Abstract

Terahertz (THz) radar imaging has gained great interests in various applications due to its capability of deep penetration in some specific contents such as plastic and non-conductive materials without water. However, the image quality would be highly degraded by the scattering of the rough surfaces, which remains a challenge in the area. Here, we propose a confocal terahertz synthetic aperture radar (SAR) to alleviate the scattering issues with both improved signal-to-noise ratio (SNR) and resolution. Inspired by the confocal non-line-of-sight imaging in visible wavelength, a convex lens is added into the conventional SAR system to localize the effect of scattering within each spatial sampling point by the confocal configuration. Then, the random phase aberration caused by scattering could be corrected through a simple shift in temporal domain. The performance of the proposed method under different roughness occlusions is evaluated through experiments. All the results demonstrate great enhancements in both resolution and SNR over the conventional methods.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Millimeter-wave SFCW SAR imaging system based on in-phase signal measurement with simplified transceiver

Hanjiang Chen, Zhenyu Long, Liting Niu, Zhengang Yang, Jingsong Liu, and Kejia Wang
Opt. Express 28(2) 1526-1538 (2020)

Image reconstruction algorithm based on frequency-wavenumber decoupling for three-dimensional MIMO-SAR imaging

Hang Gao, Chao Li, Shiyou Wu, Shen Zheng, Hongwei Li, and Guangyou Fang
Opt. Express 28(2) 2411-2426 (2020)

A system-level simulator for indoor mmW SAR imaging and its applications

Feng Qi, Ilja Ocket, Dominique Schreurs, and Bart Nauwelaers
Opt. Express 20(21) 23811-23820 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. S. Dhillon, M. S. Vitiello, E. H. Linfield, and A. G. Davies, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
    [Crossref]
  2. A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
    [Crossref]
  3. H. Tu, X. Meng, Z. Sun, L. Chen, C. Fang, Y. Zhu, H. Zhang, J. Zhang, and C. Fang, “A Fast 220 GHz Real Aperture 3D Personnel Screening System with a Novel Shaped Mirror Design,” IEEE Trans. Terahertz Sci. Technol. 9(3), 253–269 (2019).
    [Crossref]
  4. Y. W. Jiang, B. Deng, Y. L. Qin, H. Q. Wang, and K. Liu, “A Fast Terahertz Imaging Method Using Sparse Rotating Array,” Sensors 17(10), 13 (2017).
    [Crossref]
  5. R. I. Stantchev, D. B. Phillips, P. Hobson, S. M. Hornett, M. J. Padgett, and E. Hendry, “Compressed sensing with near-field THz radiation,” Optica 4(8), 989–992 (2017).
    [Crossref]
  6. S. Gui, J. Li, and Y. Pi, “Security Imaging for Multi-target Screening Based on Adaptive Scene Segmentation with Terahertz Radar,” IEEE Sens. J. 19(3), 1127–1134 (2018).
    [Crossref]
  7. S. Chen, X. Hua, H. Wang, C. Luo, Y. Cheng, and B. Deng, “Three-Dimensional Terahertz Coded-Aperture Imaging Based on Geometric Measures,” Sensors 18(5), 1582 (2018).
    [Crossref]
  8. S. L. Gui, J. Li, F. Zuo, and Y. M. Pi, “Analysis of Security Imaging Method for Walking Human Screening With Single Channel Synthetic Aperture Radar,” IEEE Access 7, 111363 (2019).
    [Crossref]
  9. E. N. Grossman, N. Popovic, R. A. Chamberlin, J. Gordon, and D. Novotny, “Submillimeter Wavelength Scattering From Random Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 7(5), 546–562 (2017).
    [Crossref]
  10. J. J. Ma, R. Shrestha, W. Zhang, L. Moeller, and D. M. Mittleman, “Terahertz Wireless Links Using Diffuse Scattering From Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 9(5), 463–470 (2019).
    [Crossref]
  11. C. Ketchazo, E. Herault, and J. L. Coutaz, “Experimental study of scattering effects of THz waves by clothes,” Photonics Lett. Pol. 4(3), 91–93 (2012).
    [Crossref]
  12. V. Lorenzo, Z. Peter, and H. Erwin, “Topography of hidden objects using THz digital holography with multi-beam interferences,” Opt. Express 25(10) 11038–11047 (2017).
  13. L. Valzania, P. Zolliker, and E. Hack, “Coherent reconstruction of a textile and a hidden object with terahertz radiation,” Optica 6(4), 518–523 (2019).
    [Crossref]
  14. A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
    [Crossref]
  15. K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
    [Crossref]
  16. D. M. Sheen, T. E. Hall, R. H. Severtsen, D. L. McMakin, and P. L. J. Valdez, “Standoff concealed weapon detection using a 350 GHz radar imaging system,” Proc. SPIE 7670, 115–118 (2010).
    [Crossref]
  17. J. Grajal, A. Badolato, G. Rubio-Cidre, L. Ubeda-Medina, B. Mencia-Oliva, A. Garcia-Pino, B. Gonzalez-Valdes, and O. Rubinos, “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Trans. Microwave Theory Tech. 63(3), 1097–1107 (2015).
    [Crossref]
  18. C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared, Millimeter, Terahertz Waves 30(12), 1281–1296 (2009).
    [Crossref]
  19. D. M. Sheen, D. L. Mcmakin, J. Barber, T. E. Hall, and R. H. Severtsen, “Active imaging at 350 GHz for security applications,” Proc. SPIE 6948, 69480M (2008).
    [Crossref]
  20. S. Gu, C. Li, X. Gao, Z. Sun, and G. Fang, “Terahertz Aperture Synthesized Imaging With Fan-Beam Scanning for Personnel Screening,” IEEE Trans. Microwave Theory Tech. 60(12), 3877–3885 (2012).
    [Crossref]
  21. C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
    [Crossref]
  22. M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555(7696), 338–341 (2018).
    [Crossref]
  23. D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast fk migration,” ACM Trans. Graph. 38, 116 (2019).
    [Crossref]
  24. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
    [Crossref]
  25. J. Kokkoniemi, J. Lehtomäki, and M. Juntti, “Measurements on penetration loss in terahertz band,” in 2016),
  26. A. Tamminen, J. Alalaurinaho, and A. V. Räisänen, “Indirect holographic imaging: evaluation of image quality at 310 GHz,” Proc. SPIE 7670, 76700A (2010).
    [Crossref]
  27. T. Petkie and Douglas, “Multimode illumination in the terahertz for elimination of target orientation requirements and minimization of coherent effects in active imaging systems,” Opt. Eng. 51(9), 091604 (2012).
    [Crossref]
  28. J. W. Goodman, Speckle Phenonnema in Optics (Roberts and Co., Greenwood Village, USA, 2007).

