Abstract

We present the design, fabrication, and characterization of a suspended slotted photonic crystal (SSPhC) cavity sensor based on the silicon-on-insulator platform. The sensing performance can be dramatically enhanced by the optimized SSPhC cavity as most of the light energy can be distributed in the low index region (∼57%). By measuring the spectrum response of the cavity sensor immersed in NaCl solutions with different mass concentrations, an ultra-high sensitivity around 656 nm/RIU has been experimentally demonstrated. Furthermore, the whole size of the cavity sensor (including the grating couplers) is 320 × 40 µm2, making the high-sensitivity device attractive for the realization of large-scale multi-channel on-chip sensors.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing

Peipeng Xu, Jiajiu Zheng, Jun Zhou, Yueyang Chen, Chen Zou, and Arka Majumdar
Opt. Express 27(3) 3609-3616 (2019)

Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing

Peipeng Xu, Kaiyuan Yao, Jiajiu Zheng, Xiaowei Guan, and Yaocheng Shi
Opt. Express 21(22) 26908-26913 (2013)

Simultaneously high-Q and high-sensitivity slotted photonic crystal nanofiber cavity for complex refractive index sensing

Chao-Sheng Deng, Ming-Jun Li, Jie Peng, Wen-Liang Liu, and Jian-Xin Zhong
J. Opt. Soc. Am. B 34(8) 1624-1631 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136(2), 227–236 (2011).
    [Crossref]
  2. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
    [Crossref]
  3. E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced Sensitivity of Subwavelength Multibox Waveguide Microring Resonator Label-Free Biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
    [Crossref]
  4. J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Subwavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
    [Crossref]
  5. H. Yan, L. Huang, X. Xu, S. Chakravarty, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24(26), 29724–29733 (2016).
    [Crossref]
  6. S. TalebiFard, S. Schmidt, W. Shi, W. Wu, N. A. Jaeger, E. Kwok, D. M. Ratner, and L. Chrostowski, “Optimized sensitivity of Silicon-on-Insulator (SOI) strip waveguide resonator sensor,” Biomed. Opt. Express 8(2), 500–511 (2017).
    [Crossref]
  7. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref]
  8. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
    [Crossref]
  9. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
    [Crossref]
  10. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref]
  11. D. Duval, A. B. González-Guerrero, S. Dante, C. Domínguez, and L. M. Lechuga, “Interferometric waveguide biosensors based on Si-technology for point-of-care diagnostic,” Proc. SPIE 8431, Silicon Photonics and Photonic Integrated Circuits III, 84310P (2012).
  12. Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
    [Crossref]
  13. P. Xu, K. Yao, J. Zheng, X. Guan, and Y. Shi, “Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing,” Opt. Express 21(22), 26908–26913 (2013).
    [Crossref]
  14. B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97(15), 151105 (2010).
    [Crossref]
  15. F. Liang and Q. Quan, “Detecting Single Gold Nanoparticles (1.8 nm) with Ultrahigh-Q Air-Mode Photonic Crystal Nanobeam Cavities,” ACS Photonics 2(12), 1692–1697 (2015).
    [Crossref]
  16. D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
    [Crossref]
  17. K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express 20(24), 27039–27044 (2012).
    [Crossref]
  18. D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
    [Crossref]
  19. P. Xu, J. Zheng, J. Zhou, Y. Chen, C. Zou, and A. Majumdar, “Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing,” Opt. Express 27(3), 3609–3616 (2019).
    [Crossref]
  20. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
    [Crossref]
  21. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [Crossref]
  22. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref]
  23. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref]
  24. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [Crossref]
  25. C.-Y. Tan and Y.-X. Huang, “Dependence of Refractive Index on Concentration and Temperature in Electrolyte Solution, Polar Solution, Nonpolar Solution, and Protein Solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
    [Crossref]
  26. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64(8), 1107–1110 (1974).
    [Crossref]

2019 (2)

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced Sensitivity of Subwavelength Multibox Waveguide Microring Resonator Label-Free Biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

P. Xu, J. Zheng, J. Zhou, Y. Chen, C. Zou, and A. Majumdar, “Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing,” Opt. Express 27(3), 3609–3616 (2019).
[Crossref]

2017 (1)

2016 (2)

2015 (4)

