Abstract

We propose a simple autofocusing technique that can be introduced into conventional two-photon lithography systems without additional devices. Autofocusing is achieved by image processing using transmission images of photopolymerized voxels. The signal-to-noise ratio of transmission images was improved by optimal low-pass filtering to detect voxels in them. The focal point was detected with an accuracy of about 250 nm from the difference images. Further, we demonstrated mass-fabrication of a 5 × 5 spiral square array with an area of 900 × 900 µm2 using this method. The method has potential application in constructing low-cost, compact and versatile two-photon lithography apparatus.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Precise autofocus method employing normalized fluorescence image size in a two-photon polymerization nanofabrication system

Byoung Goo Jeon, Byung Je Jung, Hong Jin Kong, and Yong Hoon Cho
Appl. Opt. 54(24) 7323-7329 (2015)

Autofocusing method using fluorescence detection for precise two-photon nanofabrication

Byung Je Jung, Hong Jin Kong, Byoung Goo Jeon, Dong-Yol Yang, Yong Son, and Kwang-Sup Lee
Opt. Express 19(23) 22659-22668 (2011)

Hybrid lithography: Combining UV-exposure and two photon direct laser writing

Carsten Eschenbaum, Daniel Großmann, Katja Dopf, Siegfried Kettlitz, Tobias Bocksrocker, Sebastian Valouch, and Uli Lemmer
Opt. Express 21(24) 29921-29926 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
    [Crossref]
  2. S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
    [Crossref]
  3. W. E. Frazier, “Metal Additive Manufacturing: A Review,” J. Mater. Eng. Perform. 23(6), 1917–1928 (2014).
    [Crossref]
  4. L. Hirt, A. Reiser, R. Spolenak, and T. Zambelli, “Additive Manufacturing of Metal Structures at the Micrometer Scale,” Adv. Mater. 29(17), 1604211 (2017).
    [Crossref]
  5. Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
    [Crossref]
  6. N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, “Additive Manufacturing of Ceramic-Based Materials,” Adv. Eng. Mater. 16(6), 729–754 (2014).
    [Crossref]
  7. J. Y. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl Mater Today. 7, 120–133 (2017).
    [Crossref]
  8. R. D. Farahani, M. Dube, and D. Therriault, “Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications,” Adv. Mater. 28(28), 5794–5821 (2016).
    [Crossref]
  9. F. Momeni, S. M. M. Hassani.N, X. Liu, and J. Ni, “A review of 4D printing,” Mater. Des. 122, 42–79 (2017).
    [Crossref]
  10. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [Crossref]
  11. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
    [Crossref]
  12. C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D Laser Micro- and Nanoprinting: Challenges for Chemistry,” Angew. Chem., Int. Ed. 56(50), 15828–15845 (2017).
    [Crossref]
  13. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
    [Crossref]
  14. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
    [Crossref]
  15. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
    [Crossref]
  16. P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
    [Crossref]
  17. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chipscale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
    [Crossref]
  18. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
    [Crossref]
  19. T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
    [Crossref]
  20. S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
    [Crossref]
  21. S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
    [Crossref]
  22. E. D. Lemma, B. Spagnolo, M. De Vittorio, and F. Pisanello, “Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach,” Trends Biotechnol. 37(4), 358–372 (2019).
    [Crossref]
  23. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
    [Crossref]
  24. X. Q. Zhou, Y. H. Hou, and J. Q. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
    [Crossref]
  25. C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B: Lasers Opt. 109(2), 259–268 (2012).
    [Crossref]
  26. C. S. Liu and S. H. Jiang, “Design and experimental validation of novel enhanced-performance autofocusing microscope,” Appl. Phys. B: Lasers Opt. 117(4), 1161–1171 (2014).
    [Crossref]
  27. X. B. Zhang, F. M. Fan, M. Gheisari, and G. Srivastava, “A Novel Auto-Focus Method for Image Processing Using Laser Triangulation,” IEEE Access 7, 64837–64843 (2019).
    [Crossref]
  28. T. Woggon, T. Kleiner, M. Punke, and U. Lemmer, “Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization,” Opt. Express 17(4), 2500–2507 (2009).
    [Crossref]
  29. C. Eschenbaum, D. Grossmann, K. Dopf, S. Kettlitz, T. Bocksrocker, S. Valouch, and U. Lemmer, “Hybrid lithography: Combining UV-exposure and two photon direct laser writing,” Opt. Express 21(24), 29921–29926 (2013).
    [Crossref]
  30. M. Malinauskas, A. Žukauskas, and K. Belazaras, “Employment of fluorescence for autofocusing in direct laser writing micro-/nano-lithography,” Proc. SPIE 9192, 919212 (2014).
    [Crossref]
  31. B. J. Jung, H. J. Kong, B. G. Jeon, D. Y. Yang, Y. Son, and K. S. Lee, “Autofocusing method using fluorescence detection for precise two-photon nanofabrication,” Opt. Express 19(23), 22659–22668 (2011).
    [Crossref]
  32. B. G. Jeon, B. J. Jung, H. J. Kong, and Y. H. Cho, “Precise autofocus method employing normalized fluorescence image size in a two-photon polymerization nanofabrication system,” Appl. Opt. 54(24), 7323–7329 (2015).
    [Crossref]
  33. X. Zheng, K. Cheng, X. Q. Zhou, J. Q. Lin, and X. Jing, “A method for positioning the focal spot location of two photon polymerization,” AIP Adv. 7(9), 095318 (2017).
    [Crossref]
  34. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21(1), 24–26 (1996).
    [Crossref]