2019 (5)

H. Tu, X. Meng, Z. Sun, L. Chen, C. Fang, Y. Zhu, H. Zhang, J. Zhang, and C. Fang, “A Fast 220 GHz Real Aperture 3D Personnel Screening System with a Novel Shaped Mirror Design,” IEEE Trans. Terahertz Sci. Technol. 9(3), 253–269 (2019).
[Crossref]

S. L. Gui, J. Li, F. Zuo, and Y. M. Pi, “Analysis of Security Imaging Method for Walking Human Screening With Single Channel Synthetic Aperture Radar,” IEEE Access 7, 111363 (2019).
[Crossref]

L. Valzania, P. Zolliker, and E. Hack, “Coherent reconstruction of a textile and a hidden object with terahertz radiation,” Optica 6(4), 518–523 (2019).
[Crossref]

J. J. Ma, R. Shrestha, W. Zhang, L. Moeller, and D. M. Mittleman, “Terahertz Wireless Links Using Diffuse Scattering From Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 9(5), 463–470 (2019).
[Crossref]

D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast fk migration,” ACM Trans. Graph. 38, 116 (2019).
[Crossref]

2018 (4)

C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
[Crossref]

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555(7696), 338–341 (2018).
[Crossref]

S. Gui, J. Li, and Y. Pi, “Security Imaging for Multi-target Screening Based on Adaptive Scene Segmentation with Terahertz Radar,” IEEE Sens. J. 19(3), 1127–1134 (2018).
[Crossref]

S. Chen, X. Hua, H. Wang, C. Luo, Y. Cheng, and B. Deng, “Three-Dimensional Terahertz Coded-Aperture Imaging Based on Geometric Measures,” Sensors 18(5), 1582 (2018).
[Crossref]

2017 (5)

E. N. Grossman, N. Popovic, R. A. Chamberlin, J. Gordon, and D. Novotny, “Submillimeter Wavelength Scattering From Random Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 7(5), 546–562 (2017).
[Crossref]

Y. W. Jiang, B. Deng, Y. L. Qin, H. Q. Wang, and K. Liu, “A Fast Terahertz Imaging Method Using Sparse Rotating Array,” Sensors 17(10), 13 (2017).
[Crossref]

R. I. Stantchev, D. B. Phillips, P. Hobson, S. M. Hornett, M. J. Padgett, and E. Hendry, “Compressed sensing with near-field THz radiation,” Optica 4(8), 989–992 (2017).
[Crossref]

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, and A. G. Davies, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

V. Lorenzo, Z. Peter, and H. Erwin, “Topography of hidden objects using THz digital holography with multi-beam interferences,” Opt. Express 25(10) 11038–11047 (2017).

2016 (1)

A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

2015 (1)

J. Grajal, A. Badolato, G. Rubio-Cidre, L. Ubeda-Medina, B. Mencia-Oliva, A. Garcia-Pino, B. Gonzalez-Valdes, and O. Rubinos, “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Trans. Microwave Theory Tech. 63(3), 1097–1107 (2015).
[Crossref]

2013 (1)

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

2012 (3)

C. Ketchazo, E. Herault, and J. L. Coutaz, “Experimental study of scattering effects of THz waves by clothes,” Photonics Lett. Pol. 4(3), 91–93 (2012).
[Crossref]

S. Gu, C. Li, X. Gao, Z. Sun, and G. Fang, “Terahertz Aperture Synthesized Imaging With Fan-Beam Scanning for Personnel Screening,” IEEE Trans. Microwave Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

T. Petkie and Douglas, “Multimode illumination in the terahertz for elimination of target orientation requirements and minimization of coherent effects in active imaging systems,” Opt. Eng. 51(9), 091604 (2012).
[Crossref]

2011 (1)

