position in the unstable resonator.

The crystal considered is KTP, where the type-II non-critical phase matching is satisfied at 1.57µm signal and 3.3µm idler wavelengths when a 1.064µm pump wavelength was used. We take the effective nonlinear coefficient to be 2.9 pmV-1 and the refractive indices to signal, idler and pump wave are 1.7348, 1.7793 and 1.7474, respectively [15].

Figure 2 shows the threshold energy against cavity physical length with R=0.82, lc =20 mm, a 4mm-diameter, 13.5ns-duration (FWHM) pump beam and different cavity magnification factors. The overall trend of the threshold energy is increasing with cavity physical length and cavity magnification factor. In a confocal unstable resonator, the divergence of the signal beam is reduced by 1/M in each round trip. Therefore larger cavity magnification is preferable concerning high beam quality. However that means larger geometrical loss and consequently higher threshold. In the practical application, a proper cavity magnification factor should be chosen to balance the conflicting requirement between high beam quality and low threshold. Our theoretical model is to be expected to be helpful to design of a confocal unstable OPO. The threshold energy of M=1 corresponding to the case of plane-parallel resonator is also plotted in Fig. 2 compared with the BB model. Our model result agrees well with the BB model, with the differences between them most likely due to the fact that we use a Gaussian pump, whereas a square pulse shape is used in BB model and difference from approximation and mathematical deal.

 

Fig. 2. Threshold energy versus cavity physical length. Solid line shows results of our model for various cavity magnification factors. Dashed line shows results of BB model for plane-parallel resonator. lc =20 mm, 2rp =4 mm, R=0.82, T=13.5 ns.

Download Full Size | PPT Slide | PDF

 

Fig. 3. Threshold energy versus crystal length. Solid line shows results of our model for various cavity magnification factors. Dashed line shows results of BB model. L=60 mm, 2rp=4 mm, R=0.82, T=13.5 ns.

Download Full Size | PPT Slide | PDF

The threshold energy versus KTP crystal length is shown in Fig. 3. The threshold decreases with crystal length. The unstable resonator with large cavity magnification factor possesses high threshold, but the threshold differences among the unstable resonators with various cavity magnification factors are decreased with crystal length. When a KTP crystal with length long than 40mm is used, the threshold difference between M=1.5 and M=1 is within 10%. Therefore there is no need for longer crystal concerning the reduction of threshold. Our threshold result of M=1 is very close to the BB model.

 

Fig. 4. Threshold energy versus reflectance to signal of output mirror. Solid line shows results of our model for various cavity magnification factors. Dashed line shows results of BB model. L=60 mm, lc =20 mm, 2rp =4 mm, T=13.5 ns.

Download Full Size | PPT Slide | PDF

 

Fig. 5. Threshold energy versus pump pulsewidth. Solid line shows results of our model for various cavity magnification factors. Dashed line shows results of BB model. L=60 mm, lc =20 mm, 2rp =4 mm, R=0.82.

Download Full Size | PPT Slide | PDF

Figure 4 shows the unstable threshold energy against output mirror reflectance to signal with L=60 mm, lc =20 mm, 2rp =4 mm, T=13.5 ns. We also plot threshold energy versus the pump FWHM pulsewidth for L=60 mm, lc =20 mm, 2rp =4 mm and R=0.82 in Fig. 5. The threshold energy decreases with signal reflectance and increases with pump pulsewidth. The signal reflectance of the output mirror must therefore be relatively large to maintain a reasonable threshold.

 

Fig. 6. Threshold energy versus crystal position relative to output mirror. Solid line shows results of our model for various cavity magnification factors. Dashed line shows results of BB model. L=60 mm, lc =20 mm, 2rp =4 mm, R=0.82, T=13.5 ns.

