Abstract

In this paper, we propose a fast calculation method using look-up table and wavefront-recording plane. Wavefront-recording plane method consists of two steps: the first step is the calculation of a wavefront-recording plane which is placed between the object and the hologram. In the second step, we obtain the hologram by executing diffraction calculation from the wavefront-recording plane to the hologram plane. The first step of the previous wavefront-recording plane method is time consuming. In order to obtain further acceleration to the first step, we propose high compressed look-up table method based on wavefront-recording plane. We perform numerical simulations and optical experiments to verify the proposed method. Numerical simulation results show that the calculation time reduces dramatically in comparison with previous wavefront-recording plane method and the memory usage is very small. The optical experimental results are in accord with the numerical simulation results. It is expected that proposed method can greatly reduce the computational complexity and could be widely applied in the holographic field in the future.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display

Tomoyoshi Shimobaba, Hirotaka Nakayama, Nobuyuki Masuda, and Tomoyoshi Ito
Opt. Express 18(19) 19504-19509 (2010)

Accelerating computation of CGH using symmetric compressed look-up-table in color holographic display

Tao Zhao, Juan Liu, Qiankun Gao, Pan He, Yu Han, and Youngtian Wang
Opt. Express 26(13) 16063-16073 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
    [Crossref]
  2. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array ofspatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
    [Crossref]
  3. T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
    [Crossref]
  4. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011).
    [Crossref]
  5. A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6(4), 389–392 (1992).
    [Crossref]
  6. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [Crossref]
  7. S. C. Kim and E. S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
    [Crossref]
  8. H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
    [Crossref]
  9. Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. Tanjung, C. Tan, and T. C. Chong, “Fast CGH computation using SLUT on GPU,” Opt. Express 17(21), 18543–18555 (2009).
    [Crossref]
  10. J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52(7), 1404–1412 (2013).
    [Crossref]
  11. S. C. Kim and E. S. Kim, “Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,” Appl. Opt. 48(6), 1030–1041 (2009).
    [Crossref]
  12. D. Pi, J. Liu, R. Kang, Z. Zhang, and Y. Han, “Reducing the memory usage of computer-generated hologram calculation using accurate high-compressed look-up-table method in color 3D holographic display,” Opt. Express 27(20), 28410–28422 (2019).
    [Crossref]
  13. S. C. Kim, J. H. Yoon, and E. S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47(32), 5986–5995 (2008).
    [Crossref]
  14. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation,” Appl. Opt. 53(7), 1354–1362 (2014).
    [Crossref]
  15. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
    [Crossref]
  16. Y. Pan, Y. Wang, J. Liu, X. Li, J. Jia, and Z. Zhang, “Analytical brightness compensation algorithm for traditional polygon-based method in computer-generated holography,” Appl. Opt. 52(18), 4391–4399 (2013).
    [Crossref]
  17. J. Park, S. Kim, H. Yeom, H. Kim, H. Zhang, B. Li, Y. Ji, S. Kim, and S. Ko, “Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram,” Opt. Express 23(26), 33893–33901 (2015).
    [Crossref]
  18. H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56(13), F37–F44 (2017).
    [Crossref]
  19. M. Bayraktar and M. Özcan, “Method to calculate the far field of threedimensional objects for computer-generated holography,” Appl. Opt. 49(24), 4647–4654 (2010).
    [Crossref]
  20. J. Chen and D. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23(14), 18143–18155 (2015).
    [Crossref]
  21. Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
    [Crossref]
  22. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
    [Crossref]
  23. S. C. Kim, J. M. Kim, and E. S. Kim, “Effective memory reduction of the novel look-up table with onedimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
    [Crossref]
  24. S. C. Kim, X. B. Dong, M. W. Kwon, and E. S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
    [Crossref]
  25. S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5(1), 14056 (2015).
    [Crossref]
  26. T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using runlength encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
    [Crossref]
  27. S. Jiao, Z. Zhuang, and W. Zou, “Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation,” Opt. Express 25(1), 112–123 (2017).
    [Crossref]
  28. Z. Zeng, H. Zheng, Y. Yu, and A. K. Asundic, “Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm,” Opt. Laser. Eng. 93, 47–54 (2017).
    [Crossref]
  29. C. Gao, J. Liu, X. Li, G. Xue, J. Jia, and Y. Wang, “Accurate compressed look up table method for CGH in 3D holographic display,” Opt. Express 23(26), 33194–33204 (2015).
    [Crossref]
  30. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calclulation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
    [Crossref]
  31. T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
    [Crossref]
  32. A. Phan, M. Piao, S. Gil, and N. Kim, “Generation speed and reconstructed image quality enhancement of a long-depth object using double wavefront recording planes and a GPU,” Appl. Opt. 53(22), 4817–4824 (2014).
    [Crossref]
  33. N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photonics Lett. Pol. 6(3), 90–92 (2014).
    [Crossref]
  34. A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23(17), 22149–22161 (2015).
    [Crossref]
  35. N. Hasegawa, T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of hologram generation by optimizing the arrangement of wavefront recording planes,” Appl. Opt. 56(1), A97–A103 (2017).
    [Crossref]
  36. D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer generated holograms using tilted wavefront recording plane method,” Opt. Express 23(2), 1740–1747 (2015).
    [Crossref]
  37. C. Chang, J. Wu, Y. Qi, C. Yuan, S. Nie, and J. Xia, “Simple calculation of a computer-generated hologram for lensless holographic 3d projection using a nonuniform sampled wavefront recording plane,” Appl. Opt. 55(28), 7988–7996 (2016).
    [Crossref]
  38. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
    [Crossref]