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

2010 (2)

D. M. Sheen, T. E. Hall, R. H. Severtsen, D. L. McMakin, and P. L. J. Valdez, “Standoff concealed weapon detection using a 350 GHz radar imaging system,” Proc. SPIE 7670, 115–118 (2010).
[Crossref]

A. Tamminen, J. Alalaurinaho, and A. V. Räisänen, “Indirect holographic imaging: evaluation of image quality at 310 GHz,” Proc. SPIE 7670, 76700A (2010).
[Crossref]

2009 (1)

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared, Millimeter, Terahertz Waves 30(12), 1281–1296 (2009).
[Crossref]

2008 (1)

D. M. Sheen, D. L. Mcmakin, J. Barber, T. E. Hall, and R. H. Severtsen, “Active imaging at 350 GHz for security applications,” Proc. SPIE 6948, 69480M (2008).
[Crossref]

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Aghasi, A.

A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Alalaurinaho, J.

A. Tamminen, J. Alalaurinaho, and A. V. Räisänen, “Indirect holographic imaging: evaluation of image quality at 310 GHz,” Proc. SPIE 7670, 76700A (2010).
[Crossref]

Badolato, A.

J. Grajal, A. Badolato, G. Rubio-Cidre, L. Ubeda-Medina, B. Mencia-Oliva, A. Garcia-Pino, B. Gonzalez-Valdes, and O. Rubinos, “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Trans. Microwave Theory Tech. 63(3), 1097–1107 (2015).
[Crossref]

Barber, J.

D. M. Sheen, D. L. Mcmakin, J. Barber, T. E. Hall, and R. H. Severtsen, “Active imaging at 350 GHz for security applications,” Proc. SPIE 6948, 69480M (2008).
[Crossref]

Bin, L.

C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
[Crossref]

Binbin, C.

C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
[Crossref]

Chamberlin, R. A.

E. N. Grossman, N. Popovic, R. A. Chamberlin, J. Gordon, and D. Novotny, “Submillimeter Wavelength Scattering From Random Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 7(5), 546–562 (2017).
[Crossref]

Chen, L.

H. Tu, X. Meng, Z. Sun, L. Chen, C. Fang, Y. Zhu, H. Zhang, J. Zhang, and C. Fang, “A Fast 220 GHz Real Aperture 3D Personnel Screening System with a Novel Shaped Mirror Design,” IEEE Trans. Terahertz Sci. Technol. 9(3), 253–269 (2019).
[Crossref]

Chen, S.

S. Chen, X. Hua, H. Wang, C. Luo, Y. Cheng, and B. Deng, “Three-Dimensional Terahertz Coded-Aperture Imaging Based on Geometric Measures,” Sensors 18(5), 1582 (2018).
[Crossref]

Cheng, Y.

S. Chen, X. Hua, H. Wang, C. Luo, Y. Cheng, and B. Deng, “Three-Dimensional Terahertz Coded-Aperture Imaging Based on Geometric Measures,” Sensors 18(5), 1582 (2018).
[Crossref]

Cooper, K. B.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Coutaz, J. L.

C. Ketchazo, E. Herault, and J. L. Coutaz, “Experimental study of scattering effects of THz waves by clothes,” Photonics Lett. Pol. 4(3), 91–93 (2012).
[Crossref]

Davies, A. G.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, and A. G. Davies, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Deng, B.

S. Chen, X. Hua, H. Wang, C. Luo, Y. Cheng, and B. Deng, “Three-Dimensional Terahertz Coded-Aperture Imaging Based on Geometric Measures,” Sensors 18(5), 1582 (2018).
[Crossref]

Y. W. Jiang, B. Deng, Y. L. Qin, H. Q. Wang, and K. Liu, “A Fast Terahertz Imaging Method Using Sparse Rotating Array,” Sensors 17(10), 13 (2017).
[Crossref]

Dengler, R. J.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Dhillon, S. S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, and A. G. Davies, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Douglas,

T. Petkie and Douglas, “Multimode illumination in the terahertz for elimination of target orientation requirements and minimization of coherent effects in active imaging systems,” Opt. Eng. 51(9), 091604 (2012).
[Crossref]

Erwin, H.

Fang, C.

H. Tu, X. Meng, Z. Sun, L. Chen, C. Fang, Y. Zhu, H. Zhang, J. Zhang, and C. Fang, “A Fast 220 GHz Real Aperture 3D Personnel Screening System with a Novel Shaped Mirror Design,” IEEE Trans. Terahertz Sci. Technol. 9(3), 253–269 (2019).
[Crossref]

H. Tu, X. Meng, Z. Sun, L. Chen, C. Fang, Y. Zhu, H. Zhang, J. Zhang, and C. Fang, “A Fast 220 GHz Real Aperture 3D Personnel Screening System with a Novel Shaped Mirror Design,” IEEE Trans. Terahertz Sci. Technol. 9(3), 253–269 (2019).
[Crossref]

Fang, G.

S. Gu, C. Li, X. Gao, Z. Sun, and G. Fang, “Terahertz Aperture Synthesized Imaging With Fan-Beam Scanning for Personnel Screening,” IEEE Trans. Microwave Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

Gao, X.