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

F. Liang and Q. Quan, “Detecting Single Gold Nanoparticles (1.8 nm) with Ultrahigh-Q Air-Mode Photonic Crystal Nanobeam Cavities,” ACS Photonics 2(12), 1692–1697 (2015).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
[Crossref]

C.-Y. Tan and Y.-X. Huang, “Dependence of Refractive Index on Concentration and Temperature in Electrolyte Solution, Polar Solution, Nonpolar Solution, and Protein Solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
[Crossref]

2014 (1)

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

2013 (1)

2012 (2)

K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express 20(24), 27039–27044 (2012).
[Crossref]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

2011 (2)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136(2), 227–236 (2011).
[Crossref]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref]

2010 (2)

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97(15), 151105 (2010).
[Crossref]

2009 (1)

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

2008 (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref]

2007 (3)

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref]

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref]

2004 (1)

2003 (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

1974 (1)

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Baets, R.

Bailey, R. C.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136(2), 227–236 (2011).
[Crossref]

Bartolozzi, I.

Beumer, T. A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref]

Bienstman, P.

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref]

Chakravarty, S.

Chen, R. T.

Chen, Y.

Cheung, K. C.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced Sensitivity of Subwavelength Multibox Waveguide Microring Resonator Label-Free Biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Subwavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref]

Chow, E.

Chrostowski, L.

Dante, S.

D. Duval, A. B. González-Guerrero, S. Dante, C. Domínguez, and L. M. Lechuga, “Interferometric waveguide biosensors based on Si-technology for point-of-care diagnostic,” Proc. SPIE 8431, Silicon Photonics and Photonic Integrated Circuits III, 84310P (2012).

Dattner, Y.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced Sensitivity of Subwavelength Multibox Waveguide Microring Resonator Label-Free Biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

De Vos, K.

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Di Falco, A.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

Domínguez, C.

D. Duval, A. B. González-Guerrero, S. Dante, C. Domínguez, and L. M. Lechuga, “Interferometric waveguide biosensors based on Si-technology for point-of-care diagnostic,” Proc. SPIE 8431, Silicon Photonics and Photonic Integrated Circuits III, 84310P (2012).

Donzella, V.

Dündar, M. A.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97(15), 151105 (2010).
[Crossref]

Duval, D.

D. Duval, A. B. González-Guerrero, S. Dante, C. Domínguez, and L. M. Lechuga, “Interferometric waveguide biosensors based on Si-technology for point-of-care diagnostic,” Proc. SPIE 8431, Silicon Photonics and Photonic Integrated Circuits III, 84310P (2012).

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Flueckiger, J.

Girolami, G.

González-Guerrero, A. B.

D. Duval, A. B. González-Guerrero, S. Dante, C. Domínguez, and L. M. Lechuga, “Interferometric waveguide biosensors based on Si-technology for point-of-care diagnostic,” Proc. SPIE 8431, Silicon Photonics and Photonic Integrated Circuits III, 84310P (2012).

Greve, J.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref]

Grot, A.

Guan, X.

Han, S.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

He, S.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97(15), 151105 (2010).
[Crossref]

Heideman, R. G.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref]

Heijden, R. W.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97(15), 151105 (2010).
[Crossref]

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref]

Huang, L.

Huang, Y.-X.

C.-Y. Tan and Y.-X. Huang, “Dependence of Refractive Index on Concentration and Temperature in Electrolyte Solution, Polar Solution, Nonpolar Solution, and Protein Solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
[Crossref]

Jaeger, N. A.

Ji, Y.

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Kanger, J. S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref]

Karouta, F.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97(15), 151105 (2010).
[Crossref]

Kita, S.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Krauss, T. F.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

Kwok, E.

Lambeck, P. V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref]

Laplatine, L.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced Sensitivity of Subwavelength Multibox Waveguide Microring Resonator Label-Free Biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

Lechuga, L. M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

D. Duval, A. B. González-Guerrero, S. Dante, C. Domínguez, and L. M. Lechuga, “Interferometric waveguide biosensors based on Si-technology for point-of-care diagnostic,” Proc. SPIE 8431, Silicon Photonics and Photonic Integrated Circuits III, 84310P (2012).

Liang, F.

F. Liang and Q. Quan, “Detecting Single Gold Nanoparticles (1.8 nm) with Ultrahigh-Q Air-Mode Photonic Crystal Nanobeam Cavities,” ACS Photonics 2(12), 1692–1697 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Liu, P.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

Loncar, M.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Luan, E.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced Sensitivity of Subwavelength Multibox Waveguide Microring Resonator Label-Free Biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

Majumdar, A.