2019 (1)

2018 (1)

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref]

2017 (5)

2016 (1)

2015 (8)

D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer generated holograms using tilted wavefront recording plane method,” Opt. Express 23(2), 1740–1747 (2015).
[Crossref]

C. Gao, J. Liu, X. Li, G. Xue, J. Jia, and Y. Wang, “Accurate compressed look up table method for CGH in 3D holographic display,” Opt. Express 23(26), 33194–33204 (2015).
[Crossref]

A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23(17), 22149–22161 (2015).
[Crossref]

J. Chen and D. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23(14), 18143–18155 (2015).
[Crossref]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref]

J. Park, S. Kim, H. Yeom, H. Kim, H. Zhang, B. Li, Y. Ji, S. Kim, and S. Ko, “Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram,” Opt. Express 23(26), 33893–33901 (2015).
[Crossref]

S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5(1), 14056 (2015).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using runlength encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
[Crossref]

2014 (3)

2013 (4)

2012 (2)

S. C. Kim, J. M. Kim, and E. S. Kim, “Effective memory reduction of the novel look-up table with onedimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[Crossref]

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (4)

2008 (3)

2005 (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[Crossref]

1993 (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

1992 (1)

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6(4), 389–392 (1992).
[Crossref]

Arai, D.

Asundic, A. K.

Z. Zeng, H. Zheng, Y. Yu, and A. K. Asundic, “Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm,” Opt. Laser. Eng. 93, 47–54 (2017).
[Crossref]

Bayraktar, M.

Blinder, D.

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[Crossref]

Cao, L.

Chang, C.

Chen, J.

Chong, T. C.

Chu, D.

Dong, X. B.

S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5(1), 14056 (2015).
[Crossref]

S. C. Kim, X. B. Dong, M. W. Kwon, and E. S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[Crossref]

Endo, Y.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref]

D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer generated holograms using tilted wavefront recording plane method,” Opt. Express 23(2), 1740–1747 (2015).
[Crossref]

Finke, G.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

Gao, C.

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Gil, S.

Hahn, J.

Han, Y.

Hasegawa, N.

Hennelly, B.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

Hirayama, R.

Hiyama, D.

