Abstract

In this paper, a high-accuracy motion detection (MD) scheme based on a look-up table (LUT) is proposed and experimentally demonstrated in an optical camera communication (OCC) system. The LUT consists of predefined motions and strings that represent the predefined motions. The predefined motions include straight lines, polylines, circles, and number shapes. At the transmitter, the data with on-off keying (OOK) format is modulated on an 8×8 light-emitting diode (LED) array. The motion is generated by the user’s finger in the free space link. At the receiver, the motion and data are captured by the mobile phone front camera. The captured motion is expressed as a string indicating directions of motion, then it is matched as a predefined motion in LUT by calculating the Levenshtein distance (LD) and modified Jaccard coefficient (MJC). Using the proposed scheme, four types of motions are recognized accurately and data transmission is achieved simultaneously. Also, 1760 motion samples from 4 users are investigated over the free space transmission. The experimental results show that the accuracy of the proposed MD scheme can reach 98% at the distance without the loss of finger centroids. In addition, as the transmitter is not blocked, the bit error rate (BER) is below 1e-6 at the distance of 80cm.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communications

Shivani Rajendra Teli, Stanislav Zvanovec, and Zabih Ghassemlooy
Opt. Express 27(17) 24082-24092 (2019)

Enabling user mobility for optical camera communication using mobile phone

Jin Shi, Jing He, Jing He, Zhongwei Jiang, Yudong Zhou, and Yaoqiang Xiao
Opt. Express 26(17) 21762-21767 (2018)

CMOS camera based visible light communication (VLC) using grayscale value distribution and machine learning algorithm

Ke-Ling Hsu, Yu-Chun Wu, Yu-Cheng Chuang, Chi-Wai Chow, Yang Liu, Xin-Lan Liao, Kun-Hsien Lin, and Yi-Yuan Chen
Opt. Express 28(2) 2427-2432 (2020)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. and Tutorials 17(4), 2047–2077 (2015).
    [Crossref]
  2. S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Optical internet of things within 5G: Applications and challenges,” in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), pp. 40–45 (2018).
  3. S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
    [Crossref]
  4. J. He, Z. Li, J. He, and J. Shi, “Visible Laser Light Communication based on LDPC-Coded Multiband CAP and Adaptive Modulation,” J. Lightwave Technol. 37(4), 1207–1213 (2019).
    [Crossref]
  5. Y. Li, Z. Ghassemlooy, X. Tang, B. Lin, and Y. Zhang, “A VLC smartphone camera based indoor positioning system,” IEEE Photonics Technol. Lett. 30(13), 1171–1174 (2018).
    [Crossref]
  6. Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1–17 (2016).
    [Crossref]
  7. Z. Ong, V. P. Rachim, and W.-Y. Chung, “Novel electromagnetic-interference-free indoor environment monitoring system by mobile camera-image-sensor-based VLC,” IEEE Photonics J. 9(5), 1–11 (2017).
    [Crossref]
  8. W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang, J. Cheng, A. C. Wang, and Z. L. Wang, “Self-powered wireless optical transmission of mechanical agitation signals,” Nano Energy 47, 566–572 (2018).
    [Crossref]
  9. K. Liang, C.-W. Chow, Y. Liu, and C.-H. Yeh, “Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms,” Opt. Express 24(22), 25641–25646 (2016).
    [Crossref]
  10. J. He, Y. Zhou, R. Deng, J. Shi, J. He, Z. Jiang, and Q. Tang, “Efficient Sampling Scheme Based on Length Estimation for Optical Camera Communication,” IEEE Photonics Technol. Lett. 31(11), 841–844 (2019).
    [Crossref]
  11. J. Shi, J. He, J. He, Z. Jiang, Y. Zhou, and Y. Xiao, “Enabling user mobility for optical camera communication using mobile phone,” Opt. Express 26(17), 21762–21767 (2018).
    [Crossref]
  12. J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A novel column matrix selection scheme for VLC system with mobile phone camera,” IEEE Photonics Technol. Lett. 31(2), 149–152 (2019).
    [Crossref]
  13. W. A. Cahyadi, Y. H. Kim, Y. H. Chung, and C.-J. Ahn, “Mobile phone camera-based indoor visible light communications with rotation compensation,” IEEE Photonics J. 8(2), 1–8 (2016).
    [Crossref]
  14. A. Sewaiwar, S. V. Tiwari, and Y.-H. Chung, “Visible light communication based motion detection,” Opt. Express 23(14), 18769–18776 (2015).
    [Crossref]
  15. S. Teli, W. A. Cahyadi, and Y. H. Chung, “Optical camera communication: Motion over camera,” IEEE Commun. Mag. 55(8), 156–162 (2017).
    [Crossref]
  16. S. R. Teli, W. A. Cahyadi, and Y. H. Chung, “Trained neurons-based motion detection in optical camera communications,” Opt. Eng. 57(04), 1–4 (2018).
    [Crossref]
  17. S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communication,” Opt. Express 27(17), 24082–24092 (2019).
    [Crossref]
  18. J. Beernaerts, E. Debever, M. Lenoir, B. D. Baets, and N. V. Weghe, “A method based on the Levenshtein distance metric for the comparison of multiple movement patterns described by matrix sequences of different length,” Expert Systems With Applications 115, 373–385 (2019).
    [Crossref]
  19. H. Wang, Y. Du, J. Yi, Y. Sun, and F. Liang, “A new method for measuring topological structure similarity between complex trajectories,” IEEE Trans. Knowl. Data Eng. 31(10), 1836–1848 (2019).
    [Crossref]