2019 (3)

Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
[Crossref]

E. D. Lemma, B. Spagnolo, M. De Vittorio, and F. Pisanello, “Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach,” Trends Biotechnol. 37(4), 358–372 (2019).
[Crossref]

X. B. Zhang, F. M. Fan, M. Gheisari, and G. Srivastava, “A Novel Auto-Focus Method for Image Processing Using Laser Triangulation,” IEEE Access 7, 64837–64843 (2019).
[Crossref]

2018 (1)

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

2017 (6)

F. Momeni, S. M. M. Hassani.N, X. Liu, and J. Ni, “A review of 4D printing,” Mater. Des. 122, 42–79 (2017).
[Crossref]

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D Laser Micro- and Nanoprinting: Challenges for Chemistry,” Angew. Chem., Int. Ed. 56(50), 15828–15845 (2017).
[Crossref]

J. Y. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl Mater Today. 7, 120–133 (2017).
[Crossref]

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

L. Hirt, A. Reiser, R. Spolenak, and T. Zambelli, “Additive Manufacturing of Metal Structures at the Micrometer Scale,” Adv. Mater. 29(17), 1604211 (2017).
[Crossref]

X. Zheng, K. Cheng, X. Q. Zhou, J. Q. Lin, and X. Jing, “A method for positioning the focal spot location of two photon polymerization,” AIP Adv. 7(9), 095318 (2017).
[Crossref]

2016 (2)

R. D. Farahani, M. Dube, and D. Therriault, “Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications,” Adv. Mater. 28(28), 5794–5821 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

2015 (2)

2014 (4)

C. S. Liu and S. H. Jiang, “Design and experimental validation of novel enhanced-performance autofocusing microscope,” Appl. Phys. B: Lasers Opt. 117(4), 1161–1171 (2014).
[Crossref]

M. Malinauskas, A. Žukauskas, and K. Belazaras, “Employment of fluorescence for autofocusing in direct laser writing micro-/nano-lithography,” Proc. SPIE 9192, 919212 (2014).
[Crossref]

N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, “Additive Manufacturing of Ceramic-Based Materials,” Adv. Eng. Mater. 16(6), 729–754 (2014).
[Crossref]

W. E. Frazier, “Metal Additive Manufacturing: A Review,” J. Mater. Eng. Perform. 23(6), 1917–1928 (2014).
[Crossref]

2013 (3)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

C. Eschenbaum, D. Grossmann, K. Dopf, S. Kettlitz, T. Bocksrocker, S. Valouch, and U. Lemmer, “Hybrid lithography: Combining UV-exposure and two photon direct laser writing,” Opt. Express 21(24), 29921–29926 (2013).
[Crossref]

2012 (3)

C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B: Lasers Opt. 109(2), 259–268 (2012).
[Crossref]

T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chipscale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref]

2011 (1)

2010 (1)

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref]

2009 (1)

2008 (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

2007 (1)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

2006 (1)

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[Crossref]

2003 (1)

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[Crossref]

2001 (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref]

1997 (1)

1996 (1)

An, J.

