Abstract

As a super-resolution imaging method, high-resolution medium wave infrared (MWIR) images can be obtained from a low-resolution focal plane array-based (FPA) sensor using compressive imaging (CI) technology. As a common problem in MWIR FPA imaging, the non-uniformity reduces image quality, which is turning worse in MWIR FPA CI. This paper investigates the source of the non-uniformity of MWIR FPA CI, both in the captured low-resolution MWIR images and in the reconstructed high-resolution ones. According to the system model and the image super-resolution computation process of FPA CI, we propose a calibration-based non-uniformity correction (NUC) method for MWIR FPA CI. Based on the actual MWIR FPA CI system, the effectiveness and practicability of the proposed NUC method are verified, obtaining better results than the traditional method. According to the theoretical analysis and experimental results, the particularities of the non-uniformity in MWIR FPA CI are discovered and discussed, which have certain great guiding significance and practical value.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. R. Weissleder and M. Nahrendorf, “Advancing biomedical imaging,” Proc. Natl. Acad. Sci. 112(47), 14424–14428 (2015).
    [Crossref]
  2. J. Grant, M. Kenney, Y. D. Shah, I. Escorcia-Carranza, and D. R. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
    [Crossref]
  3. A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron. 36(2-3), 342–473 (2012).
    [Crossref]
  4. M. Razeghi and B. Nguyen, “Advances in mid-infrared detection and imaging: a key issues review,” Rep. Prog. Phys. 77(8), 082401 (2014).
    [Crossref]
  5. F. Abolmaali, A. Brettin, A. Green, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Photonic jets for highly efficient mid-IR focal plane arrays with large angle-of-view,” Opt. Express 25(25), 31174–31185 (2017).
    [Crossref]
  6. M. S. de Cumis, S. Viciani, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D. Amato, and V. Spagnolo, “Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring,” Opt. Express 22(23), 28222–28231 (2014).
    [Crossref]
  7. B. Mizaikoff, “Infrared optical sensors for water quality monitoring,” Water Sci. Technol. 47(2), 35–42 (2003).
    [Crossref]
  8. M. Penn, S. Krucker, H. Hudson, M. Jhabvala, D. Jennings, A. Lunsford, and P. Kaufmann, “Spectral and imaging observations of a white-light solar flare in the Mid-infrared,” Astrophys. J., Lett. 819(2), L30 (2016).
    [Crossref]
  9. M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
    [Crossref]
  10. C. Hughes and M. J. Baker, “Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? A patient paradigm,” Analyst 141(2), 467–475 (2016).
    [Crossref]
  11. A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, and O. Bang, “Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy,” Laser Focus World 52(2), 50–53 (2016).
  12. M. Kowalski and M. Kastek, “Comparative studies of passive imaging in terahertz and mid-wavelength infrared ranges for object detection,” IEEE Trans. Inf. Forensics Secur. 11(9), 2028–2035 (2016).
    [Crossref]
  13. Lynred by Sofradir & Ulis, “Widest range of advanced infrared detectors,” https://www.lynred.com/products .
  14. Teledyne Scientific & Imaging, “Infrared and Visible FPAs,” http://www.teledyne-si.com/products-and-services/imaging-sensors/infrared-and-visible-fpas .
