Abstract

Quantum key distribution (QKD) is one of the most practical applications in quantum information processing, which can generate information-theoretical secure keys between remote parties. With the help of the wavelength-division multiplexing technique, QKD has been integrated with the classical optical communication networks. The wavelength-division multiplexing can be further improved by the mode-wavelength dual multiplexing technique with few-mode fiber (FMF), which has additional modal isolation and large effective core area of mode, and particularly is practical in fabrication and splicing technology compared with the multi-core fiber. Here, we present for the first time a QKD implementation coexisting with classical optical communication over weakly-coupled FMF using all-fiber mode-selective couplers. The co-propagation of QKD with one 100 Gbps classical data channel at -2.60 dBm launched power is achieved over 86 km FMF with 1.3 kbps real-time secure key generation. Compared with single-mode fiber using wavelength-division multiplexing, given the same fiber-input power, the Raman noise in FMF using the mode-wavelength dual multiplexing is reduced by 86% in average. Our work implements an important approach to the integration between QKD and classical optical communication and previews the compatibility of quantum communications with the next-generation mode division multiplexing networks.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integrating quantum key distribution with classical communications in backbone fiber network

Yingqiu Mao, Bi-Xiao Wang, Chunxu Zhao, Guangquan Wang, Ruichun Wang, Honghai Wang, Fei Zhou, Jimin Nie, Qing Chen, Yong Zhao, Qiang Zhang, Jun Zhang, Teng-Yun Chen, and Jian-Wei Pan
Opt. Express 26(5) 6010-6020 (2018)

Experimental wavelength-space division multiplexing of quantum key distribution with classical optical communication over multicore fiber

Chun Cai, Yongmei Sun, Yongrui Zhang, Peng Zhang, Jianing Niu, and Yuefeng Ji
Opt. Express 27(4) 5125-5135 (2019)