J. Y. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl Mater Today. 7, 120–133 (2017).
[Crossref]

Baldacchini, T.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

Balthasar, G.

Barner-Kowollik, C.

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D Laser Micro- and Nanoprinting: Challenges for Chemistry,” Angew. Chem., Int. Ed. 56(50), 15828–15845 (2017).
[Crossref]

Bastmeyer, M.

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D Laser Micro- and Nanoprinting: Challenges for Chemistry,” Angew. Chem., Int. Ed. 56(50), 15828–15845 (2017).
[Crossref]

Belazaras, K.

M. Malinauskas, A. Žukauskas, and K. Belazaras, “Employment of fluorescence for autofocusing in direct laser writing micro-/nano-lithography,” Proc. SPIE 9192, 919212 (2014).
[Crossref]

Billah, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Blaicher, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Blasco, E.

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D Laser Micro- and Nanoprinting: Challenges for Chemistry,” Angew. Chem., Int. Ed. 56(50), 15828–15845 (2017).
[Crossref]

Bocksrocker, T.

Bonet, A.

N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, “Additive Manufacturing of Ceramic-Based Materials,” Adv. Eng. Mater. 16(6), 729–754 (2014).
[Crossref]

Buckmann, T.

T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref]

Caer, C.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Chen, Z. W.

Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
[Crossref]

Cheng, K.

X. Zheng, K. Cheng, X. Q. Zhou, J. Q. Lin, and X. Jing, “A method for positioning the focal spot location of two photon polymerization,” AIP Adv. 7(9), 095318 (2017).
[Crossref]

Cho, Y. H.

Chua, C. K.

J. Y. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl Mater Today. 7, 120–133 (2017).
[Crossref]

Dangel, R.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

De Vittorio, M.

E. D. Lemma, B. Spagnolo, M. De Vittorio, and F. Pisanello, “Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach,” Trends Biotechnol. 37(4), 358–372 (2019).
[Crossref]

Delaittre, G.

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D Laser Micro- and Nanoprinting: Challenges for Chemistry,” Angew. Chem., Int. Ed. 56(50), 15828–15845 (2017).
[Crossref]

Dermeik, B.

N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, “Additive Manufacturing of Ceramic-Based Materials,” Adv. Eng. Mater. 16(6), 729–754 (2014).
[Crossref]

Dietrich, P. I.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Dopf, K.

Dube, M.

R. D. Farahani, M. Dube, and D. Therriault, “Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications,” Adv. Mater. 28(28), 5794–5821 (2016).
[Crossref]

Eberl, C.

T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref]

Eschenbaum, C.

Fan, F. M.

X. B. Zhang, F. M. Fan, M. Gheisari, and G. Srivastava, “A Novel Auto-Focus Method for Image Processing Using Laser Triangulation,” IEEE Access 7, 64837–64843 (2019).
[Crossref]

Farahani, R. D.

R. D. Farahani, M. Dube, and D. Therriault, “Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications,” Adv. Mater. 28(28), 5794–5821 (2016).
[Crossref]

Farrer, R. A.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

Farsari, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Feijen, J.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref]

Fey, T.

N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, “Additive Manufacturing of Ceramic-Based Materials,” Adv. Eng. Mater. 16(6), 729–754 (2014).
[Crossref]

Filbert-Demut, I.

N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, “Additive Manufacturing of Ceramic-Based Materials,” Adv. Eng. Mater. 16(6), 729–754 (2014).
[Crossref]

Fischer, J.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Fourkas, J. T.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

Frazier, W. E.

W. E. Frazier, “Metal Additive Manufacturing: A Review,” J. Mater. Eng. Perform. 23(6), 1917–1928 (2014).
[Crossref]

Freude, W.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chipscale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref]

Frolich, A.

T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref]

Fu, Y. L.

Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
[Crossref]

Gheisari, M.

X. B. Zhang, F. M. Fan, M. Gheisari, and G. Srivastava, “A Novel Auto-Focus Method for Image Processing Using Laser Triangulation,” IEEE Access 7, 64837–64843 (2019).
[Crossref]

Giessen, H.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Gissibl, T.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Greil, P.

N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, “Additive Manufacturing of Ceramic-Based Materials,” Adv. Eng. Mater. 16(6), 729–754 (2014).
[Crossref]

Grijpma, D. W.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref]

Grossmann, D.

Gurr, M.

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

Hassani.N, S. M. M.