2019 (6)

J. He, Z. Li, J. He, and J. Shi, “Visible Laser Light Communication based on LDPC-Coded Multiband CAP and Adaptive Modulation,” J. Lightwave Technol. 37(4), 1207–1213 (2019).
[Crossref]

J. He, Y. Zhou, R. Deng, J. Shi, J. He, Z. Jiang, and Q. Tang, “Efficient Sampling Scheme Based on Length Estimation for Optical Camera Communication,” IEEE Photonics Technol. Lett. 31(11), 841–844 (2019).
[Crossref]

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A novel column matrix selection scheme for VLC system with mobile phone camera,” IEEE Photonics Technol. Lett. 31(2), 149–152 (2019).
[Crossref]

S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communication,” Opt. Express 27(17), 24082–24092 (2019).
[Crossref]

J. Beernaerts, E. Debever, M. Lenoir, B. D. Baets, and N. V. Weghe, “A method based on the Levenshtein distance metric for the comparison of multiple movement patterns described by matrix sequences of different length,” Expert Systems With Applications 115, 373–385 (2019).
[Crossref]

H. Wang, Y. Du, J. Yi, Y. Sun, and F. Liang, “A new method for measuring topological structure similarity between complex trajectories,” IEEE Trans. Knowl. Data Eng. 31(10), 1836–1848 (2019).
[Crossref]

2018 (4)

S. R. Teli, W. A. Cahyadi, and Y. H. Chung, “Trained neurons-based motion detection in optical camera communications,” Opt. Eng. 57(04), 1–4 (2018).
[Crossref]

J. Shi, J. He, J. He, Z. Jiang, Y. Zhou, and Y. Xiao, “Enabling user mobility for optical camera communication using mobile phone,” Opt. Express 26(17), 21762–21767 (2018).
[Crossref]

W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang, J. Cheng, A. C. Wang, and Z. L. Wang, “Self-powered wireless optical transmission of mechanical agitation signals,” Nano Energy 47, 566–572 (2018).
[Crossref]

Y. Li, Z. Ghassemlooy, X. Tang, B. Lin, and Y. Zhang, “A VLC smartphone camera based indoor positioning system,” IEEE Photonics Technol. Lett. 30(13), 1171–1174 (2018).
[Crossref]

2017 (2)

Z. Ong, V. P. Rachim, and W.-Y. Chung, “Novel electromagnetic-interference-free indoor environment monitoring system by mobile camera-image-sensor-based VLC,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

S. Teli, W. A. Cahyadi, and Y. H. Chung, “Optical camera communication: Motion over camera,” IEEE Commun. Mag. 55(8), 156–162 (2017).
[Crossref]