Ichihashi, Y.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photonics Lett. Pol. 6(3), 90–92 (2014).
[Crossref]

Ito, T.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref]

N. Hasegawa, T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of hologram generation by optimizing the arrangement of wavefront recording planes,” Appl. Opt. 56(1), A97–A103 (2017).
[Crossref]

D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer generated holograms using tilted wavefront recording plane method,” Opt. Express 23(2), 1740–1747 (2015).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using runlength encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
[Crossref]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photonics Lett. Pol. 6(3), 90–92 (2014).
[Crossref]

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[Crossref]

T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calclulation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
[Crossref]

Ji, Y.

Jia, J.

Jiang, W.

Jiao, S.

Jin, G.

Kakue, T.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref]

N. Hasegawa, T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of hologram generation by optimizing the arrangement of wavefront recording planes,” Appl. Opt. 56(1), A97–A103 (2017).
[Crossref]

D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer generated holograms using tilted wavefront recording plane method,” Opt. Express 23(2), 1740–1747 (2015).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using runlength encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
[Crossref]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photonics Lett. Pol. 6(3), 90–92 (2014).
[Crossref]

Kang, H.

Kang, R.

Kim, E. S.

Kim, H.

Kim, J. M.

Kim, N.

Kim, S.

Kim, S. C.

Ko, S.

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Kong, D.

Kozacki, T.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

Kujawinska, M.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

Kwon, M. W.

Lee, B.

Leigh, J. J. S.

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6(4), 389–392 (1992).
[Crossref]

Li, B.

Li, X.

Liang, X.

Lim, Y.

Liu, J.

D. Pi, J. Liu, R. Kang, Z. Zhang, and Y. Han, “Reducing the memory usage of computer-generated hologram calculation using accurate high-compressed look-up-table method in color 3D holographic display,” Opt. Express 27(20), 28410–28422 (2019).
[Crossref]

C. Gao, J. Liu, X. Li, G. Xue, J. Jia, and Y. Wang, “Accurate compressed look up table method for CGH in 3D holographic display,” Opt. Express 23(26), 33194–33204 (2015).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation,” Appl. Opt. 53(7), 1354–1362 (2014).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, J. Jia, and Z. Zhang, “Analytical brightness compensation algorithm for traditional polygon-based method in computer-generated holography,” Appl. Opt. 52(18), 4391–4399 (2013).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref]

J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52(7), 1404–1412 (2013).
[Crossref]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref]

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Masuda, N.

Matsushima, K.

Munteanu, A.

Murano, K.

Nakayama, H.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref]

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[Crossref]

Nie, S.

Nishi, H.

Nishitsuji, T.

Oi, R.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photonics Lett. Pol. 6(3), 90–92 (2014).
[Crossref]

Okada, N.

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photonics Lett. Pol. 6(3), 90–92 (2014).
[Crossref]

Onural, L.

Özcan, M.

Pan, Y.

Park, G.

Park, J.

Phan, A.

Pi, D.

Piao, M.

Qi, Y.

Sato, H.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref]

Schelkens, P.

Shimobaba, T.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref]

N. Hasegawa, T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of hologram generation by optimizing the arrangement of wavefront recording planes,” Appl. Opt. 56(1), A97–A103 (2017).
[Crossref]

D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer generated holograms using tilted wavefront recording plane method,” Opt. Express 23(2), 1740–1747 (2015).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using runlength encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
[Crossref]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photonics Lett. Pol. 6(3), 90–92 (2014).
[Crossref]

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[Crossref]

T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calclulation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
[Crossref]

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[Crossref]

Solanki, S.

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[Crossref]

Stein, A. D.

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6(4), 389–392 (1992).
[Crossref]

Sun, Z.

Symeonidou, A.

Tan, C.

Tanjung, R. B.

Wakunami, K.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref]

Wang, Y.

Wang, Z.

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6(4), 389–392 (1992).
[Crossref]

Wu, J.

Xia, J.

Xie, J.

Xu, X.