Download Full Size | PPT Slide | PDF

In Fig. 2~5, the nonlinear crystal is placed in the middle of the resonator, i.e., L 1=L 2=(L-lc )/2. We present the threshold energy dependent of crystal position in the resonator in Fig. 6. For an unstable resonator with the given cavity physical length, crystal length and cavity magnification, the threshold increases with separation L2 between crystal and output mirror. As shown in Fig. 6, a threshold increment of close to 20% occurs when the ratio of L2 to (L-lc ) changes from 0 to 1 for a confocal unstable resonator with M=1.50, L=60 mm and lc =20 mm. This is because that smaller magnification factor M1 due to smaller distance L2 leads to larger backward parametric gain, then lower threshold. This threshold change is also obvious for a short-cavity OPO. This conclusion shows that the nonlinear crystal is better to be placed close to output mirror in the unstable resonator application in order to reduce threshold. No threshold variation with L2 is found in the plane-parallel resonator and our calculations are consistent with the results of BB model.

3.2 Experimental results

BB model is supported by abundant experimental data [12]. As shown above, accurateness of our model is strengthened by the comparison with the BB model. In this section, the threshold energy versus cavity length of the plane-parallel resonator is presented to confirm the agreement of our model with experimental results. We also investigate the threshold property varying with cavity magnification factor, cavity physical length and crystal position in the unstable resonator experimentally. The KTP crystal available for these experiments was 20mm long and had a 5mm×5mm cross section. Both surfaces of the crystal were antireflection coated at the pump and signal wavelength. The pump laser was Nd:YAG laser, which generated 13.5-ns pulsewidth pulses with tunable energy from several millijoules to ~150 mJ. The input mirrors M1 for all resonators were coated for 98% transmission at the pump wavelength of 1.064µm, 95% transmission at the idler wavelength of 3.3µm, and 99.8% reflectance at the signal of 1.57µm. The output mirrors M2 for all resonators were highly reflecting at the 1.064µm pump wavelength, 82% reflecting at the 1.57µm signal wavelength, and 99% transmission at the 3.3µm idler wavelength. Energy was measured with EPM2000 two-channel joulemeter/power meter and J50HR energy probe (Molectron, Inc.). For every case the threshold value is gained through taking an average of 20 measurements.

 

Fig. 7. Threshold energy versus cavity physical length for a plane-parallel resonator. Solid line shows results of our model for M=1. Dashed line shows results of BB model. lc =20 mm, 2rp =4 mm, R=0.82, T=13.5 ns.

Download Full Size | PPT Slide | PDF

As shown in Fig. 7, the threshold energy increases with cavity physical length of a plane-parallel resonator. Experimental results are closely consistent with our model and BB model.

Three different magnifications factors are investigated in our experiments: M=1.33 with R1 =380mm and R2 =-357mm, M=1.19 with R1 =303mm and R2 =-254mm, and M=1.06 with R1 =219mm and R2 =-163mm. In three cases above, the cavity physical length was set to satisfy the confocal condition, and the nonlinear crystal is placed in the middle of the resonator. The experimental threshold properties of three cases are shown in Table 1 compared with the predicted ones by our model. We select the case with M=1.33 and L=36.0 mm to observe the threshold energy varying with the crystal position inside the unstable resonator, and the experimental data are shown in Fig. 8 compared with our model results. The data presented in Table 1 and Fig. 8 both show good agreement between experiment values and predicted ones by our theoretical model. The theoretical results are generally lower than the corresponding experimental ones. This is explained by no consideration of the diffraction and phase mismatch in our threshold model.

Tables Icon

Table 1. The threshold energy values of the unstable resonators with three different cavity magnifications from experiments and theoretical model.

 

Fig. 8. Threshold energy versus crystal position. Solid line shows results of our model for M=1.33, L=36 mm, lc =20 mm, 2rp =4 mm, R=0.82, T=13.5 ns.