S. Gu, C. Li, X. Gao, Z. Sun, and G. Fang, “Terahertz Aperture Synthesized Imaging With Fan-Beam Scanning for Personnel Screening,” IEEE Trans. Microwave Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

Garcia-Pino, A.

J. Grajal, A. Badolato, G. Rubio-Cidre, L. Ubeda-Medina, B. Mencia-Oliva, A. Garcia-Pino, B. Gonzalez-Valdes, and O. Rubinos, “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Trans. Microwave Theory Tech. 63(3), 1097–1107 (2015).
[Crossref]

Gonzalez-Valdes, B.

J. Grajal, A. Badolato, G. Rubio-Cidre, L. Ubeda-Medina, B. Mencia-Oliva, A. Garcia-Pino, B. Gonzalez-Valdes, and O. Rubinos, “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Trans. Microwave Theory Tech. 63(3), 1097–1107 (2015).
[Crossref]

Goodman, J. W.

J. W. Goodman, Speckle Phenonnema in Optics (Roberts and Co., Greenwood Village, USA, 2007).

Gordon, J.

E. N. Grossman, N. Popovic, R. A. Chamberlin, J. Gordon, and D. Novotny, “Submillimeter Wavelength Scattering From Random Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 7(5), 546–562 (2017).
[Crossref]

Grajal, J.

J. Grajal, A. Badolato, G. Rubio-Cidre, L. Ubeda-Medina, B. Mencia-Oliva, A. Garcia-Pino, B. Gonzalez-Valdes, and O. Rubinos, “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Trans. Microwave Theory Tech. 63(3), 1097–1107 (2015).
[Crossref]

Grossman, E. N.

E. N. Grossman, N. Popovic, R. A. Chamberlin, J. Gordon, and D. Novotny, “Submillimeter Wavelength Scattering From Random Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 7(5), 546–562 (2017).
[Crossref]

Gu, S.

S. Gu, C. Li, X. Gao, Z. Sun, and G. Fang, “Terahertz Aperture Synthesized Imaging With Fan-Beam Scanning for Personnel Screening,” IEEE Trans. Microwave Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

Gui, S.

S. Gui, J. Li, and Y. Pi, “Security Imaging for Multi-target Screening Based on Adaptive Scene Segmentation with Terahertz Radar,” IEEE Sens. J. 19(3), 1127–1134 (2018).
[Crossref]

Gui, S. L.

S. L. Gui, J. Li, F. Zuo, and Y. M. Pi, “Analysis of Security Imaging Method for Walking Human Screening With Single Channel Synthetic Aperture Radar,” IEEE Access 7, 111363 (2019).
[Crossref]

Hack, E.

Hall, T. E.

D. M. Sheen, T. E. Hall, R. H. Severtsen, D. L. McMakin, and P. L. J. Valdez, “Standoff concealed weapon detection using a 350 GHz radar imaging system,” Proc. SPIE 7670, 115–118 (2010).
[Crossref]

D. M. Sheen, D. L. Mcmakin, J. Barber, T. E. Hall, and R. H. Severtsen, “Active imaging at 350 GHz for security applications,” Proc. SPIE 6948, 69480M (2008).
[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Hendry, E.

Henneberger, R.

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared, Millimeter, Terahertz Waves 30(12), 1281–1296 (2009).
[Crossref]

Herault, E.

C. Ketchazo, E. Herault, and J. L. Coutaz, “Experimental study of scattering effects of THz waves by clothes,” Photonics Lett. Pol. 4(3), 91–93 (2012).
[Crossref]

Heshmat, B.

A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Hobson, P.

Hornett, S. M.

Hua, X.

S. Chen, X. Hua, H. Wang, C. Luo, Y. Cheng, and B. Deng, “Three-Dimensional Terahertz Coded-Aperture Imaging Based on Geometric Measures,” Sensors 18(5), 1582 (2018).
[Crossref]

Jiang, Y. W.

Y. W. Jiang, B. Deng, Y. L. Qin, H. Q. Wang, and K. Liu, “A Fast Terahertz Imaging Method Using Sparse Rotating Array,” Sensors 17(10), 13 (2017).
[Crossref]

Jun, J.

C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
[Crossref]

Juntti, M.

J. Kokkoniemi, J. Lehtomäki, and M. Juntti, “Measurements on penetration loss in terahertz band,” in 2016),

Ketchazo, C.

C. Ketchazo, E. Herault, and J. L. Coutaz, “Experimental study of scattering effects of THz waves by clothes,” Photonics Lett. Pol. 4(3), 91–93 (2012).
[Crossref]

Kokkoniemi, J.

J. Kokkoniemi, J. Lehtomäki, and M. Juntti, “Measurements on penetration loss in terahertz band,” in 2016),

Laman, N.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

Lehtomäki, J.

J. Kokkoniemi, J. Lehtomäki, and M. Juntti, “Measurements on penetration loss in terahertz band,” in 2016),

Li, C.

S. Gu, C. Li, X. Gao, Z. Sun, and G. Fang, “Terahertz Aperture Synthesized Imaging With Fan-Beam Scanning for Personnel Screening,” IEEE Trans. Microwave Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

Li, J.