Quantum key distribution over multicore fiber

J. F. Dynes, S. J. Kindness, S. W.-B. Tam, A. Plews, A. W. Sharpe, M. Lucamarini, B. Fröhlich, Z. L. Yuan, R. V. Penty, and A. J. Shields
Opt. Express 24(8) 8081-8087 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  2. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
    [Crossref]
  3. E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2(1), 16025 (2016).
    [Crossref]
  4. Q. Zhang, F. Xu, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Large scale quantum key distribution: challenges and solutions [invited],” Opt. Express 26(18), 24260–24273 (2018).
    [Crossref]
  5. P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997).
    [Crossref]
  6. Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26(5), 6010–6020 (2018).
    [Crossref]
  7. R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” Quantum Sci. Technol. 4(4), 045002 (2019).
    [Crossref]
  8. K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
    [Crossref]
  9. N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
    [Crossref]
  10. B. Fröhlich, M. Lucamarini, J. F. Dynes, L. C. Comandar, W. W.-S. Tam, A. Plews, A. W. Sharpe, Z. Yuan, and A. J. Shields, “Long-distance quantum key distribution secure against coherent attacks,” Optica 4(1), 163–167 (2017).
    [Crossref]
  11. G. B. Xavier and G. Lima, “Quantum information processing with space-division multiplexing optical fibres,” Commun. Phys. 3(1), 9 (2020).
    [Crossref]
  12. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  13. J. F. Dynes, S. J. Kindness, S. W.-B. Tam, A. Plews, A. W. Sharpe, M. Lucamarini, B. Fröhlich, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution over multicore fiber,” Opt. Express 24(8), 8081–8087 (2016).
    [Crossref]
  14. D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
    [Crossref]
  15. K. Kitayama and N. Diamantopoulos, “Few-mode optical fibers: Original motivation and recent progress,” IEEE Commun. Mag. 55(8), 163–169 (2017).
    [Crossref]
  16. Y. Awaji, “Review of space-division multiplexing technologies in optical communications,” IEICE Trans. Commun. E102-B(1), 1–16 (2019).
    [Crossref]
  17. J. Carpenter, C. Xiong, M. J. Collins, J. Li, T. F. Krauss, B. J. Eggleton, A. S. Clark, and J. Schröder, “Mode multiplexed single-photon and classical channels in a few-mode fiber,” Opt. Express 21(23), 28794–28800 (2013).
    [Crossref]
  18. L. Shen, D. Ge, Y. Liu, L. Xiong, S. Chen, H. Zhou, R. Zhang, L. Zhang, J. Luo, and J. Li, “Mimo-free 20 − Gb/s × 4 × 2 wdm-mdm transmission over 151.5-km single-span ultra low-crosstalk fmfs,” in 2018 European Conference on Optical Communication (ECOC), (2018), pp. 1–3.
  19. D. Ge, Y. Gao, Y. Yang, L. Shen, Z. Li, Z. Chen, Y. He, and J. Li, “A 6-lp-mode ultralow-modal-crosstalk double-ring-core fmf for weakly-coupled mdm transmission,” Opt. Commun. 451, 97–103 (2019).
    [Crossref]
  20. G. Keiser, Optical Fiber Communications (American Cancer Society, 2003).
  21. W.-Y. Hwang, “Quantum key distribution with high loss: Toward global secure communication,” Phys. Rev. Lett. 91(5), 057901 (2003).
    [Crossref]
  22. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94(23), 230503 (2005).
    [Crossref]
  23. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
    [Crossref]
  24. L. Shen, M. Hai-Qiang, W. Ling-An, and Z. Guang-Jie, “High-speed polarization controller for all-fiber quantum communication systems,” Acta Phys. Sin. 62(8), 84214 (2013).
    [Crossref]
  25. L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
    [Crossref]
  26. X.-L. Liang, J.-H. Liu, Q. Wang, D.-B. Du, J. Ma, G. Jin, Z.-B. Chen, J. Zhang, and J.-W. Pan, “Fully integrated ingaas/inp single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83(8), 083111 (2012).
    [Crossref]
  27. J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in ingaas/inp single-photon detector systems for quantum communication,” Light: Sci. Appl. 4(5), e286 (2015).
    [Crossref]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Sixth Edition) (Academic University, 2019).
  29. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
    [Crossref]
  30. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
    [Crossref]
  31. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
    [Crossref]
  32. A. M. Velazquez-Benitez, J. C. Alvarado, G. Lopez-Galmiche, J. E. Antonio-Lopez, J. Hernández-Cordero, J. Sanchez-Mondragon, P. Sillard, C. M. Okonkwo, and R. Amezcua-Correa, “Six mode selective fiber optic spatial multiplexer,” Opt. Lett. 40(8), 1663–1666 (2015).
    [Crossref]

2020 (1)

G. B. Xavier and G. Lima, “Quantum information processing with space-division multiplexing optical fibres,” Commun. Phys. 3(1), 9 (2020).
[Crossref]

2019 (4)

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Y. Awaji, “Review of space-division multiplexing technologies in optical communications,” IEICE Trans. Commun. E102-B(1), 1–16 (2019).
[Crossref]

R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” Quantum Sci. Technol. 4(4), 045002 (2019).
[Crossref]

D. Ge, Y. Gao, Y. Yang, L. Shen, Z. Li, Z. Chen, Y. He, and J. Li, “A 6-lp-mode ultralow-modal-crosstalk double-ring-core fmf for weakly-coupled mdm transmission,” Opt. Commun. 451, 97–103 (2019).
[Crossref]

2018 (2)

2017 (3)

K. Kitayama and N. Diamantopoulos, “Few-mode optical fibers: Original motivation and recent progress,” IEEE Commun. Mag. 55(8), 163–169 (2017).
[Crossref]

B. Fröhlich, M. Lucamarini, J. F. Dynes, L. C. Comandar, W. W.-S. Tam, A. Plews, A. W. Sharpe, Z. Yuan, and A. J. Shields, “Long-distance quantum key distribution secure against coherent attacks,” Optica 4(1), 163–167 (2017).
[Crossref]

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

2016 (2)

2015 (2)

2014 (2)