Download Full Size | PPT Slide | PDF

4. Conclusions

We have proposed a theoretical model for a double-pass pumped singly resonant confocal unstable OPO which relies on the spherical wave theory. The model includes the influence of the cavity magnification factor, cavity physical length, pump pulsewidth, output coupling and crystal position in the resonator on the threshold of unstable resonator. In the special case this model can be applied to calculate the threshold of the plane-parallel resonator, which has been verified through the comparison with the established BB model. The threshold of a confocal unstable resonator increases with the cavity magnification factor, cavity physical length and pump pulsewidth, and decreases with signal reflectance of output mirror and crystal length. We also conclude that the nonlinear crystal is placed close to the output mirror benefits to reduce the threshold. Experimental results show the excellent agreement with theoretical calculations.

References

1. “Feature issue on optical parametric oscillation and amplification,” J. Opt. Soc. Am. B10, 1656–1791 (1993).

2. “Feature issue on optical parametric oscillators and amplifiers,” J. Opt. Soc. Am. B10, 2148–2243 (1993).

3. “Feature issue on optical parametric devices,” J. Opt. Soc. Am. B12, 2084–2320 (1995).

4. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), pp.858–913.

5. W. A. Neuman and S. P. Velsko, “Effect of cavity design on optical parametric oscillator performance,” in Advanced Solid-State Lasers, A. Payne and C. R. Pollock, eds., Vol.1 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1996), pp.177–178.

6. M. K. Brown and M. S. Bowers, “High energy, near diffraction limited output from optical parametric oscillators using unstable resonators,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 113–122 (1997).

7. J. N. Farmer, M. S. Bowers, and W. S. Schaprf Jr., “High brightness eyesafe optical parametric oscillator using confocal unstable resonators,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1999), pp.567–571.

8. B. C. Johnson, V. J. Newell, J. B. Clark, and E. S. McPhee, “Narrow-bandwidth low-divergence optical parametric oscillator for nonlinear frequency-conversion applications,” J. Opt. Soc. Am. B 12, 2122–2127 (1995). [CrossRef]  

9. G. Hansson, H. Karlsson, and F. Laurell, “Unstable resonator optical parametric oscillator based on quasi-phase-matched RbTiOAsO4,” Applied Optics 40, 5446–5451 (2001). [CrossRef]  

10. S. Pearl, Y. Ehrlich, S. Fastig, and S. Rosenwaks,” Nearly diffraction-limited signal generated by a lower beam-quality pump in an optical parametric oscillator,” Applied Optics 42, 1048–1051 (2003). [CrossRef]   [PubMed]  

11. S. Chandr, T. H. Allik, J. A. Hutchinson, and M. S. Bowers, “Improved OPO brightness with a GRM non-confocal unstable resonator,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol.1 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1996), pp.177–178.

12. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE Journal of Quantum Electronics QE-15, 415–431 (1979). [CrossRef]  

13. E. Granot, S. Pearl, and M. M. Tilleman, “Analytical solution for a lossy singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 17, 381–386 (2000). [CrossRef]  

14. R. L. Byer, “Optical parametric oscillator,” in Treatise in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 587–702.