2016 (3)

W. A. Cahyadi, Y. H. Kim, Y. H. Chung, and C.-J. Ahn, “Mobile phone camera-based indoor visible light communications with rotation compensation,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1–17 (2016).
[Crossref]

K. Liang, C.-W. Chow, Y. Liu, and C.-H. Yeh, “Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms,” Opt. Express 24(22), 25641–25646 (2016).
[Crossref]

2015 (3)

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. and Tutorials 17(4), 2047–2077 (2015).
[Crossref]

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
[Crossref]

A. Sewaiwar, S. V. Tiwari, and Y.-H. Chung, “Visible light communication based motion detection,” Opt. Express 23(14), 18769–18776 (2015).
[Crossref]

Ahn, C.-J.

W. A. Cahyadi, Y. H. Kim, Y. H. Chung, and C.-J. Ahn, “Mobile phone camera-based indoor visible light communications with rotation compensation,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Arai, S.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1–17 (2016).
[Crossref]

Baets, B. D.

J. Beernaerts, E. Debever, M. Lenoir, B. D. Baets, and N. V. Weghe, “A method based on the Levenshtein distance metric for the comparison of multiple movement patterns described by matrix sequences of different length,” Expert Systems With Applications 115, 373–385 (2019).
[Crossref]

Beernaerts, J.

J. Beernaerts, E. Debever, M. Lenoir, B. D. Baets, and N. V. Weghe, “A method based on the Levenshtein distance metric for the comparison of multiple movement patterns described by matrix sequences of different length,” Expert Systems With Applications 115, 373–385 (2019).
[Crossref]

Cahyadi, W. A.

S. R. Teli, W. A. Cahyadi, and Y. H. Chung, “Trained neurons-based motion detection in optical camera communications,” Opt. Eng. 57(04), 1–4 (2018).
[Crossref]

S. Teli, W. A. Cahyadi, and Y. H. Chung, “Optical camera communication: Motion over camera,” IEEE Commun. Mag. 55(8), 156–162 (2017).
[Crossref]

W. A. Cahyadi, Y. H. Kim, Y. H. Chung, and C.-J. Ahn, “Mobile phone camera-based indoor visible light communications with rotation compensation,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Cheng, J.

W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang, J. Cheng, A. C. Wang, and Z. L. Wang, “Self-powered wireless optical transmission of mechanical agitation signals,” Nano Energy 47, 566–572 (2018).
[Crossref]

Chow, C.-W.

Chung, W.-Y.

Z. Ong, V. P. Rachim, and W.-Y. Chung, “Novel electromagnetic-interference-free indoor environment monitoring system by mobile camera-image-sensor-based VLC,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Chung, Y. H.

S. R. Teli, W. A. Cahyadi, and Y. H. Chung, “Trained neurons-based motion detection in optical camera communications,” Opt. Eng. 57(04), 1–4 (2018).
[Crossref]

S. Teli, W. A. Cahyadi, and Y. H. Chung, “Optical camera communication: Motion over camera,” IEEE Commun. Mag. 55(8), 156–162 (2017).
[Crossref]

W. A. Cahyadi, Y. H. Kim, Y. H. Chung, and C.-J. Ahn, “Mobile phone camera-based indoor visible light communications with rotation compensation,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Chung, Y.-H.

Chvojka, P.

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
[Crossref]

Debever, E.

J. Beernaerts, E. Debever, M. Lenoir, B. D. Baets, and N. V. Weghe, “A method based on the Levenshtein distance metric for the comparison of multiple movement patterns described by matrix sequences of different length,” Expert Systems With Applications 115, 373–385 (2019).
[Crossref]

Deng, R.

J. He, Y. Zhou, R. Deng, J. Shi, J. He, Z. Jiang, and Q. Tang, “Efficient Sampling Scheme Based on Length Estimation for Optical Camera Communication,” IEEE Photonics Technol. Lett. 31(11), 841–844 (2019).
[Crossref]

Ding, W.

W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang, J. Cheng, A. C. Wang, and Z. L. Wang, “Self-powered wireless optical transmission of mechanical agitation signals,” Nano Energy 47, 566–572 (2018).
[Crossref]

Du, Y.