S. L. Gui, J. Li, F. Zuo, and Y. M. Pi, “Analysis of Security Imaging Method for Walking Human Screening With Single Channel Synthetic Aperture Radar,” IEEE Access 7, 111363 (2019).
[Crossref]

S. Gui, J. Li, and Y. Pi, “Security Imaging for Multi-target Screening Based on Adaptive Scene Segmentation with Terahertz Radar,” IEEE Sens. J. 19(3), 1127–1134 (2018).
[Crossref]

Lindell, D. B.

D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast fk migration,” ACM Trans. Graph. 38, 116 (2019).
[Crossref]

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555(7696), 338–341 (2018).
[Crossref]

Linfield, E. H.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, and A. G. Davies, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Liu, K.

Y. W. Jiang, B. Deng, Y. L. Qin, H. Q. Wang, and K. Liu, “A Fast Terahertz Imaging Method Using Sparse Rotating Array,” Sensors 17(10), 13 (2017).
[Crossref]

Llombart, N.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Loeffler, T.

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared, Millimeter, Terahertz Waves 30(12), 1281–1296 (2009).
[Crossref]

Lorenzo, V.

Luo, C.

S. Chen, X. Hua, H. Wang, C. Luo, Y. Cheng, and B. Deng, “Three-Dimensional Terahertz Coded-Aperture Imaging Based on Geometric Measures,” Sensors 18(5), 1582 (2018).
[Crossref]

Ma, J. J.

J. J. Ma, R. Shrestha, W. Zhang, L. Moeller, and D. M. Mittleman, “Terahertz Wireless Links Using Diffuse Scattering From Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 9(5), 463–470 (2019).
[Crossref]

McMakin, D. L.

D. M. Sheen, T. E. Hall, R. H. Severtsen, D. L. McMakin, and P. L. J. Valdez, “Standoff concealed weapon detection using a 350 GHz radar imaging system,” Proc. SPIE 7670, 115–118 (2010).
[Crossref]

D. M. Sheen, D. L. Mcmakin, J. Barber, T. E. Hall, and R. H. Severtsen, “Active imaging at 350 GHz for security applications,” Proc. SPIE 6948, 69480M (2008).
[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Mencia-Oliva, B.

J. Grajal, A. Badolato, G. Rubio-Cidre, L. Ubeda-Medina, B. Mencia-Oliva, A. Garcia-Pino, B. Gonzalez-Valdes, and O. Rubinos, “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Trans. Microwave Theory Tech. 63(3), 1097–1107 (2015).
[Crossref]

Meng, X.

H. Tu, X. Meng, Z. Sun, L. Chen, C. Fang, Y. Zhu, H. Zhang, J. Zhang, and C. Fang, “A Fast 220 GHz Real Aperture 3D Personnel Screening System with a Novel Shaped Mirror Design,” IEEE Trans. Terahertz Sci. Technol. 9(3), 253–269 (2019).
[Crossref]

Mittleman, D. M.

J. J. Ma, R. Shrestha, W. Zhang, L. Moeller, and D. M. Mittleman, “Terahertz Wireless Links Using Diffuse Scattering From Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 9(5), 463–470 (2019).
[Crossref]

Moeller, L.

J. J. Ma, R. Shrestha, W. Zhang, L. Moeller, and D. M. Mittleman, “Terahertz Wireless Links Using Diffuse Scattering From Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 9(5), 463–470 (2019).
[Crossref]

Naqvi, S.

A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Novotny, D.

E. N. Grossman, N. Popovic, R. A. Chamberlin, J. Gordon, and D. Novotny, “Submillimeter Wavelength Scattering From Random Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 7(5), 546–562 (2017).
[Crossref]

O’Toole, M.

D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast fk migration,” ACM Trans. Graph. 38, 116 (2019).
[Crossref]

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555(7696), 338–341 (2018).
[Crossref]

Padgett, M. J.

Peng, C.

C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
[Crossref]

Peter, Z.

Petkie, T.

T. Petkie and Douglas, “Multimode illumination in the terahertz for elimination of target orientation requirements and minimization of coherent effects in active imaging systems,” Opt. Eng. 51(9), 091604 (2012).
[Crossref]

Phillips, D. B.

Pi, Y.

S. Gui, J. Li, and Y. Pi, “Security Imaging for Multi-target Screening Based on Adaptive Scene Segmentation with Terahertz Radar,” IEEE Sens. J. 19(3), 1127–1134 (2018).
[Crossref]

Pi, Y. M.

S. L. Gui, J. Li, F. Zuo, and Y. M. Pi, “Analysis of Security Imaging Method for Walking Human Screening With Single Channel Synthetic Aperture Radar,” IEEE Access 7, 111363 (2019).
[Crossref]

Popovic, N.

E. N. Grossman, N. Popovic, R. A. Chamberlin, J. Gordon, and D. Novotny, “Submillimeter Wavelength Scattering From Random Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 7(5), 546–562 (2017).
[Crossref]

Qiao, L.

C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
[Crossref]

Qin, Y. L.

Y. W. Jiang, B. Deng, Y. L. Qin, H. Q. Wang, and K. Liu, “A Fast Terahertz Imaging Method Using Sparse Rotating Array,” Sensors 17(10), 13 (2017).
[Crossref]

Räisänen, A. V.

A. Tamminen, J. Alalaurinaho, and A. V. Räisänen, “Indirect holographic imaging: evaluation of image quality at 310 GHz,” Proc. SPIE 7670, 76700A (2010).
[Crossref]

Raskar, R.