15. W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B 18, 524–533 (2001). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. “Feature issue on optical parametric oscillation and amplification,” J. Opt. Soc. Am. B10, 1656–1791 (1993).
  2. “Feature issue on optical parametric oscillators and amplifiers,” J. Opt. Soc. Am. B10, 2148–2243 (1993).
  3. “Feature issue on optical parametric devices,” J. Opt. Soc. Am. B12, 2084–2320 (1995).
  4. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), pp.858–913.
  5. W. A. Neuman and S. P. Velsko, “Effect of cavity design on optical parametric oscillator performance,” in Advanced Solid-State Lasers, A. Payne and C. R. Pollock, eds., Vol.1 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1996), pp.177–178.
  6. M. K. Brown and M. S. Bowers, “High energy, near diffraction limited output from optical parametric oscillators using unstable resonators,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 113–122 (1997).
  7. J. N. Farmer, M. S. Bowers, and W. S. Schaprf, “High brightness eyesafe optical parametric oscillator using confocal unstable resonators,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1999), pp.567–571.
  8. B. C. Johnson, V. J. Newell, J. B. Clark, and E. S. McPhee, “Narrow-bandwidth low-divergence optical parametric oscillator for nonlinear frequency-conversion applications,” J. Opt. Soc. Am. B 12, 2122–2127 (1995).
    [Crossref]
  9. G. Hansson, H. Karlsson, and F. Laurell, “Unstable resonator optical parametric oscillator based on quasi-phase-matched RbTiOAsO4,” Applied Optics 40, 5446–5451 (2001).
    [Crossref]
  10. S. Pearl, Y. Ehrlich, S. Fastig, and S. Rosenwaks,” Nearly diffraction-limited signal generated by a lower beam-quality pump in an optical parametric oscillator,” Applied Optics 42, 1048–1051 (2003).
    [Crossref] [PubMed]
  11. S. Chandr, T. H. Allik, J. A. Hutchinson, and M. S. Bowers, “Improved OPO brightness with a GRM non-confocal unstable resonator,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol.1 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1996), pp.177–178.
  12. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE Journal of Quantum Electronics QE-15, 415–431 (1979).
    [Crossref]
  13. E. Granot, S. Pearl, and M. M. Tilleman, “Analytical solution for a lossy singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 17, 381–386 (2000).
    [Crossref]
  14. R. L. Byer, “Optical parametric oscillator,” in Treatise in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 587–702.
  15. W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B 18, 524–533 (2001).
    [Crossref]

2003 (1)

S. Pearl, Y. Ehrlich, S. Fastig, and S. Rosenwaks,” Nearly diffraction-limited signal generated by a lower beam-quality pump in an optical parametric oscillator,” Applied Optics 42, 1048–1051 (2003).
[Crossref] [PubMed]

2001 (2)

2000 (1)

1995 (1)

1979 (1)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE Journal of Quantum Electronics QE-15, 415–431 (1979).
[Crossref]

Alford, W. J.

Allik, T. H.

S. Chandr, T. H. Allik, J. A. Hutchinson, and M. S. Bowers, “Improved OPO brightness with a GRM non-confocal unstable resonator,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol.1 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1996), pp.177–178.

Bowers, M. S.

S. Chandr, T. H. Allik, J. A. Hutchinson, and M. S. Bowers, “Improved OPO brightness with a GRM non-confocal unstable resonator,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol.1 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1996), pp.177–178.

M. K. Brown and M. S. Bowers, “High energy, near diffraction limited output from optical parametric oscillators using unstable resonators,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 113–122 (1997).

J. N. Farmer, M. S. Bowers, and W. S. Schaprf, “High brightness eyesafe optical parametric oscillator using confocal unstable resonators,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1999), pp.567–571.

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE Journal of Quantum Electronics QE-15, 415–431 (1979).
[Crossref]

Brown, M. K.

M. K. Brown and M. S. Bowers, “High energy, near diffraction limited output from optical parametric oscillators using unstable resonators,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 113–122 (1997).

Byer, R. L.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE Journal of Quantum Electronics QE-15, 415–431 (1979).
[Crossref]

R. L. Byer, “Optical parametric oscillator,” in Treatise in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 587–702.

Chandr, S.

S. Chandr, T. H. Allik, J. A. Hutchinson, and M. S. Bowers, “Improved OPO brightness with a GRM non-confocal unstable resonator,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol.1 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1996), pp.177–178.

Clark, J. B.

Ehrlich, Y.

S. Pearl, Y. Ehrlich, S. Fastig, and S. Rosenwaks,” Nearly diffraction-limited signal generated by a lower beam-quality pump in an optical parametric oscillator,” Applied Optics 42, 1048–1051 (2003).
[Crossref] [PubMed]

Farmer, J. N.

J. N. Farmer, M. S. Bowers, and W. S. Schaprf, “High brightness eyesafe optical parametric oscillator using confocal unstable resonators,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1999), pp.567–571.

Fastig, S.