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

2013 (3)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

J. Carpenter, C. Xiong, M. J. Collins, J. Li, T. F. Krauss, B. J. Eggleton, A. S. Clark, and J. Schröder, “Mode multiplexed single-photon and classical channels in a few-mode fiber,” Opt. Express 21(23), 28794–28800 (2013).
[Crossref]

L. Shen, M. Hai-Qiang, W. Ling-An, and Z. Guang-Jie, “High-speed polarization controller for all-fiber quantum communication systems,” Acta Phys. Sin. 62(8), 84214 (2013).
[Crossref]

2012 (1)

X.-L. Liang, J.-H. Liu, Q. Wang, D.-B. Du, J. Ma, G. Jin, Z.-B. Chen, J. Zhang, and J.-W. Pan, “Fully integrated ingaas/inp single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83(8), 083111 (2012).
[Crossref]

2009 (2)

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

2005 (4)

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
[Crossref]

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94(23), 230503 (2005).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
[Crossref]

2003 (1)

W.-Y. Hwang, “Quantum key distribution with high loss: Toward global secure communication,” Phys. Rev. Lett. 91(5), 057901 (2003).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

1997 (1)

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Sixth Edition) (Academic University, 2019).

Aikawa, K.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Alvarado, J. C.

Amezcua-Correa, R.

Andersen, U. L.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Antonio-Lopez, J. E.

Awaji, Y.

Y. Awaji, “Review of space-division multiplexing technologies in optical communications,” IEICE Trans. Commun. E102-B(1), 1–16 (2019).
[Crossref]

Bacco, D.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Brambilla, G.

Carpenter, J.

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Chapuran, T. E.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Chen, K.

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
[Crossref]

Chen, Q.

Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26(5), 6010–6020 (2018).
[Crossref]

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

Chen, S.

L. Shen, D. Ge, Y. Liu, L. Xiong, S. Chen, H. Zhou, R. Zhang, L. Zhang, J. Luo, and J. Li, “Mimo-free 20 − Gb/s × 4 × 2 wdm-mdm transmission over 151.5-km single-span ultra low-crosstalk fmfs,” in 2018 European Conference on Optical Communication (ECOC), (2018), pp. 1–3.

Chen, T.-Y.

Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26(5), 6010–6020 (2018).
[Crossref]

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

Chen, Y.-A.

Chen, Z.

D. Ge, Y. Gao, Y. Yang, L. Shen, Z. Li, Z. Chen, Y. He, and J. Li, “A 6-lp-mode ultralow-modal-crosstalk double-ring-core fmf for weakly-coupled mdm transmission,” Opt. Commun. 451, 97–103 (2019).
[Crossref]

Chen, Z.-B.

X.-L. Liang, J.-H. Liu, Q. Wang, D.-B. Du, J. Ma, G. Jin, Z.-B. Chen, J. Zhang, and J.-W. Pan, “Fully integrated ingaas/inp single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83(8), 083111 (2012).
[Crossref]

Choi, I.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Clark, A. S.

Collins, M. J.

Comandar, L. C.

Cozzolino, D.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Da Lio, B.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Da Ros, F.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Dallmann, N.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Dardy, H.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Diamanti, E.

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2(1), 16025 (2016).
[Crossref]

Diamantopoulos, N.

K. Kitayama and N. Diamantopoulos, “Few-mode optical fibers: Original motivation and recent progress,” IEEE Commun. Mag. 55(8), 163–169 (2017).
[Crossref]

Ding, Y.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Du, D.-B.

X.-L. Liang, J.-H. Liu, Q. Wang, D.-B. Du, J. Ma, G. Jin, Z.-B. Chen, J. Zhang, and J.-W. Pan, “Fully integrated ingaas/inp single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83(8), 083111 (2012).
[Crossref]

Dušek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Dynes, J. F.

Eggleton, B. J.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fröhlich, B.

Galili, M.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Gao, Y.

D. Ge, Y. Gao, Y. Yang, L. Shen, Z. Li, Z. Chen, Y. He, and J. Li, “A 6-lp-mode ultralow-modal-crosstalk double-ring-core fmf for weakly-coupled mdm transmission,” Opt. Commun. 451, 97–103 (2019).
[Crossref]

Ge, D.