  15. Leonardo, “Infrared cameras and detectors,” https://www.leonardocompany.com/en/land/optronics/infrared-cameras-and-detectors .
  16. R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
    [Crossref]
  17. R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010).
    [Crossref]
  18. X. Chen, Z. Yu, S. Hoyos, B. M. Sadler, and J. Silva-Martinez, “A sub-Nyquist rate sampling receiver exploiting compressive sensing,” IEEE Trans. Circuits Syst. I 58(3), 507–520 (2011).
    [Crossref]
  19. A. Mahalanobis, R. Shilling, R. Murphy, and R. Muise, “Recent results of medium wave infrared compressive sensing,” Appl. Opt. 53(34), 8060–8070 (2014).
    [Crossref]
  20. Z. Wu and X. Wang, “Focal plane array-based compressive imaging in medium wave infrared: modeling, implementation, and challenges,” Appl. Opt. 58(31), 8433–8441 (2019).
    [Crossref]
  21. X. Jian, R. Lu, Q. Guo, and G. Wang, “Single image non-uniformity correction using compressive sensing,” Infrared Phys. Technol. 76, 360–364 (2016).
    [Crossref]
  22. M. Sheng, J. Xie, and Z. Fu, “Calibration-based NUC method in real-time based on IRFPA,” Phys. Procedia 22, 372–380 (2011).
    [Crossref]
  23. Y. Cao and Y. Li, “Strip non-uniformity correction in uncooled long-wave infrared focal plane array based on noise source characterization,” Opt. Commun. 339, 236–242 (2015).
    [Crossref]
  24. R. Sheng-Hui, Z. Hui-Xin, Q. Han-Lin, L. Rui, and Q. Kun, “Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array,” Infrared Phys. Technol. 76, 691–697 (2016).
    [Crossref]
  25. T. Toczek, F. Hamdi, B. Heyrman, J. Dubois, J. Miteran, and D. Ginhac, “Scene-based non-uniformity correction: from algorithm to implementation on a smart camera,” J. Syst. Architect. 59(10), 833–846 (2013).
    [Crossref]
  26. A. E. Mudau, C. J. Willers, D. Griffith, and F. P. le Roux, “Non-uniformity correction and bad pixel replacement on LWIR and MWIR images,” (IEEE, 2011), pp. 1–5.
  27. Y. Zheng, S. Lin, C. Kambhamettu, J. Yu, and S. B. Kang, “Single-image vignetting correction,” IEEE Trans. Pattern Anal. 31(12), 2243–2256 (2009).
    [Crossref]
  28. E. Hecht, Optics (Pearson Education, 2016).
  29. F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics (Cambridge University, 2017).
  30. M. A. Herman, J. Tidman, D. Hewitt, T. Weston, and L. McMackin, “A higher-speed compressive sensing camera through multi-diode design,” Proc. SPIE 8717, 871706 (2013).
    [Crossref]
  31. M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 1–6 (2017).
    [Crossref]
  32. M. Sun, H. Wang, and J. Huang, “Improving the performance of computational ghost imaging by using a quadrant detector and digital micro-scanning,” Sci Rep-UK 9(1), 4105 (2019).
    [Crossref]
  33. M. Vollmer and K. Möllmann, Infrared thermal imaging: fundamentals, research and applications (John Wiley & Sons, 2017).
  34. A. S. Unde and P. P. Deepthi, “Block compressive sensing: Individual and joint reconstruction of correlated images,” J. Vis. Commun. Image. R. 44, 187–197 (2017).
    [Crossref]
  35. Y. Sheng, X. Dun, W. Jin, F. Zhou, X. Wang, F. Mi, and S. Xiao, “The On-Orbit Non-Uniformity Correction Method with Modulated Internal Calibration Sources for Infrared Remote Sensing Systems,” Remote Sens. 10(6), 830 (2018).
    [Crossref]