S. Pearl, Y. Ehrlich, S. Fastig, and S. Rosenwaks,” Nearly diffraction-limited signal generated by a lower beam-quality pump in an optical parametric oscillator,” Applied Optics 42, 1048–1051 (2003).
[Crossref] [PubMed]

Granot, E.

Hansson, G.

G. Hansson, H. Karlsson, and F. Laurell, “Unstable resonator optical parametric oscillator based on quasi-phase-matched RbTiOAsO4,” Applied Optics 40, 5446–5451 (2001).
[Crossref]

Hutchinson, J. A.

S. Chandr, T. H. Allik, J. A. Hutchinson, and M. S. Bowers, “Improved OPO brightness with a GRM non-confocal unstable resonator,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol.1 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1996), pp.177–178.

Johnson, B. C.

Karlsson, H.

G. Hansson, H. Karlsson, and F. Laurell, “Unstable resonator optical parametric oscillator based on quasi-phase-matched RbTiOAsO4,” Applied Optics 40, 5446–5451 (2001).
[Crossref]

Laurell, F.

G. Hansson, H. Karlsson, and F. Laurell, “Unstable resonator optical parametric oscillator based on quasi-phase-matched RbTiOAsO4,” Applied Optics 40, 5446–5451 (2001).
[Crossref]

McPhee, E. S.

Neuman, W. A.

W. A. Neuman and S. P. Velsko, “Effect of cavity design on optical parametric oscillator performance,” in Advanced Solid-State Lasers, A. Payne and C. R. Pollock, eds., Vol.1 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1996), pp.177–178.

Newell, V. J.

Pearl, S.

S. Pearl, Y. Ehrlich, S. Fastig, and S. Rosenwaks,” Nearly diffraction-limited signal generated by a lower beam-quality pump in an optical parametric oscillator,” Applied Optics 42, 1048–1051 (2003).
[Crossref] [PubMed]

E. Granot, S. Pearl, and M. M. Tilleman, “Analytical solution for a lossy singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 17, 381–386 (2000).
[Crossref]

Rosenwaks, S.

S. Pearl, Y. Ehrlich, S. Fastig, and S. Rosenwaks,” Nearly diffraction-limited signal generated by a lower beam-quality pump in an optical parametric oscillator,” Applied Optics 42, 1048–1051 (2003).
[Crossref] [PubMed]

Schaprf, W. S.

J. N. Farmer, M. S. Bowers, and W. S. Schaprf, “High brightness eyesafe optical parametric oscillator using confocal unstable resonators,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1999), pp.567–571.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), pp.858–913.

Smith, A. V.

Tilleman, M. M.

Velsko, S. P.

W. A. Neuman and S. P. Velsko, “Effect of cavity design on optical parametric oscillator performance,” in Advanced Solid-State Lasers, A. Payne and C. R. Pollock, eds., Vol.1 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1996), pp.177–178.

Applied Optics (2)

G. Hansson, H. Karlsson, and F. Laurell, “Unstable resonator optical parametric oscillator based on quasi-phase-matched RbTiOAsO4,” Applied Optics 40, 5446–5451 (2001).
[Crossref]

S. Pearl, Y. Ehrlich, S. Fastig, and S. Rosenwaks,” Nearly diffraction-limited signal generated by a lower beam-quality pump in an optical parametric oscillator,” Applied Optics 42, 1048–1051 (2003).
[Crossref] [PubMed]

IEEE Journal of Quantum Electronics (1)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE Journal of Quantum Electronics QE-15, 415–431 (1979).
[Crossref]

J. Opt. Soc. Am. B (3)

Other (9)

R. L. Byer, “Optical parametric oscillator,” in Treatise in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 587–702.

S. Chandr, T. H. Allik, J. A. Hutchinson, and M. S. Bowers, “Improved OPO brightness with a GRM non-confocal unstable resonator,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol.1 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1996), pp.177–178.

“Feature issue on optical parametric oscillation and amplification,” J. Opt. Soc. Am. B10, 1656–1791 (1993).