D. Ge, Y. Gao, Y. Yang, L. Shen, Z. Li, Z. Chen, Y. He, and J. Li, “A 6-lp-mode ultralow-modal-crosstalk double-ring-core fmf for weakly-coupled mdm transmission,” Opt. Commun. 451, 97–103 (2019).
[Crossref]

L. Shen, D. Ge, Y. Liu, L. Xiong, S. Chen, H. Zhou, R. Zhang, L. Zhang, J. Luo, and J. Li, “Mimo-free 20 − Gb/s × 4 × 2 wdm-mdm transmission over 151.5-km single-span ultra low-crosstalk fmfs,” in 2018 European Conference on Optical Communication (ECOC), (2018), pp. 1–3.

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Goodman, M. S.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Guang-Jie, Z.

L. Shen, M. Hai-Qiang, W. Ling-An, and Z. Guang-Jie, “High-speed polarization controller for all-fiber quantum communication systems,” Acta Phys. Sin. 62(8), 84214 (2013).
[Crossref]

Guo, X.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Hai-Qiang, M.

L. Shen, M. Hai-Qiang, W. Ling-An, and Z. Guang-Jie, “High-speed polarization controller for all-fiber quantum communication systems,” Acta Phys. Sin. 62(8), 84214 (2013).
[Crossref]

He, Y.

D. Ge, Y. Gao, Y. Yang, L. Shen, Z. Li, Z. Chen, Y. He, and J. Li, “A 6-lp-mode ultralow-modal-crosstalk double-ring-core fmf for weakly-coupled mdm transmission,” Opt. Commun. 451, 97–103 (2019).
[Crossref]

Hernández-Cordero, J.

Hiskett, P.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Hughes, R. J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Hwang, W.-Y.

W.-Y. Hwang, “Quantum key distribution with high loss: Toward global secure communication,” Phys. Rev. Lett. 91(5), 057901 (2003).
[Crossref]

Ismaeel, R.

Itzler, M. A.

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in ingaas/inp single-photon detector systems for quantum communication,” Light: Sci. Appl. 4(5), e286 (2015).
[Crossref]

Jackel, J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Jin, G.

X.-L. Liang, J.-H. Liu, Q. Wang, D.-B. Du, J. Ma, G. Jin, Z.-B. Chen, J. Zhang, and J.-W. Pan, “Fully integrated ingaas/inp single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83(8), 083111 (2012).
[Crossref]

John, C.

R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” Quantum Sci. Technol. 4(4), 045002 (2019).
[Crossref]

Jung, Y.

Keiser, G.

G. Keiser, Optical Fiber Communications (American Cancer Society, 2003).

Khurgin, J. B.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Kindness, S. J.

Kitayama, K.

K. Kitayama and N. Diamantopoulos, “Few-mode optical fibers: Original motivation and recent progress,” IEEE Commun. Mag. 55(8), 163–169 (2017).
[Crossref]

Krauss, T. F.

Lee, T.

Li, J.

D. Ge, Y. Gao, Y. Yang, L. Shen, Z. Li, Z. Chen, Y. He, and J. Li, “A 6-lp-mode ultralow-modal-crosstalk double-ring-core fmf for weakly-coupled mdm transmission,” Opt. Commun. 451, 97–103 (2019).
[Crossref]

J. Carpenter, C. Xiong, M. J. Collins, J. Li, T. F. Krauss, B. J. Eggleton, A. S. Clark, and J. Schröder, “Mode multiplexed single-photon and classical channels in a few-mode fiber,” Opt. Express 21(23), 28794–28800 (2013).
[Crossref]

L. Shen, D. Ge, Y. Liu, L. Xiong, S. Chen, H. Zhou, R. Zhang, L. Zhang, J. Luo, and J. Li, “Mimo-free 20 − Gb/s × 4 × 2 wdm-mdm transmission over 151.5-km single-span ultra low-crosstalk fmfs,” in 2018 European Conference on Optical Communication (ECOC), (2018), pp. 1–3.

Li, Z.