H. Wang, Y. Du, J. Yi, Y. Sun, and F. Liang, “A new method for measuring topological structure similarity between complex trajectories,” IEEE Trans. Knowl. Data Eng. 31(10), 1836–1848 (2019).
[Crossref]

Feng, X.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. and Tutorials 17(4), 2047–2077 (2015).
[Crossref]

Fujii, T.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1–17 (2016).
[Crossref]

Ghassemlooy, Z.

S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communication,” Opt. Express 27(17), 24082–24092 (2019).
[Crossref]

Y. Li, Z. Ghassemlooy, X. Tang, B. Lin, and Y. Zhang, “A VLC smartphone camera based indoor positioning system,” IEEE Photonics Technol. Lett. 30(13), 1171–1174 (2018).
[Crossref]

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
[Crossref]

S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Optical internet of things within 5G: Applications and challenges,” in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), pp. 40–45 (2018).

Goto, Y.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1–17 (2016).
[Crossref]

Haigh, P. A.

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
[Crossref]

He, J.

J. He, Z. Li, J. He, and J. Shi, “Visible Laser Light Communication based on LDPC-Coded Multiband CAP and Adaptive Modulation,” J. Lightwave Technol. 37(4), 1207–1213 (2019).
[Crossref]

J. He, Z. Li, J. He, and J. Shi, “Visible Laser Light Communication based on LDPC-Coded Multiband CAP and Adaptive Modulation,” J. Lightwave Technol. 37(4), 1207–1213 (2019).
[Crossref]

J. He, Y. Zhou, R. Deng, J. Shi, J. He, Z. Jiang, and Q. Tang, “Efficient Sampling Scheme Based on Length Estimation for Optical Camera Communication,” IEEE Photonics Technol. Lett. 31(11), 841–844 (2019).
[Crossref]

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A novel column matrix selection scheme for VLC system with mobile phone camera,” IEEE Photonics Technol. Lett. 31(2), 149–152 (2019).
[Crossref]

J. He, Y. Zhou, R. Deng, J. Shi, J. He, Z. Jiang, and Q. Tang, “Efficient Sampling Scheme Based on Length Estimation for Optical Camera Communication,” IEEE Photonics Technol. Lett. 31(11), 841–844 (2019).
[Crossref]

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A novel column matrix selection scheme for VLC system with mobile phone camera,” IEEE Photonics Technol. Lett. 31(2), 149–152 (2019).
[Crossref]

J. Shi, J. He, J. He, Z. Jiang, Y. Zhou, and Y. Xiao, “Enabling user mobility for optical camera communication using mobile phone,” Opt. Express 26(17), 21762–21767 (2018).
[Crossref]

J. Shi, J. He, J. He, Z. Jiang, Y. Zhou, and Y. Xiao, “Enabling user mobility for optical camera communication using mobile phone,” Opt. Express 26(17), 21762–21767 (2018).
[Crossref]

Hu, P.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. and Tutorials 17(4), 2047–2077 (2015).
[Crossref]

Jiang, Z.

J. He, Y. Zhou, R. Deng, J. Shi, J. He, Z. Jiang, and Q. Tang, “Efficient Sampling Scheme Based on Length Estimation for Optical Camera Communication,” IEEE Photonics Technol. Lett. 31(11), 841–844 (2019).
[Crossref]

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A novel column matrix selection scheme for VLC system with mobile phone camera,” IEEE Photonics Technol. Lett. 31(2), 149–152 (2019).
[Crossref]

J. Shi, J. He, J. He, Z. Jiang, Y. Zhou, and Y. Xiao, “Enabling user mobility for optical camera communication using mobile phone,” Opt. Express 26(17), 21762–21767 (2018).
[Crossref]

Kamakura, K.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1–17 (2016).
[Crossref]

Kawahito, S.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1–17 (2016).
[Crossref]

Kim, Y. H.

W. A. Cahyadi, Y. H. Kim, Y. H. Chung, and C.-J. Ahn, “Mobile phone camera-based indoor visible light communications with rotation compensation,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Lenoir, M.