A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Redo-Sanchez, A.

A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

Romberg, J.

A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Roskos, H. G.

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared, Millimeter, Terahertz Waves 30(12), 1281–1296 (2009).
[Crossref]

Rubinos, O.

J. Grajal, A. Badolato, G. Rubio-Cidre, L. Ubeda-Medina, B. Mencia-Oliva, A. Garcia-Pino, B. Gonzalez-Valdes, and O. Rubinos, “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Trans. Microwave Theory Tech. 63(3), 1097–1107 (2015).
[Crossref]

Rubio-Cidre, G.

J. Grajal, A. Badolato, G. Rubio-Cidre, L. Ubeda-Medina, B. Mencia-Oliva, A. Garcia-Pino, B. Gonzalez-Valdes, and O. Rubinos, “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Trans. Microwave Theory Tech. 63(3), 1097–1107 (2015).
[Crossref]

Schulkin, B.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

Severtsen, R. H.

D. M. Sheen, T. E. Hall, R. H. Severtsen, D. L. McMakin, and P. L. J. Valdez, “Standoff concealed weapon detection using a 350 GHz radar imaging system,” Proc. SPIE 7670, 115–118 (2010).
[Crossref]

D. M. Sheen, D. L. Mcmakin, J. Barber, T. E. Hall, and R. H. Severtsen, “Active imaging at 350 GHz for security applications,” Proc. SPIE 6948, 69480M (2008).
[Crossref]

Sheen, D. M.

D. M. Sheen, T. E. Hall, R. H. Severtsen, D. L. McMakin, and P. L. J. Valdez, “Standoff concealed weapon detection using a 350 GHz radar imaging system,” Proc. SPIE 7670, 115–118 (2010).
[Crossref]

D. M. Sheen, D. L. Mcmakin, J. Barber, T. E. Hall, and R. H. Severtsen, “Active imaging at 350 GHz for security applications,” Proc. SPIE 6948, 69480M (2008).
[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Shrestha, R.

J. J. Ma, R. Shrestha, W. Zhang, L. Moeller, and D. M. Mittleman, “Terahertz Wireless Links Using Diffuse Scattering From Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 9(5), 463–470 (2019).
[Crossref]

Siegel, P. H.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Spiegel, W. V.

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared, Millimeter, Terahertz Waves 30(12), 1281–1296 (2009).
[Crossref]

Stantchev, R. I.

Sun, Z.

H. Tu, X. Meng, Z. Sun, L. Chen, C. Fang, Y. Zhu, H. Zhang, J. Zhang, and C. Fang, “A Fast 220 GHz Real Aperture 3D Personnel Screening System with a Novel Shaped Mirror Design,” IEEE Trans. Terahertz Sci. Technol. 9(3), 253–269 (2019).
[Crossref]

S. Gu, C. Li, X. Gao, Z. Sun, and G. Fang, “Terahertz Aperture Synthesized Imaging With Fan-Beam Scanning for Personnel Screening,” IEEE Trans. Microwave Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

Tamminen, A.

A. Tamminen, J. Alalaurinaho, and A. V. Räisänen, “Indirect holographic imaging: evaluation of image quality at 310 GHz,” Proc. SPIE 7670, 76700A (2010).
[Crossref]

Thomas, B.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Tongue, T.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

Tu, H.

H. Tu, X. Meng, Z. Sun, L. Chen, C. Fang, Y. Zhu, H. Zhang, J. Zhang, and C. Fang, “A Fast 220 GHz Real Aperture 3D Personnel Screening System with a Novel Shaped Mirror Design,” IEEE Trans. Terahertz Sci. Technol. 9(3), 253–269 (2019).
[Crossref]

Ubeda-Medina, L.

J. Grajal, A. Badolato, G. Rubio-Cidre, L. Ubeda-Medina, B. Mencia-Oliva, A. Garcia-Pino, B. Gonzalez-Valdes, and O. Rubinos, “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Trans. Microwave Theory Tech. 63(3), 1097–1107 (2015).
[Crossref]

Valdez, P. L. J.

D. M. Sheen, T. E. Hall, R. H. Severtsen, D. L. McMakin, and P. L. J. Valdez, “Standoff concealed weapon detection using a 350 GHz radar imaging system,” Proc. SPIE 7670, 115–118 (2010).
[Crossref]

Valzania, L.

Vitiello, M. S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, and A. G. Davies, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Wang, H.

S. Chen, X. Hua, H. Wang, C. Luo, Y. Cheng, and B. Deng, “Three-Dimensional Terahertz Coded-Aperture Imaging Based on Geometric Measures,” Sensors 18(5), 1582 (2018).
[Crossref]

Wang, H. Q.

Y. W. Jiang, B. Deng, Y. L. Qin, H. Q. Wang, and K. Liu, “A Fast Terahertz Imaging Method Using Sparse Rotating Array,” Sensors 17(10), 13 (2017).
[Crossref]

Weg, C. A.

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared, Millimeter, Terahertz Waves 30(12), 1281–1296 (2009).
[Crossref]

Wetzstein, G.

D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast fk migration,” ACM Trans. Graph. 38, 116 (2019).
[Crossref]

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555(7696), 338–341 (2018).
[Crossref]

Xianjin, D.