D. Ge, Y. Gao, Y. Yang, L. Shen, Z. Li, Z. Chen, Y. He, and J. Li, “A 6-lp-mode ultralow-modal-crosstalk double-ring-core fmf for weakly-coupled mdm transmission,” Opt. Commun. 451, 97–103 (2019).
[Crossref]

Liang, X.-L.

X.-L. Liang, J.-H. Liu, Q. Wang, D.-B. Du, J. Ma, G. Jin, Z.-B. Chen, J. Zhang, and J.-W. Pan, “Fully integrated ingaas/inp single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83(8), 083111 (2012).
[Crossref]

Lima, G.

G. B. Xavier and G. Lima, “Quantum information processing with space-division multiplexing optical fibres,” Commun. Phys. 3(1), 9 (2020).
[Crossref]

Ling-An, W.

L. Shen, M. Hai-Qiang, W. Ling-An, and Z. Guang-Jie, “High-speed polarization controller for all-fiber quantum communication systems,” Acta Phys. Sin. 62(8), 84214 (2013).
[Crossref]

Liu, J.-H.

X.-L. Liang, J.-H. Liu, Q. Wang, D.-B. Du, J. Ma, G. Jin, Z.-B. Chen, J. Zhang, and J.-W. Pan, “Fully integrated ingaas/inp single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83(8), 083111 (2012).
[Crossref]

Liu, Y.

L. Shen, D. Ge, Y. Liu, L. Xiong, S. Chen, H. Zhou, R. Zhang, L. Zhang, J. Luo, and J. Li, “Mimo-free 20 − Gb/s × 4 × 2 wdm-mdm transmission over 151.5-km single-span ultra low-crosstalk fmfs,” in 2018 European Conference on Optical Communication (ECOC), (2018), pp. 1–3.

Lo, H.-K.

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2(1), 16025 (2016).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
[Crossref]

Lopez-Galmiche, G.

Lucamarini, M.

Luo, J.

L. Shen, D. Ge, Y. Liu, L. Xiong, S. Chen, H. Zhou, R. Zhang, L. Zhang, J. Luo, and J. Li, “Mimo-free 20 − Gb/s × 4 × 2 wdm-mdm transmission over 151.5-km single-span ultra low-crosstalk fmfs,” in 2018 European Conference on Optical Communication (ECOC), (2018), pp. 1–3.

Lütkenhaus, N.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Ma, J.

X.-L. Liang, J.-H. Liu, Q. Wang, D.-B. Du, J. Ma, G. Jin, Z.-B. Chen, J. Zhang, and J.-W. Pan, “Fully integrated ingaas/inp single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83(8), 083111 (2012).
[Crossref]

Ma, X.

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
[Crossref]

Mao, Y.

Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26(5), 6010–6020 (2018).
[Crossref]

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

McCabe, K.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

McCabe, K. P.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

McNown, S. R.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Mercer, L.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Miki, S.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Morioka, T.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Nam, S. W.

R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” Quantum Sci. Technol. 4(4), 045002 (2019).
[Crossref]

Neergaard-Nielsen, J. S.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Nie, J.

Nordholt, J. E.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Nweke, N. I.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Oblak, D.

R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” Quantum Sci. Technol. 4(4), 045002 (2019).
[Crossref]

Oduro, B.

Okonkwo, C. M.

Owen, K. A.

R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” Quantum Sci. Technol. 4(4), 045002 (2019).
[Crossref]

Oxenløwe, L. K.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Pan, J.-W.

Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26(5), 6010–6020 (2018).
[Crossref]

Q. Zhang, F. Xu, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Large scale quantum key distribution: challenges and solutions [invited],” Opt. Express 26(18), 24260–24273 (2018).
[Crossref]

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in ingaas/inp single-photon detector systems for quantum communication,” Light: Sci. Appl. 4(5), e286 (2015).
[Crossref]

X.-L. Liang, J.-H. Liu, Q. Wang, D.-B. Du, J. Ma, G. Jin, Z.-B. Chen, J. Zhang, and J.-W. Pan, “Fully integrated ingaas/inp single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83(8), 083111 (2012).
[Crossref]

Patel, K. A.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Peng, C.-Z.