“Feature issue on optical parametric oscillators and amplifiers,” J. Opt. Soc. Am. B10, 2148–2243 (1993).

“Feature issue on optical parametric devices,” J. Opt. Soc. Am. B12, 2084–2320 (1995).

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), pp.858–913.

W. A. Neuman and S. P. Velsko, “Effect of cavity design on optical parametric oscillator performance,” in Advanced Solid-State Lasers, A. Payne and C. R. Pollock, eds., Vol.1 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1996), pp.177–178.

M. K. Brown and M. S. Bowers, “High energy, near diffraction limited output from optical parametric oscillators using unstable resonators,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 113–122 (1997).

J. N. Farmer, M. S. Bowers, and W. S. Schaprf, “High brightness eyesafe optical parametric oscillator using confocal unstable resonators,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical. Society of. America, Washington, D. C., 1999), pp.567–571.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Confocal unstable singly resonant OPO. The Input Mirror M1 is a concave mirror, which is highly reflecting at the signal wavelength and highly transmitting at the pump and idler wavelengths. The output coupler M2 is a convex mirror, which is highly reflective at the pump wavelength, highly transmitting at the idler wavelength, and has signal reflectance R.
Fig. 2.
Fig. 2. Threshold energy versus cavity physical length. Solid line shows results of our model for various cavity magnification factors. Dashed line shows results of BB model for plane-parallel resonator. lc =20 mm, 2rp =4 mm, R=0.82, T=13.5 ns.
Fig. 3.
Fig. 3. Threshold energy versus crystal length. Solid line shows results of our model for various cavity magnification factors. Dashed line shows results of BB model. L=60 mm, 2rp=4 mm, R=0.82, T=13.5 ns.
Fig. 4.
Fig. 4. Threshold energy versus reflectance to signal of output mirror. Solid line shows results of our model for various cavity magnification factors. Dashed line shows results of BB model. L=60 mm, lc =20 mm, 2rp =4 mm, T=13.5 ns.
Fig. 5.
Fig. 5. Threshold energy versus pump pulsewidth. Solid line shows results of our model for various cavity magnification factors. Dashed line shows results of BB model. L=60 mm, lc =20 mm, 2rp =4 mm, R=0.82.
Fig. 6.
Fig. 6. Threshold energy versus crystal position relative to output mirror. Solid line shows results of our model for various cavity magnification factors. Dashed line shows results of BB model. L=60 mm, lc =20 mm, 2rp =4 mm, R=0.82, T=13.5 ns.
Fig. 7.
Fig. 7. Threshold energy versus cavity physical length for a plane-parallel resonator. Solid line shows results of our model for M=1. Dashed line shows results of BB model. lc =20 mm, 2rp =4 mm, R=0.82, T=13.5 ns.
Fig. 8.
Fig. 8. Threshold energy versus crystal position. Solid line shows results of our model for M=1.33, L=36 mm, lc =20 mm, 2rp =4 mm, R=0.82, T=13.5 ns.

Tables (1)

Tables Icon

Table 1. The threshold energy values of the unstable resonators with three different cavity magnifications from experiments and theoretical model.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