F. Momeni, S. M. M. Hassani.N, X. Liu, and J. Ni, “A review of 4D printing,” Mater. Des. 122, 42–79 (2017).
[Crossref]

He, Y.

Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
[Crossref]

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Hillerkuss, D.

Hirt, L.

L. Hirt, A. Reiser, R. Spolenak, and T. Zambelli, “Additive Manufacturing of Metal Structures at the Micrometer Scale,” Adv. Mater. 29(17), 1604211 (2017).
[Crossref]

Hofmann, A.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hoose, T.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hou, Y. H.

X. Q. Zhou, Y. H. Hou, and J. Q. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Hu, P. H.

C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B: Lasers Opt. 109(2), 259–268 (2012).
[Crossref]

Ikuta, K.

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[Crossref]

Inoue, H.

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[Crossref]

Jeon, B. G.

Jiang, S. H.

C. S. Liu and S. H. Jiang, “Design and experimental validation of novel enhanced-performance autofocusing microscope,” Appl. Phys. B: Lasers Opt. 117(4), 1161–1171 (2014).
[Crossref]

Jing, X.

X. Zheng, K. Cheng, X. Q. Zhou, J. Q. Lin, and X. Jing, “A method for positioning the focal spot location of two photon polymerization,” AIP Adv. 7(9), 095318 (2017).
[Crossref]

Jordan, M.

Jung, B. J.

Juodkazis, S.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Kadic, M.

T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref]

Kaschke, J.

T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref]

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref]

Kennerknecht, T.

T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref]

Kettlitz, S.

Kewitsch, A. S.

Kleiner, T.

Kong, H. J.

Koos, C.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chipscale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref]

Korogi, H.

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[Crossref]

LaFratta, C. N.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

Lao, C. S.

Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
[Crossref]

Lee, J. Y.

J. Y. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl Mater Today. 7, 120–133 (2017).
[Crossref]

Lee, K. S.

Lemma, E. D.

E. D. Lemma, B. Spagnolo, M. De Vittorio, and F. Pisanello, “Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach,” Trends Biotechnol. 37(4), 358–372 (2019).
[Crossref]

Lemmer, U.

Leuthold, J.

Li, J. J.

Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
[Crossref]

Li, Y.

Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
[Crossref]

Li, Z. Y.

Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
[Crossref]

Ligon, S. C.

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

Lin, J. Q.

X. Zheng, K. Cheng, X. Q. Zhou, J. Q. Lin, and X. Jing, “A method for positioning the focal spot location of two photon polymerization,” AIP Adv. 7(9), 095318 (2017).
[Crossref]

X. Q. Zhou, Y. H. Hou, and J. Q. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Lin, Y. C.

C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B: Lasers Opt. 109(2), 259–268 (2012).
[Crossref]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Lindenmann, N.

Liska, R.

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

Liu, C. B.

Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
[Crossref]

Liu, C. S.

C. S. Liu and S. H. Jiang, “Design and experimental validation of novel enhanced-performance autofocusing microscope,” Appl. Phys. B: Lasers Opt. 117(4), 1161–1171 (2014).
[Crossref]

C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B: Lasers Opt. 109(2), 259–268 (2012).
[Crossref]

Liu, C. Y.

Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
[Crossref]

Liu, X.

F. Momeni, S. M. M. Hassani.N, X. Liu, and J. Ni, “A review of 4D printing,” Mater. Des. 122, 42–79 (2017).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, and K. Belazaras, “Employment of fluorescence for autofocusing in direct laser writing micro-/nano-lithography,” Proc. SPIE 9192, 919212 (2014).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Maruo, S.

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[Crossref]

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref]

Melchels, F. P. W.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref]

Moehrle, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Momeni, F.

F. Momeni, S. M. M. Hassani.N, X. Liu, and J. Ni, “A review of 4D printing,” Mater. Des. 122, 42–79 (2017).
[Crossref]

Mulhaupt, R.

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

Muller, P.

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D Laser Micro- and Nanoprinting: Challenges for Chemistry,” Angew. Chem., Int. Ed. 56(50), 15828–15845 (2017).
[Crossref]

Nakamura, O.

Ni, J.

F. Momeni, S. M. M. Hassani.N, X. Liu, and J. Ni, “A review of 4D printing,” Mater. Des. 122, 42–79 (2017).
[Crossref]

Offrein, B.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Pisanello, F.