Penty, R. V.

J. F. Dynes, S. J. Kindness, S. W.-B. Tam, A. Plews, A. W. Sharpe, M. Lucamarini, B. Fröhlich, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution over multicore fiber,” Opt. Express 24(8), 8081–8087 (2016).
[Crossref]

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Peters, N. A.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Peterson, C. G.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Plews, A.

Qi, B.

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2(1), 16025 (2016).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Rottwitt, K.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Runser, R. J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Sanchez-Mondragon, J.

Sasaki, Y.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Scarani, V.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Schröder, J.

Sharpe, A. W.

Shen, L.

D. Ge, Y. Gao, Y. Yang, L. Shen, Z. Li, Z. Chen, Y. He, and J. Li, “A 6-lp-mode ultralow-modal-crosstalk double-ring-core fmf for weakly-coupled mdm transmission,” Opt. Commun. 451, 97–103 (2019).
[Crossref]

L. Shen, M. Hai-Qiang, W. Ling-An, and Z. Guang-Jie, “High-speed polarization controller for all-fiber quantum communication systems,” Acta Phys. Sin. 62(8), 84214 (2013).
[Crossref]

L. Shen, D. Ge, Y. Liu, L. Xiong, S. Chen, H. Zhou, R. Zhang, L. Zhang, J. Luo, and J. Li, “Mimo-free 20 − Gb/s × 4 × 2 wdm-mdm transmission over 151.5-km single-span ultra low-crosstalk fmfs,” in 2018 European Conference on Optical Communication (ECOC), (2018), pp. 1–3.

Shields, A. J.

Sillard, P.

Sun, W.

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

Tam, S. W.-B.

Tam, W. W.-S.

Terai, H.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Tittel, W.

R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” Quantum Sci. Technol. 4(4), 045002 (2019).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Toliver, P.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Townsend, P. D.

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997).
[Crossref]

Tyagi, K.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Tyagi, K. T.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

Umesh, P.

R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” Quantum Sci. Technol. 4(4), 045002 (2019).
[Crossref]

Valivarthi, R.

R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” Quantum Sci. Technol. 4(4), 045002 (2019).
[Crossref]

Velazquez-Benitez, A. M.

Verma, V. B.

R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” Quantum Sci. Technol. 4(4), 045002 (2019).
[Crossref]

Wang, B.-X.

Wang, G.

Wang, H.

Wang, L.-J.

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

Wang, Q.

X.-L. Liang, J.-H. Liu, Q. Wang, D.-B. Du, J. Ma, G. Jin, Z.-B. Chen, J. Zhang, and J.-W. Pan, “Fully integrated ingaas/inp single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83(8), 083111 (2012).
[Crossref]

Wang, R.

Wang, X.-B.

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94(23), 230503 (2005).
[Crossref]

Xavier, G. B.

G. B. Xavier and G. Lima, “Quantum information processing with space-division multiplexing optical fibres,” Commun. Phys. 3(1), 9 (2020).
[Crossref]

Xiong, C.

Xiong, L.

L. Shen, D. Ge, Y. Liu, L. Xiong, S. Chen, H. Zhou, R. Zhang, L. Zhang, J. Luo, and J. Li, “Mimo-free 20 − Gb/s × 4 × 2 wdm-mdm transmission over 151.5-km single-span ultra low-crosstalk fmfs,” in 2018 European Conference on Optical Communication (ECOC), (2018), pp. 1–3.

Xu, F.

Yamashita, T.

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Yang, Y.

D. Ge, Y. Gao, Y. Yang, L. Shen, Z. Li, Z. Chen, Y. He, and J. Li, “A 6-lp-mode ultralow-modal-crosstalk double-ring-core fmf for weakly-coupled mdm transmission,” Opt. Commun. 451, 97–103 (2019).
[Crossref]

Yin, H.-L.

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

Yuan, Z.

Yuan, Z. L.

J. F. Dynes, S. J. Kindness, S. W.-B. Tam, A. Plews, A. W. Sharpe, M. Lucamarini, B. Fröhlich, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution over multicore fiber,” Opt. Express 24(8), 8081–8087 (2016).
[Crossref]

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

Zbinden, H.