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref]

Mirkarimi, L. W.

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Nötzel, R.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97(15), 151105 (2010).
[Crossref]

O’Faolain, L.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

Palmer, K. F.

Quan, Q.

F. Liang and Q. Quan, “Detecting Single Gold Nanoparticles (1.8 nm) with Ultrahigh-Q Air-Mode Photonic Crystal Nanobeam Cavities,” ACS Photonics 2(12), 1692–1697 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Ratner, D. M.

Schacht, E.

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref]

Schmidt, S.

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref]

Sherwali, A.

Shi, W.

Shi, Y.

Sigalas, M.

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Subramaniam, V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref]

TalebiFard, S.

Tan, C.-Y.

C.-Y. Tan and Y.-X. Huang, “Dependence of Refractive Index on Concentration and Temperature in Electrolyte Solution, Polar Solution, Nonpolar Solution, and Protein Solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
[Crossref]

Tian, H.

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

van Hövell, S. W.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref]

Wang, B.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97(15), 151105 (2010).
[Crossref]

Wang, C.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Washburn, A. L.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136(2), 227–236 (2011).
[Crossref]

Wijn, R. R.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref]

Williams, D.

Wink, T.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref]

Wu, W.

Xu, P.

Xu, X.

Yan, H.

Yang, D.

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Yao, K.

Ymeti, A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref]

Yun, H.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced Sensitivity of Subwavelength Multibox Waveguide Microring Resonator Label-Free Biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

Zhang, S.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

Zheng, J.

Zhou, J.

Zou, C.

ACS Photonics (1)

F. Liang and Q. Quan, “Detecting Single Gold Nanoparticles (1.8 nm) with Ultrahigh-Q Air-Mode Photonic Crystal Nanobeam Cavities,” ACS Photonics 2(12), 1692–1697 (2015).
[Crossref]

Analyst (1)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136(2), 227–236 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97(15), 151105 (2010).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (1)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced Sensitivity of Subwavelength Multibox Waveguide Microring Resonator Label-Free Biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

IEEE Photonics J. (1)

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

J. Chem. Eng. Data (1)

C.-Y. Tan and Y.-X. Huang, “Dependence of Refractive Index on Concentration and Temperature in Electrolyte Solution, Polar Solution, Nonpolar Solution, and Protein Solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

Laser Photonics Rev. (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Nano Lett. (1)

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref]

Nature (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Other (1)

D. Duval, A. B. González-Guerrero, S. Dante, C. Domínguez, and L. M. Lechuga, “Interferometric waveguide biosensors based on Si-technology for point-of-care diagnostic,” Proc. SPIE 8431, Silicon Photonics and Photonic Integrated Circuits III, 84310P (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of the proposed SSPhC cavity sensor and the zoomed view; (b) schematic of the cavity from top view and the zoomed view; (c) The electric field distribution from top view (xoy plane, z = 0) and (d) from side view (yoz plane, x = 0); (e) The calculated band diagram of the periodic SSPhC cavity unit cell with gap = 100 nm (red curve) and gap = 145 nm (blue curve), the black circle indicates the resonant frequency, and the blue region indicates the radiation modes.
Fig. 2.
Fig. 2. Influence of (a) radius, (b) gap and (c) Ws, on the sensitivity and Q-factor of SSPhC cavity sensors; (d) Wavelength shift and variance of Q-factor over different background refractive indices; (e) Simulated transmission spectrum of the cavity.
Fig. 3.
Fig. 3. The SEM pictures of the fabricated device. (a) The whole view of the device; (b) enlarged view of the TE mode grating coupler; (c) enlarged view of the supporting brackets and (d) enlarged view of the nanobeam cavity.
Fig. 4.
Fig. 4. (a) Measured transmission response of the SSPhC cavity sensor immersed into NaCl solutions of different mass concentrations (from 0% to 12%); (b) The measured transmission of the SSPhC cavity sensor, and the red circle indicates the measured spectrum and the black curve indicates the Lorentzian fit result. (c) The resonant wavelengths of the cavity with different background indices, and the measured sensitivity is 656 nm/RIU by linear fit; (d) The measured Q-factor of the cavity sensor with different background indices.

Metrics