C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
[Crossref]

Xiaoyang, H.

C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
[Crossref]

Yue, H.

C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
[Crossref]

Yuliang, Q.

C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
[Crossref]

Zhang, H.

H. Tu, X. Meng, Z. Sun, L. Chen, C. Fang, Y. Zhu, H. Zhang, J. Zhang, and C. Fang, “A Fast 220 GHz Real Aperture 3D Personnel Screening System with a Novel Shaped Mirror Design,” IEEE Trans. Terahertz Sci. Technol. 9(3), 253–269 (2019).
[Crossref]

Zhang, J.

H. Tu, X. Meng, Z. Sun, L. Chen, C. Fang, Y. Zhu, H. Zhang, J. Zhang, and C. Fang, “A Fast 220 GHz Real Aperture 3D Personnel Screening System with a Novel Shaped Mirror Design,” IEEE Trans. Terahertz Sci. Technol. 9(3), 253–269 (2019).
[Crossref]

Zhang, M.

A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Zhang, W.

J. J. Ma, R. Shrestha, W. Zhang, L. Moeller, and D. M. Mittleman, “Terahertz Wireless Links Using Diffuse Scattering From Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 9(5), 463–470 (2019).
[Crossref]

Zhenmao, C.

C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
[Crossref]

Zhu, Y.

H. Tu, X. Meng, Z. Sun, L. Chen, C. Fang, Y. Zhu, H. Zhang, J. Zhang, and C. Fang, “A Fast 220 GHz Real Aperture 3D Personnel Screening System with a Novel Shaped Mirror Design,” IEEE Trans. Terahertz Sci. Technol. 9(3), 253–269 (2019).
[Crossref]

Zimmermann, R.

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared, Millimeter, Terahertz Waves 30(12), 1281–1296 (2009).
[Crossref]

Zolliker, P.

Zuo, F.

S. L. Gui, J. Li, F. Zuo, and Y. M. Pi, “Analysis of Security Imaging Method for Walking Human Screening With Single Channel Synthetic Aperture Radar,” IEEE Access 7, 111363 (2019).
[Crossref]

ACM Trans. Graph. (1)

D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast fk migration,” ACM Trans. Graph. 38, 116 (2019).
[Crossref]

IEEE Access (1)

S. L. Gui, J. Li, F. Zuo, and Y. M. Pi, “Analysis of Security Imaging Method for Walking Human Screening With Single Channel Synthetic Aperture Radar,” IEEE Access 7, 111363 (2019).
[Crossref]

IEEE Sens. J. (1)

S. Gui, J. Li, and Y. Pi, “Security Imaging for Multi-target Screening Based on Adaptive Scene Segmentation with Terahertz Radar,” IEEE Sens. J. 19(3), 1127–1134 (2018).
[Crossref]

IEEE Trans. Microwave Theory Tech. (3)

J. Grajal, A. Badolato, G. Rubio-Cidre, L. Ubeda-Medina, B. Mencia-Oliva, A. Garcia-Pino, B. Gonzalez-Valdes, and O. Rubinos, “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Trans. Microwave Theory Tech. 63(3), 1097–1107 (2015).
[Crossref]

S. Gu, C. Li, X. Gao, Z. Sun, and G. Fang, “Terahertz Aperture Synthesized Imaging With Fan-Beam Scanning for Personnel Screening,” IEEE Trans. Microwave Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (5)

C. Binbin, C. Zhenmao, L. Bin, Q. Yuliang, L. Qiao, C. Peng, H. Yue, J. Jun, H. Xiaoyang, and D. Xianjin, “340 GHz 3-D Imaging Radar with 4Tx-16Rx MIMO Array,” IEEE Trans. Terahertz Sci. Technol. 8(5), 509–519 (2018).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, and P. H. Siegel, “THz Imaging Radar for Standoff Personnel Screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

E. N. Grossman, N. Popovic, R. A. Chamberlin, J. Gordon, and D. Novotny, “Submillimeter Wavelength Scattering From Random Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 7(5), 546–562 (2017).
[Crossref]

J. J. Ma, R. Shrestha, W. Zhang, L. Moeller, and D. M. Mittleman, “Terahertz Wireless Links Using Diffuse Scattering From Rough Surfaces,” IEEE Trans. Terahertz Sci. Technol. 9(5), 463–470 (2019).
[Crossref]

H. Tu, X. Meng, Z. Sun, L. Chen, C. Fang, Y. Zhu, H. Zhang, J. Zhang, and C. Fang, “A Fast 220 GHz Real Aperture 3D Personnel Screening System with a Novel Shaped Mirror Design,” IEEE Trans. Terahertz Sci. Technol. 9(3), 253–269 (2019).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (2)

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of Terahertz Technology Readiness Assessment and Applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared, Millimeter, Terahertz Waves 30(12), 1281–1296 (2009).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, and A. G. Davies, “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

Nat. Commun. (1)

A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Nature (1)

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555(7696), 338–341 (2018).
[Crossref]

Opt. Eng. (1)

T. Petkie and Douglas, “Multimode illumination in the terahertz for elimination of target orientation requirements and minimization of coherent effects in active imaging systems,” Opt. Eng. 51(9), 091604 (2012).
[Crossref]