J. Beernaerts, E. Debever, M. Lenoir, B. D. Baets, and N. V. Weghe, “A method based on the Levenshtein distance metric for the comparison of multiple movement patterns described by matrix sequences of different length,” Expert Systems With Applications 115, 373–385 (2019).
[Crossref]

Li, Y.

Y. Li, Z. Ghassemlooy, X. Tang, B. Lin, and Y. Zhang, “A VLC smartphone camera based indoor positioning system,” IEEE Photonics Technol. Lett. 30(13), 1171–1174 (2018).
[Crossref]

Li, Z.

Liang, F.

H. Wang, Y. Du, J. Yi, Y. Sun, and F. Liang, “A new method for measuring topological structure similarity between complex trajectories,” IEEE Trans. Knowl. Data Eng. 31(10), 1836–1848 (2019).
[Crossref]

Liang, K.

Lin, B.

Y. Li, Z. Ghassemlooy, X. Tang, B. Lin, and Y. Zhang, “A VLC smartphone camera based indoor positioning system,” IEEE Photonics Technol. Lett. 30(13), 1171–1174 (2018).
[Crossref]

Liu, Y.

Mohapatra, P.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. and Tutorials 17(4), 2047–2077 (2015).
[Crossref]

Okada, H.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1–17 (2016).
[Crossref]

Ong, Z.

Z. Ong, V. P. Rachim, and W.-Y. Chung, “Novel electromagnetic-interference-free indoor environment monitoring system by mobile camera-image-sensor-based VLC,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Pathak, P. H.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. and Tutorials 17(4), 2047–2077 (2015).
[Crossref]

Rachim, V. P.

Z. Ong, V. P. Rachim, and W.-Y. Chung, “Novel electromagnetic-interference-free indoor environment monitoring system by mobile camera-image-sensor-based VLC,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Sewaiwar, A.

Shi, J.

J. He, Z. Li, J. He, and J. Shi, “Visible Laser Light Communication based on LDPC-Coded Multiband CAP and Adaptive Modulation,” J. Lightwave Technol. 37(4), 1207–1213 (2019).
[Crossref]

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A novel column matrix selection scheme for VLC system with mobile phone camera,” IEEE Photonics Technol. Lett. 31(2), 149–152 (2019).
[Crossref]

J. He, Y. Zhou, R. Deng, J. Shi, J. He, Z. Jiang, and Q. Tang, “Efficient Sampling Scheme Based on Length Estimation for Optical Camera Communication,” IEEE Photonics Technol. Lett. 31(11), 841–844 (2019).
[Crossref]

J. Shi, J. He, J. He, Z. Jiang, Y. Zhou, and Y. Xiao, “Enabling user mobility for optical camera communication using mobile phone,” Opt. Express 26(17), 21762–21767 (2018).
[Crossref]

Sun, Y.

H. Wang, Y. Du, J. Yi, Y. Sun, and F. Liang, “A new method for measuring topological structure similarity between complex trajectories,” IEEE Trans. Knowl. Data Eng. 31(10), 1836–1848 (2019).
[Crossref]

Takai, I.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1–17 (2016).
[Crossref]

Tang, Q.

J. He, Y. Zhou, R. Deng, J. Shi, J. He, Z. Jiang, and Q. Tang, “Efficient Sampling Scheme Based on Length Estimation for Optical Camera Communication,” IEEE Photonics Technol. Lett. 31(11), 841–844 (2019).
[Crossref]

Tang, X.

Y. Li, Z. Ghassemlooy, X. Tang, B. Lin, and Y. Zhang, “A VLC smartphone camera based indoor positioning system,” IEEE Photonics Technol. Lett. 30(13), 1171–1174 (2018).
[Crossref]

Teli, S.

S. Teli, W. A. Cahyadi, and Y. H. Chung, “Optical camera communication: Motion over camera,” IEEE Commun. Mag. 55(8), 156–162 (2017).
[Crossref]

Teli, S. R.