Xue, G.

Yamamoto, K.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photonics Lett. Pol. 6(3), 90–92 (2014).
[Crossref]

Yaras, F.

Yeom, H.

Yoon, J. H.

Yu, Y.

Z. Zeng, H. Zheng, Y. Yu, and A. K. Asundic, “Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm,” Opt. Laser. Eng. 93, 47–54 (2017).
[Crossref]

Yuan, C.

Zaperty, W.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

Zeng, Z.

Z. Zeng, H. Zheng, Y. Yu, and A. K. Asundic, “Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm,” Opt. Laser. Eng. 93, 47–54 (2017).
[Crossref]

Zhang, B.

Zhang, H.

Zhang, Z.

Zhao, Q.

Zhao, Y.

Zheng, H.

Z. Zeng, H. Zheng, Y. Yu, and A. K. Asundic, “Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm,” Opt. Laser. Eng. 93, 47–54 (2017).
[Crossref]

Zhuang, Z.

Zou, W.

ACM Trans. Graph. (1)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Appl. Opt. (13)

S. C. Kim, J. H. Yoon, and E. S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47(32), 5986–5995 (2008).
[Crossref]

S. C. Kim and E. S. Kim, “Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,” Appl. Opt. 48(6), 1030–1041 (2009).
[Crossref]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref]

M. Bayraktar and M. Özcan, “Method to calculate the far field of threedimensional objects for computer-generated holography,” Appl. Opt. 49(24), 4647–4654 (2010).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, J. Jia, and Z. Zhang, “Analytical brightness compensation algorithm for traditional polygon-based method in computer-generated holography,” Appl. Opt. 52(18), 4391–4399 (2013).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation,” Appl. Opt. 53(7), 1354–1362 (2014).
[Crossref]

A. Phan, M. Piao, S. Gil, and N. Kim, “Generation speed and reconstructed image quality enhancement of a long-depth object using double wavefront recording planes and a GPU,” Appl. Opt. 53(22), 4817–4824 (2014).
[Crossref]

S. C. Kim and E. S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref]

J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52(7), 1404–1412 (2013).
[Crossref]

C. Chang, J. Wu, Y. Qi, C. Yuan, S. Nie, and J. Xia, “Simple calculation of a computer-generated hologram for lensless holographic 3d projection using a nonuniform sampled wavefront recording plane,” Appl. Opt. 55(28), 7988–7996 (2016).
[Crossref]

N. Hasegawa, T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of hologram generation by optimizing the arrangement of wavefront recording planes,” Appl. Opt. 56(1), A97–A103 (2017).
[Crossref]

H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56(13), F37–F44 (2017).
[Crossref]

Comput. Phys. (1)

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6(4), 389–392 (1992).
[Crossref]

Computer (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[Crossref]

J. Disp. Technol. (1)

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Opt. Express (15)

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[Crossref]

F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011).
[Crossref]

S. C. Kim, J. M. Kim, and E. S. Kim, “Effective memory reduction of the novel look-up table with onedimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[Crossref]

Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. Tanjung, C. Tan, and T. C. Chong, “Fast CGH computation using SLUT on GPU,” Opt. Express 17(21), 18543–18555 (2009).
[Crossref]

D. Pi, J. Liu, R. Kang, Z. Zhang, and Y. Han, “Reducing the memory usage of computer-generated hologram calculation using accurate high-compressed look-up-table method in color 3D holographic display,” Opt. Express 27(20), 28410–28422 (2019).
[Crossref]

S. Jiao, Z. Zhuang, and W. Zou, “Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation,” Opt. Express 25(1), 112–123 (2017).
[Crossref]

S. C. Kim, X. B. Dong, M. W. Kwon, and E. S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[Crossref]

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array ofspatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
[Crossref]

D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer generated holograms using tilted wavefront recording plane method,” Opt. Express 23(2), 1740–1747 (2015).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using runlength encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
[Crossref]