E j ( r , z , t ) = 1 2 [ E j ( r , z ) · e i ( k z z + k r r ω t ) + c . c ]
E j ( r , z ) = A j ( r 0 , z ) M j ( z ) j = p , s , i
2 E j ( r , z , t ) μ 0 σ E j ( r , z , t ) t μ 0 ε 0 2 E j ( r , z , t ) t 2 = μ 0 2 P j ( r , z , t ) t 2
{ E s ( r , z ) z + α s E s ( r , z ) = i N s E p ( r , z ) E i * ( r , z ) e i Δ k r r e i Δ k z z E i ( r , z ) z + α i E i ( r , z ) = i N i E p ( r , z ) E s * ( r , z ) e i Δ k r r e i Δ k z z E p ( r , z ) z + α p E p ( r , z ) = i N p E s ( r , z ) E i ( r , z ) e i Δ k r r e i Δ k z z
α j = μ 0 σ j ω j 2 k j 1 + θ j 2 + i θ j 2 k jz 2
N j = ω j d eff n j c 1 + θ j 2
{ A s ( r , z ) z + α s A s ( r , z ) = i N s A p ( r ) A i * ( r , z ) e i Δ k r r 0 e i Δ k z A i ( r , z ) z + α i A i ( r , z ) = i N i A p ( r ) A s * ( r , z ) e i Δ k r r 0 e i Δ k z
A s ( r 0 , z ) = e α z e i Δ k z 2 A s ( r 0 , 0 ) [ cosh ( g ( r 0 ) z ) i Δ k 2 g ( r 0 ) sinh ( g ( r 0 ) z ) ]
g ( r 0 ) = N s N i A p ( r 0 ) 2 ( Δ k 2 ) 2
E s ( M s ( l c ) r , l c ) = e α l c E s ( r , 0 ) M s ( l c ) cosh ( β 0 l c e ( r 2 r p ) 2 )
β 0 = 2 N s N i n p c ε 0 I p 0 e ( t τ p ) 2
E s f ( r , l c ) = E s f ( r , 0 ) · e α f l c · cosh ( β f l c e ( r 2 r p ) 2 )
β f = 2 N s f N i f n p c ε 0 I p 0 e ( t τ p ) 2
N j f = ω j d eff c n j , j = s , i
E sr b ( r ) = R · E s f ( r , l c )
E pr b ( r ) = γ 0 · E p f ( r )
E j b ( M 1 r , 0 ) = E jr b ( r ) M 1
M 2 j ( z ) = 1 + 2 n j ( R 2 + 2 L 2 ) z
E s b ( M 2 s ( l c ) r , l c ) = e α b l c e i Δ k ' l c 2 E s b ( r , 0 ) M 2 s ( l c ) cosh ( β b l c e ( r 2 M 1 r p ) 2 )
β b = 2 N s b N i b n p c ε o · γ 0 2 I p 0 M 1 2 e ( t / τ p ) 2
N j b = ω j d eff n j c 1 + θ j 2 , j = s , i
E sround ( M 3 s r ) = E s b ( r , l c ) M 3 s
E sround ( r ) = R e ( α f + α b ) l c E start 0 e ( r 2 Mr s ) 2 M cosh ( β f l c e ( r 2 Mr p ) 2 ) cosh ( β b l c e ( r 2 Mr p ) 2 )
β b = γ β f · [ 1 2 ( M R 2 n s ) 2 r 2 ]
P m 1 = 0 ( 1 2 n s c ε 0 ) · E start ( r ) 2 · 2 π r dr = ( 1 2 n s c ε 0 ) · E start 0 2 · π r s 2
P m = 0 ( 1 2 n s c ε 0 ) · E sround ( r ) 2 2 π rdr
= R M 2 e 2 ( α f + α b ) l c ( 2 π 2 n s c ε 0 ) · E start 0 2 · 0 e ( r Mr s ) 2 cosh 2 ( β f l c e ( r 2 Mr p ) 2 ) cosh 2 ( β b l c e ( r 2 Mr p ) 2 ) rdr
P m = P m 1 { Re 2 ( α f + α b ) l c [ 1 16 ( r s 1 r s ) 2 e 2 β f l c ( 1 + γ ) + 1 8 ( r s 2 r s ) 2 e 2 β f l c γ + 1 8 ( r s 3 r s ) 2 e 2 β f l c + 1 4 ] }
{ 1 r s 1 2 = 1 r s 2 + β f l c ( 1 + γ ) r p 2 + 4 β f l c γ ( R 2 n s ) 2 1 r s 2 2 = 1 r s 2 + β f l c γ r p 2 + 4 β f l c γ ( R 2 n s ) 2 1 r s 3 2 = 1 r s 2 + β f l c r p 2
Q = 0 0 I p ( r , t ) dt 2 π rdr = I p 0 π 1.5 r p 2 τ p

Metrics