S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communication,” Opt. Express 27(17), 24082–24092 (2019).
[Crossref]

S. R. Teli, W. A. Cahyadi, and Y. H. Chung, “Trained neurons-based motion detection in optical camera communications,” Opt. Eng. 57(04), 1–4 (2018).
[Crossref]

S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Optical internet of things within 5G: Applications and challenges,” in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), pp. 40–45 (2018).

Tiwari, S. V.

Wang, A. C.

W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang, J. Cheng, A. C. Wang, and Z. L. Wang, “Self-powered wireless optical transmission of mechanical agitation signals,” Nano Energy 47, 566–572 (2018).
[Crossref]

Wang, H.

H. Wang, Y. Du, J. Yi, Y. Sun, and F. Liang, “A new method for measuring topological structure similarity between complex trajectories,” IEEE Trans. Knowl. Data Eng. 31(10), 1836–1848 (2019).
[Crossref]

Wang, J.

W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang, J. Cheng, A. C. Wang, and Z. L. Wang, “Self-powered wireless optical transmission of mechanical agitation signals,” Nano Energy 47, 566–572 (2018).
[Crossref]

Wang, Z. L.

W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang, J. Cheng, A. C. Wang, and Z. L. Wang, “Self-powered wireless optical transmission of mechanical agitation signals,” Nano Energy 47, 566–572 (2018).
[Crossref]

Weghe, N. V.

J. Beernaerts, E. Debever, M. Lenoir, B. D. Baets, and N. V. Weghe, “A method based on the Levenshtein distance metric for the comparison of multiple movement patterns described by matrix sequences of different length,” Expert Systems With Applications 115, 373–385 (2019).
[Crossref]

Wu, C.

W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang, J. Cheng, A. C. Wang, and Z. L. Wang, “Self-powered wireless optical transmission of mechanical agitation signals,” Nano Energy 47, 566–572 (2018).
[Crossref]

Xiao, Y.

Yamazato, T.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1–17 (2016).
[Crossref]

Yeh, C.-H.

Yendo, T.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1–17 (2016).
[Crossref]

Yi, J.

H. Wang, Y. Du, J. Yi, Y. Sun, and F. Liang, “A new method for measuring topological structure similarity between complex trajectories,” IEEE Trans. Knowl. Data Eng. 31(10), 1836–1848 (2019).
[Crossref]

Zhang, Y.

Y. Li, Z. Ghassemlooy, X. Tang, B. Lin, and Y. Zhang, “A VLC smartphone camera based indoor positioning system,” IEEE Photonics Technol. Lett. 30(13), 1171–1174 (2018).
[Crossref]

Zhou, Y.

J. He, Y. Zhou, R. Deng, J. Shi, J. He, Z. Jiang, and Q. Tang, “Efficient Sampling Scheme Based on Length Estimation for Optical Camera Communication,” IEEE Photonics Technol. Lett. 31(11), 841–844 (2019).
[Crossref]

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A novel column matrix selection scheme for VLC system with mobile phone camera,” IEEE Photonics Technol. Lett. 31(2), 149–152 (2019).
[Crossref]

J. Shi, J. He, J. He, Z. Jiang, Y. Zhou, and Y. Xiao, “Enabling user mobility for optical camera communication using mobile phone,” Opt. Express 26(17), 21762–21767 (2018).
[Crossref]

Zi, Y.

W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang, J. Cheng, A. C. Wang, and Z. L. Wang, “Self-powered wireless optical transmission of mechanical agitation signals,” Nano Energy 47, 566–572 (2018).
[Crossref]

Zou, H.

W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang, J. Cheng, A. C. Wang, and Z. L. Wang, “Self-powered wireless optical transmission of mechanical agitation signals,” Nano Energy 47, 566–572 (2018).
[Crossref]

Zvanovec, S.

S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communication,” Opt. Express 27(17), 24082–24092 (2019).
[Crossref]

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
[Crossref]

S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Optical internet of things within 5G: Applications and challenges,” in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), pp. 40–45 (2018).