E. D. Lemma, B. Spagnolo, M. De Vittorio, and F. Pisanello, “Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach,” Trends Biotechnol. 37(4), 358–372 (2019).
[Crossref]

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Punke, M.

Reiser, A.

L. Hirt, A. Reiser, R. Spolenak, and T. Zambelli, “Additive Manufacturing of Metal Structures at the Micrometer Scale,” Adv. Mater. 29(17), 1604211 (2017).
[Crossref]

Reuter, I.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Richter, B.

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D Laser Micro- and Nanoprinting: Challenges for Chemistry,” Angew. Chem., Int. Ed. 56(50), 15828–15845 (2017).
[Crossref]

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Schlier, L.

N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, “Additive Manufacturing of Ceramic-Based Materials,” Adv. Eng. Mater. 16(6), 729–754 (2014).
[Crossref]

Schlordt, T.

N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, “Additive Manufacturing of Ceramic-Based Materials,” Adv. Eng. Mater. 16(6), 729–754 (2014).
[Crossref]

Schmogrow, R.

Son, Y.

Spagnolo, B.

E. D. Lemma, B. Spagnolo, M. De Vittorio, and F. Pisanello, “Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach,” Trends Biotechnol. 37(4), 358–372 (2019).
[Crossref]

Spolenak, R.

L. Hirt, A. Reiser, R. Spolenak, and T. Zambelli, “Additive Manufacturing of Metal Structures at the Micrometer Scale,” Adv. Mater. 29(17), 1604211 (2017).
[Crossref]

Srivastava, G.

X. B. Zhang, F. M. Fan, M. Gheisari, and G. Srivastava, “A Novel Auto-Focus Method for Image Processing Using Laser Triangulation,” IEEE Access 7, 64837–64843 (2019).
[Crossref]

Stampfl, J.

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Stenger, N.

T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref]

Therriault, D.

R. D. Farahani, M. Dube, and D. Therriault, “Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications,” Adv. Mater. 28(28), 5794–5821 (2016).
[Crossref]

Thiel, M.

T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Travitzky, N.

N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, “Additive Manufacturing of Ceramic-Based Materials,” Adv. Eng. Mater. 16(6), 729–754 (2014).
[Crossref]

Troppenz, U.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Valouch, S.

Von Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Wang, P.

Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
[Crossref]

Wegener, M.

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D Laser Micro- and Nanoprinting: Challenges for Chemistry,” Angew. Chem., Int. Ed. 56(50), 15828–15845 (2017).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Woggon, T.

Yang, D. Y.

Yariv, A.

Zambelli, T.

L. Hirt, A. Reiser, R. Spolenak, and T. Zambelli, “Additive Manufacturing of Metal Structures at the Micrometer Scale,” Adv. Mater. 29(17), 1604211 (2017).
[Crossref]

Zhang, X. B.

X. B. Zhang, F. M. Fan, M. Gheisari, and G. Srivastava, “A Novel Auto-Focus Method for Image Processing Using Laser Triangulation,” IEEE Access 7, 64837–64843 (2019).
[Crossref]

Zheng, X.

X. Zheng, K. Cheng, X. Q. Zhou, J. Q. Lin, and X. Jing, “A method for positioning the focal spot location of two photon polymerization,” AIP Adv. 7(9), 095318 (2017).
[Crossref]

Zhou, X. Q.

X. Zheng, K. Cheng, X. Q. Zhou, J. Q. Lin, and X. Jing, “A method for positioning the focal spot location of two photon polymerization,” AIP Adv. 7(9), 095318 (2017).
[Crossref]

X. Q. Zhou, Y. H. Hou, and J. Q. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, and K. Belazaras, “Employment of fluorescence for autofocusing in direct laser writing micro-/nano-lithography,” Proc. SPIE 9192, 919212 (2014).
[Crossref]

Adv. Eng. Mater. (1)

N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, “Additive Manufacturing of Ceramic-Based Materials,” Adv. Eng. Mater. 16(6), 729–754 (2014).
[Crossref]

Adv. Mater. (3)

R. D. Farahani, M. Dube, and D. Therriault, “Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications,” Adv. Mater. 28(28), 5794–5821 (2016).
[Crossref]

L. Hirt, A. Reiser, R. Spolenak, and T. Zambelli, “Additive Manufacturing of Metal Structures at the Micrometer Scale,” Adv. Mater. 29(17), 1604211 (2017).
[Crossref]