Opt. Express (1)

Optica (2)

Photonics Lett. Pol. (1)

C. Ketchazo, E. Herault, and J. L. Coutaz, “Experimental study of scattering effects of THz waves by clothes,” Photonics Lett. Pol. 4(3), 91–93 (2012).
[Crossref]

Proc. SPIE (3)

D. M. Sheen, D. L. Mcmakin, J. Barber, T. E. Hall, and R. H. Severtsen, “Active imaging at 350 GHz for security applications,” Proc. SPIE 6948, 69480M (2008).
[Crossref]

D. M. Sheen, T. E. Hall, R. H. Severtsen, D. L. McMakin, and P. L. J. Valdez, “Standoff concealed weapon detection using a 350 GHz radar imaging system,” Proc. SPIE 7670, 115–118 (2010).
[Crossref]

A. Tamminen, J. Alalaurinaho, and A. V. Räisänen, “Indirect holographic imaging: evaluation of image quality at 310 GHz,” Proc. SPIE 7670, 76700A (2010).
[Crossref]

Sensors (2)

S. Chen, X. Hua, H. Wang, C. Luo, Y. Cheng, and B. Deng, “Three-Dimensional Terahertz Coded-Aperture Imaging Based on Geometric Measures,” Sensors 18(5), 1582 (2018).
[Crossref]

Y. W. Jiang, B. Deng, Y. L. Qin, H. Q. Wang, and K. Liu, “A Fast Terahertz Imaging Method Using Sparse Rotating Array,” Sensors 17(10), 13 (2017).
[Crossref]

Other (2)

J. Kokkoniemi, J. Lehtomäki, and M. Juntti, “Measurements on penetration loss in terahertz band,” in 2016),

J. W. Goodman, Speckle Phenonnema in Optics (Roberts and Co., Greenwood Village, USA, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of rectilinear monostatic THz SAR imaging
Fig. 2.
Fig. 2. Overview of confocal THz SAR imaging system.
Fig. 3.
Fig. 3. The procedure of signal processing in the confocal THz imaging system. (a) Illustration of the simulated scene. (b) Raw echo signal. (c) Inverse Fourier transform is taken to get the range profile. (d) Temporal wavefront shaping by searching the first peak and shifting the signal for each spatial sampling point. (e) Another Fourier transform to get back the signal in frequency domain after descattering. (f) Reconstruction of the hidden object with traditional RMA algorithm.
Fig. 4.
Fig. 4. Experimental imaging systems. The lower left is the confocal system with a convex lens, while the lower right is the conventional system without the convex lens.
Fig. 5.
Fig. 5. Occlusion samples with different roughness. (a1, a2) Sample I and its CAD model. (b1, b2) Sample II. (c1, c2) Sample III.
Fig. 6.
Fig. 6. Comparison of reconstructions through occlusions with different roughness. The conventional method is shown on the first row and proposed method on the third row. (a1)(c1) no occlusion. (a2)(c2) occluded by sample I. (a3)(c3) sample II. (a4)(c4)sample III. (a5)(c5)sample IV. (b)(d) the corresponding redline intensity profile. (e) ground truth. (f) contrast. (g) SNR. (h) resolution. Scale bars:1 cm.
Fig. 7.
Fig. 7. Reconstruction of a key and a scissor hidden by sample III. (a) Front view. (b) Side view. (c) In-focus results reconstructed by the proposed system. (d) In-focus results reconstructed by the conventional system. Scale bar: 1 cm.
Fig. 8.
Fig. 8. Reconstruction results of a plate hidden by the media with uniformly rough surface. (a) The CAD model of the uniform rough surface. The slopes are regularly ranked with width and height of both 1 mm. (b) Front view. The sheet is pasted on a plastic frame and keep flat. (c) Side view. The object plate is hidden right behind the occlusion, and both installed on the scanner. (d) Proposed system (e) Conventional system (f) Conventional system without occlusion. Scale bar:1 cm.
Fig. 9.
Fig. 9. Reconstruction results of a plate hidden by a curved uniform rough surface. (a) Side view. The sheet is not totally flat. (b) Results obtained by the proposed system (c) Results obtained by the conventional system. Scale bar:1 cm.

Tables (1)

Tables Icon

Table 1. Roughness parameters of occlusion samples

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

s ( x , y , k ) = ρ ( x , y , z ) exp ( 2 j k ( x x ) 2 + ( y y ) 2 + ( z Z 0 ) 2 ) d x d y d z ,
s ( x , y , k ) = [ ρ ( x , y , z ) exp ( j k x x j k y y j k z z ) d x d y d z ] exp ( j k x x j k y y j k z Z 0 ) d k x d k y ,
s ( x , y , k )  = IFF T 2D [ FF T 3D [ ρ ( x , y , z ) exp ( j k z Z 0 ) ] ] .
ρ ( x , y , z ) = IFF T 3D [Inter p k z [FF T 2D (s( x , y , k ) exp ( j k z Z 0 ) )]] .
s ( x , y , k ) = ρ ( x , y , z ) exp ( 2 j k ( x x ) 2 + ( y y ) 2 + ( z Z 0 ) 2 ) exp ( j φ x , y ) d x d y d z .
δ x = λ c 4 sin ( θ b / 2 )

Metrics