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in ingaas/inp single-photon detector systems for quantum communication,” Light: Sci. Appl. 4(5), e286 (2015).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Zhang, F.

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

Zhang, J.

Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26(5), 6010–6020 (2018).
[Crossref]

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in ingaas/inp single-photon detector systems for quantum communication,” Light: Sci. Appl. 4(5), e286 (2015).
[Crossref]

X.-L. Liang, J.-H. Liu, Q. Wang, D.-B. Du, J. Ma, G. Jin, Z.-B. Chen, J. Zhang, and J.-W. Pan, “Fully integrated ingaas/inp single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83(8), 083111 (2012).
[Crossref]

Zhang, L.

L. Shen, D. Ge, Y. Liu, L. Xiong, S. Chen, H. Zhou, R. Zhang, L. Zhang, J. Luo, and J. Li, “Mimo-free 20 − Gb/s × 4 × 2 wdm-mdm transmission over 151.5-km single-span ultra low-crosstalk fmfs,” in 2018 European Conference on Optical Communication (ECOC), (2018), pp. 1–3.

Zhang, Q.

Zhang, R.

L. Shen, D. Ge, Y. Liu, L. Xiong, S. Chen, H. Zhou, R. Zhang, L. Zhang, J. Luo, and J. Li, “Mimo-free 20 − Gb/s × 4 × 2 wdm-mdm transmission over 151.5-km single-span ultra low-crosstalk fmfs,” in 2018 European Conference on Optical Communication (ECOC), (2018), pp. 1–3.

Zhao, C.

Zhao, Y.

Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26(5), 6010–6020 (2018).
[Crossref]

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
[Crossref]

Zhou, F.

Zhou, H.

L. Shen, D. Ge, Y. Liu, L. Xiong, S. Chen, H. Zhou, R. Zhang, L. Zhang, J. Luo, and J. Li, “Mimo-free 20 − Gb/s × 4 × 2 wdm-mdm transmission over 151.5-km single-span ultra low-crosstalk fmfs,” in 2018 European Conference on Optical Communication (ECOC), (2018), pp. 1–3.

Zhou, Q.

R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” Quantum Sci. Technol. 4(4), 045002 (2019).
[Crossref]

Zhu, Y.-X.

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

Zou, K.-H.

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

Acta Phys. Sin. (1)

L. Shen, M. Hai-Qiang, W. Ling-An, and Z. Guang-Jie, “High-speed polarization controller for all-fiber quantum communication systems,” Acta Phys. Sin. 62(8), 84214 (2013).
[Crossref]

Appl. Phys. Lett. (2)

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104(5), 051123 (2014).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[Crossref]

Commun. Phys. (2)

G. B. Xavier and G. Lima, “Quantum information processing with space-division multiplexing optical fibres,” Commun. Phys. 3(1), 9 (2020).
[Crossref]

D. Bacco, B. Da Lio, D. Cozzolino, F. Da Ros, X. Guo, Y. Ding, Y. Sasaki, K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, “Boosting the secret key rate in a shared quantum and classical fibre communication system,” Commun. Phys. 2(1), 140 (2019).
[Crossref]

Electron. Lett. (1)

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33(3), 188–190 (1997).
[Crossref]

IEEE Commun. Mag. (1)

K. Kitayama and N. Diamantopoulos, “Few-mode optical fibers: Original motivation and recent progress,” IEEE Commun. Mag. 55(8), 163–169 (2017).
[Crossref]

IEICE Trans. Commun. (1)

Y. Awaji, “Review of space-division multiplexing technologies in optical communications,” IEICE Trans. Commun. E102-B(1), 1–16 (2019).
[Crossref]

Light: Sci. Appl. (1)

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in ingaas/inp single-photon detector systems for quantum communication,” Light: Sci. Appl. 4(5), e286 (2015).
[Crossref]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

New J. Phys. (1)

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11(10), 105001 (2009).
[Crossref]

npj Quantum Inf. (1)