T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref]

AIP Adv. (2)

X. Q. Zhou, Y. H. Hou, and J. Q. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

X. Zheng, K. Cheng, X. Q. Zhou, J. Q. Lin, and X. Jing, “A method for positioning the focal spot location of two photon polymerization,” AIP Adv. 7(9), 095318 (2017).
[Crossref]

Angew. Chem., Int. Ed. (2)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D Laser Micro- and Nanoprinting: Challenges for Chemistry,” Angew. Chem., Int. Ed. 56(50), 15828–15845 (2017).
[Crossref]

Appl Mater Today. (1)

J. Y. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl Mater Today. 7, 120–133 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (2)

C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B: Lasers Opt. 109(2), 259–268 (2012).
[Crossref]

C. S. Liu and S. H. Jiang, “Design and experimental validation of novel enhanced-performance autofocusing microscope,” Appl. Phys. B: Lasers Opt. 117(4), 1161–1171 (2014).
[Crossref]

Appl. Phys. Lett. (1)

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[Crossref]

Biomaterials (1)

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref]

Chem. Rev. (1)

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

IEEE Access (1)

X. B. Zhang, F. M. Fan, M. Gheisari, and G. Srivastava, “A Novel Auto-Focus Method for Image Processing Using Laser Triangulation,” IEEE Access 7, 64837–64843 (2019).
[Crossref]

J. Eur. Ceram. Soc. (1)

Z. W. Chen, Z. Y. Li, J. J. Li, C. B. Liu, C. S. Lao, Y. L. Fu, C. Y. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” J. Eur. Ceram. Soc. 39(4), 661–687 (2019).
[Crossref]

J. Mater. Eng. Perform. (1)

W. E. Frazier, “Metal Additive Manufacturing: A Review,” J. Mater. Eng. Perform. 23(6), 1917–1928 (2014).
[Crossref]

J. Microelectromech. Syst. (1)

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[Crossref]

Laser Photonics Rev. (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Mater. Des. (1)

F. Momeni, S. M. M. Hassani.N, X. Liu, and J. Ni, “A review of 4D printing,” Mater. Des. 122, 42–79 (2017).
[Crossref]

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Nat. Photonics (2)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Proc. SPIE (1)

M. Malinauskas, A. Žukauskas, and K. Belazaras, “Employment of fluorescence for autofocusing in direct laser writing micro-/nano-lithography,” Proc. SPIE 9192, 919212 (2014).
[Crossref]

Trends Biotechnol. (1)

E. D. Lemma, B. Spagnolo, M. De Vittorio, and F. Pisanello, “Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach,” Trends Biotechnol. 37(4), 358–372 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of autofocusing by simple imaging processing. The focal point is moved from inside the substrate through the photopolymer stepwise, and optical microscopic images are obtained at each position. The position of the surface of the substrate is detected by the intensity difference in ROI between before and after stepwise moving. To reduce the background noise in the obtained images, a low-pass filter was applied to each image.
Fig. 2.
Fig. 2. Optical setup for a two-photon lithography system for demonstrating autofocusing. The polymer structure was fabricated on a cover glass by scanning the fs laser in the photopolymer, and the transmitted images were captured by a CCD camera.
Fig. 3.
Fig. 3. Optical microscopic images and SEM images of voxels obtained at different positions of the focal spot. In the SEM images, the heights of the voxels are shown. The voxel was prepared by moving the laser beam upward by steps of 100 nm and the irradiation time of the laser beam was 500 ms. Although the background noise of the original optical images was high, it was improved with low-pass filter.
Fig. 4.
Fig. 4. Total light intensity difference as a function of the position of the focal spot. SEM images of the voxel formed at each position are also shown in the figure. The reduction of high-frequency noise by the low-pass filter improves the background noise of the image, and increases the difference in intensity of ROI before and after movement, thereby realizing autofocusing.
Fig. 5.
Fig. 5. Square structures fabricated by two-photon lithography with autofocusing.
Fig. 6.
Fig. 6. Microstructures produced by mass production. (a) The detailed geometry of the spiral square array. It was fabricated along the route indicated by the red arrow. (b) Optical microscope image of the fabricated array. (c) Demonstration of fabrication of microstructure array with and without autofocusing.

Metrics