Expert Systems With Applications (1)

J. Beernaerts, E. Debever, M. Lenoir, B. D. Baets, and N. V. Weghe, “A method based on the Levenshtein distance metric for the comparison of multiple movement patterns described by matrix sequences of different length,” Expert Systems With Applications 115, 373–385 (2019).
[Crossref]

IEEE Commun. Mag. (1)

S. Teli, W. A. Cahyadi, and Y. H. Chung, “Optical camera communication: Motion over camera,” IEEE Commun. Mag. 55(8), 156–162 (2017).
[Crossref]

IEEE Commun. Surv. and Tutorials (1)

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surv. and Tutorials 17(4), 2047–2077 (2015).
[Crossref]

IEEE Photonics J. (3)

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1–17 (2016).
[Crossref]

Z. Ong, V. P. Rachim, and W.-Y. Chung, “Novel electromagnetic-interference-free indoor environment monitoring system by mobile camera-image-sensor-based VLC,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

W. A. Cahyadi, Y. H. Kim, Y. H. Chung, and C.-J. Ahn, “Mobile phone camera-based indoor visible light communications with rotation compensation,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A novel column matrix selection scheme for VLC system with mobile phone camera,” IEEE Photonics Technol. Lett. 31(2), 149–152 (2019).
[Crossref]

Y. Li, Z. Ghassemlooy, X. Tang, B. Lin, and Y. Zhang, “A VLC smartphone camera based indoor positioning system,” IEEE Photonics Technol. Lett. 30(13), 1171–1174 (2018).
[Crossref]

J. He, Y. Zhou, R. Deng, J. Shi, J. He, Z. Jiang, and Q. Tang, “Efficient Sampling Scheme Based on Length Estimation for Optical Camera Communication,” IEEE Photonics Technol. Lett. 31(11), 841–844 (2019).
[Crossref]

IEEE Trans. Knowl. Data Eng. (1)

H. Wang, Y. Du, J. Yi, Y. Sun, and F. Liang, “A new method for measuring topological structure similarity between complex trajectories,” IEEE Trans. Knowl. Data Eng. 31(10), 1836–1848 (2019).
[Crossref]

J. Lightwave Technol. (1)

Nano Energy (1)

W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang, J. Cheng, A. C. Wang, and Z. L. Wang, “Self-powered wireless optical transmission of mechanical agitation signals,” Nano Energy 47, 566–572 (2018).
[Crossref]

Opt. Eng. (1)

S. R. Teli, W. A. Cahyadi, and Y. H. Chung, “Trained neurons-based motion detection in optical camera communications,” Opt. Eng. 57(04), 1–4 (2018).
[Crossref]

Opt. Express (4)

Radioengineering (1)

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
[Crossref]

Other (1)

S. R. Teli, S. Zvanovec, and Z. Ghassemlooy, “Optical internet of things within 5G: Applications and challenges,” in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), pp. 40–45 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. OCC system with MD. (a) system model, (b) division of communication and identification area.
Fig. 2.
Fig. 2. (a) Defined 8 direction of motion, (b) four types of motion: i) straight line, ii) polyline, iii) circle, and iv) number shape.
Fig. 3.
Fig. 3. Flowchart of the proposed MD scheme based on LUT.
Fig. 4.
Fig. 4. The period of the LED array and the camera.
Fig. 5.
Fig. 5. Experimental setup of the OCC system for MD and communication.
Fig. 6.
Fig. 6. Accuracy of MD for 4 users. (a) Comparison of four types of motions, (b) Average accuracy of four types of motions for 4 users, and overall accuracy is 98%.
Fig. 7.
Fig. 7. MD results: straight, polyline, circle and number shape. The white dots are the detected centroids of finger. The gray arrows indicate the starting direction of motions. Note, due to the mirror effect of front camera of mobile phone, these picture have been horizontally flipped for easy viewing.
Fig. 8.
Fig. 8. The influence of transmission distance on MD performance.
Fig. 9.
Fig. 9. Grayscale histogram of LED area in image at different transmission distances.

Tables (1)

Tables Icon

Table 1. Comparison of several related works.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k i = y i + 1 y i x i + 1 x i , i = 1 , 2 , , n 1 ,
k i = y i + q y i x i + q x i , i = 1 , 2 , , n q .
M J C ξ a , ξ b = | ξ a ξ b | | ξ a ξ b | ,
R d = N D × F L 64 T ,

Metrics