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2(1), 16025 (2016).
[Crossref]

Opt. Commun. (1)

D. Ge, Y. Gao, Y. Yang, L. Shen, Z. Li, Z. Chen, Y. He, and J. Li, “A 6-lp-mode ultralow-modal-crosstalk double-ring-core fmf for weakly-coupled mdm transmission,” Opt. Commun. 451, 97–103 (2019).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (2)

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005).
[Crossref]

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95(1), 012301 (2017).
[Crossref]

Phys. Rev. Lett. (3)

W.-Y. Hwang, “Quantum key distribution with high loss: Toward global secure communication,” Phys. Rev. Lett. 91(5), 057901 (2003).
[Crossref]

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94(23), 230503 (2005).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
[Crossref]

Quantum Sci. Technol. (1)

R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” Quantum Sci. Technol. 4(4), 045002 (2019).
[Crossref]

Rev. Mod. Phys. (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

X.-L. Liang, J.-H. Liu, Q. Wang, D.-B. Du, J. Ma, G. Jin, Z.-B. Chen, J. Zhang, and J.-W. Pan, “Fully integrated ingaas/inp single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83(8), 083111 (2012).
[Crossref]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Sixth Edition) (Academic University, 2019).

G. Keiser, Optical Fiber Communications (American Cancer Society, 2003).

L. Shen, D. Ge, Y. Liu, L. Xiong, S. Chen, H. Zhou, R. Zhang, L. Zhang, J. Luo, and J. Li, “Mimo-free 20 − Gb/s × 4 × 2 wdm-mdm transmission over 151.5-km single-span ultra low-crosstalk fmfs,” in 2018 European Conference on Optical Communication (ECOC), (2018), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental setup for measuring the overall modal isolation. Blue lines indicate FMF and black lines with arrows denote SMF. Patterns at $a$ port and $b$ port correspond to the initial spots of the laser over SMF. The patterns in the middle are the ${\rm LP}_{01}$ (left) and ${\rm LP}_{02}$ (right) mode’s spots after the mode MUX.
Fig. 2.
Fig. 2. Experimental setup. (a) Schematics for multiplexing of QKD and Optical transport network (OTN). TX: transmitter (1546.92 nm), DWDM: dense wavelength division multiplexer, PA: pre-amplifer, RX: receiver. (b) QKD transmitter and (c) QKD receiver. DFB: distributed feedback laser, QKD: 1550.12 nm, Sync: synchronization clock (1569.59 nm), CIR: circulator, BS: beam splitter, PBS: polarization beam splitter, DL: delay length, PM: phase modulator, VOA: variable optical attenuator, ISO: isolator, NPF: narrow passband filter (NPF1: 0.08 nm, NPF2: 0.16 nm), DCF: dispersion compensation fiber, EDFA: erbium-doped fiber amplifier, PD: photoelectric detector, EPC: electric polarization controller, SPD: single-photon detector. The black line indicates SMF and red line corresponds to polarization-maintaining SMF.
Fig. 3.
Fig. 3. SRS noise photon count rate (a), and secure key rate (b) as a function of distance. The black solid, red dash-dotted, and blue dashed line represents the simulation of SMF, ${\rm LP}_{01} {\rm{in}}$, and ${\rm LP}_{02} {\rm{in}}$, respectively. Black solid circles, red solid-upward triangles, and blue solid-downward triangles denote the experimental data for SMF, ${\rm LP}_{01} {\rm{in}}$, and ${\rm LP}_{02} {\rm{in}}$, respectively.
Fig. 4.
Fig. 4. Calculated secure key rates of the ${\rm LP}_{02} {\rm{in}}$ scheme with Power (black dashed line), Power+FMF/MSC (red dash-dotted line), and Power+FMF/MSC+SPD (blue solid line) improvements.

Tables (2)

Tables Icon

Table 1. Characteristics of the FMF and mode MUX/DEMUX.

Tables Icon

Table 2. Modal isolation of the FMF and mode MUX/DEMUX (dB).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N SRS ( L ) = P 0 β α 2 α 1 ( e α 1 L e α 2 L ) ,

Metrics