J. Chen and D. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23(14), 18143–18155 (2015).
[Crossref]

A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23(17), 22149–22161 (2015).
[Crossref]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref]

C. Gao, J. Liu, X. Li, G. Xue, J. Jia, and Y. Wang, “Accurate compressed look up table method for CGH in 3D holographic display,” Opt. Express 23(26), 33194–33204 (2015).
[Crossref]

J. Park, S. Kim, H. Yeom, H. Kim, H. Zhang, B. Li, Y. Ji, S. Kim, and S. Ko, “Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram,” Opt. Express 23(26), 33893–33901 (2015).
[Crossref]

Opt. Laser. Eng. (1)

Z. Zeng, H. Zheng, Y. Yu, and A. K. Asundic, “Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm,” Opt. Laser. Eng. 93, 47–54 (2017).
[Crossref]

Opt. Lett. (1)

Photonics Lett. Pol. (1)

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photonics Lett. Pol. 6(3), 90–92 (2014).
[Crossref]

Sci. Rep. (2)

S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5(1), 14056 (2015).
[Crossref]

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Diagram of the WRP method to generate the CGH.
Fig. 2.
Fig. 2. Example of the calculation for three object points A, B and C to the WRP. (a) The position of object points A, B, C and the WRP to which they propagate. (b)–(d) The generation of CA on WRP for object points B and C. (e)–(g)The generation of CA on WRP for object points A. (h) The generation of final WRP for object points A,B and C.
Fig. 3.
Fig. 3. Comparison of CGH computation time by using WRP, LUT-WRP, Double WRPs and HCLUT-WRP methods.
Fig. 4.
Fig. 4. Numerical simulation results by using proposed method. Figures 4(a) and 4(b) are the monochrome results focused on 224mm and 234mm, respectively. Figures 4(c) and 4(d) are the color results focused on 224mm and 234mm, respectively.
Fig. 5.
Fig. 5. Setup of the holographic display system: SLM is the spatial light modulator, PC is the personal computer, L1 and L2 are the Fourier transform lens.
Fig. 6.
Fig. 6. Optical experimental results by using proposed method. Figures 6(a) and 6(b) are the monochrome results focused on 224mm and 234mm, respectively. Figures 6(c) and 6(d) are the color results focused on 224mm and 234mm, respectively.

Tables (1)

Tables Icon

Table 1. CGH computation parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

W ( ξ , η ) = j = 0 N 1 A j exp [ i ( k r j + ϕ j ) ]
H ( x p , y q ) = exp ( i k z 2 ) i λ z 2 W ( ξ , η ) exp ( ( x p ξ ) 2 + ( y q η ) 2 2 z 2 ) d x d y = exp ( i k z 2 ) i λ z 2 F 1 [ F [ W ( ξ , η ) ] F [ h ( x p , y q ) ] ]
sin θ = λ / 2 p
L j = 2 | z j z 2 | tan θ
W ( ξ , η ) = j = 1 N A j exp [ i k ( z j z 2 ) ] { exp [ ( ξ x j ) 2 + ( η y j ) 2 2 ] } ( i k z j z 2 )
W ( ξ , η ) = j = 1 N A j exp [ i k ( z j z 2 ) ] { exp [ ( ξ x j ) 2 2 ] exp [ ( η y j ) 2 2 ] } ( i k z j z 2 )
W ( ξ , η ) = j = 1 N A j L 1 ( z j ) ( H ( ξ , x j ) V ( η , y j ) ) L 2 ( z j )
W ( ξ , η ) = j z = 1 N z [ j x y = 1 N x y A j x y ( H ( ξ , x j x y ) V ( η , y j x y ) ) L 2 ( z j z ) ] L 1 ( z j z )
W ( ξ , η ) = j z = 1 N z { j x = 1 N x [ j y = 1 N y A j y V ( η , y j y ) L 2 ( z j z ) ]   H ( ξ , x j x ) L 2 ( z j z ) } L 1 ( z j z )

Metrics