2019 (2)

Z. Wu and X. Wang, “Focal plane array-based compressive imaging in medium wave infrared: modeling, implementation, and challenges,” Appl. Opt. 58(31), 8433–8441 (2019).
[Crossref]

M. Sun, H. Wang, and J. Huang, “Improving the performance of computational ghost imaging by using a quadrant detector and digital micro-scanning,” Sci Rep-UK 9(1), 4105 (2019).
[Crossref]

2018 (3)

Y. Sheng, X. Dun, W. Jin, F. Zhou, X. Wang, F. Mi, and S. Xiao, “The On-Orbit Non-Uniformity Correction Method with Modulated Internal Calibration Sources for Infrared Remote Sensing Systems,” Remote Sens. 10(6), 830 (2018).
[Crossref]

J. Grant, M. Kenney, Y. D. Shah, I. Escorcia-Carranza, and D. R. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
[Crossref]

M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
[Crossref]

2017 (3)

F. Abolmaali, A. Brettin, A. Green, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Photonic jets for highly efficient mid-IR focal plane arrays with large angle-of-view,” Opt. Express 25(25), 31174–31185 (2017).
[Crossref]

M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 1–6 (2017).
[Crossref]

A. S. Unde and P. P. Deepthi, “Block compressive sensing: Individual and joint reconstruction of correlated images,” J. Vis. Commun. Image. R. 44, 187–197 (2017).
[Crossref]

2016 (6)

R. Sheng-Hui, Z. Hui-Xin, Q. Han-Lin, L. Rui, and Q. Kun, “Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array,” Infrared Phys. Technol. 76, 691–697 (2016).
[Crossref]

M. Penn, S. Krucker, H. Hudson, M. Jhabvala, D. Jennings, A. Lunsford, and P. Kaufmann, “Spectral and imaging observations of a white-light solar flare in the Mid-infrared,” Astrophys. J., Lett. 819(2), L30 (2016).
[Crossref]

X. Jian, R. Lu, Q. Guo, and G. Wang, “Single image non-uniformity correction using compressive sensing,” Infrared Phys. Technol. 76, 360–364 (2016).
[Crossref]

C. Hughes and M. J. Baker, “Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? A patient paradigm,” Analyst 141(2), 467–475 (2016).
[Crossref]

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, and O. Bang, “Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy,” Laser Focus World 52(2), 50–53 (2016).

M. Kowalski and M. Kastek, “Comparative studies of passive imaging in terahertz and mid-wavelength infrared ranges for object detection,” IEEE Trans. Inf. Forensics Secur. 11(9), 2028–2035 (2016).
[Crossref]

2015 (2)

R. Weissleder and M. Nahrendorf, “Advancing biomedical imaging,” Proc. Natl. Acad. Sci. 112(47), 14424–14428 (2015).
[Crossref]

Y. Cao and Y. Li, “Strip non-uniformity correction in uncooled long-wave infrared focal plane array based on noise source characterization,” Opt. Commun. 339, 236–242 (2015).
[Crossref]

2014 (3)

2013 (2)

M. A. Herman, J. Tidman, D. Hewitt, T. Weston, and L. McMackin, “A higher-speed compressive sensing camera through multi-diode design,” Proc. SPIE 8717, 871706 (2013).
[Crossref]

T. Toczek, F. Hamdi, B. Heyrman, J. Dubois, J. Miteran, and D. Ginhac, “Scene-based non-uniformity correction: from algorithm to implementation on a smart camera,” J. Syst. Architect. 59(10), 833–846 (2013).
[Crossref]

2012 (1)

A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron. 36(2-3), 342–473 (2012).
[Crossref]

2011 (2)

X. Chen, Z. Yu, S. Hoyos, B. M. Sadler, and J. Silva-Martinez, “A sub-Nyquist rate sampling receiver exploiting compressive sensing,” IEEE Trans. Circuits Syst. I 58(3), 507–520 (2011).
[Crossref]

M. Sheng, J. Xie, and Z. Fu, “Calibration-based NUC method in real-time based on IRFPA,” Phys. Procedia 22, 372–380 (2011).
[Crossref]

2010 (1)

R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010).
[Crossref]

2009 (1)

Y. Zheng, S. Lin, C. Kambhamettu, J. Yu, and S. B. Kang, “Single-image vignetting correction,” IEEE Trans. Pattern Anal. 31(12), 2243–2256 (2009).
[Crossref]

2007 (1)

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[Crossref]

2003 (1)

B. Mizaikoff, “Infrared optical sensors for water quality monitoring,” Water Sci. Technol. 47(2), 35–42 (2003).
[Crossref]

Abolmaali, F.

Amato, F. D.

Astratov, V. N.

Baker, M. J.

C. Hughes and M. J. Baker, “Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? A patient paradigm,” Analyst 141(2), 467–475 (2016).
[Crossref]

Bang, O.

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, and O. Bang, “Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy,” Laser Focus World 52(2), 50–53 (2016).

Baraniuk, R. G.

R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010).
[Crossref]

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[Crossref]

Borri, S.

Brettin, A.

Cao, Y.

Y. Cao and Y. Li, “Strip non-uniformity correction in uncooled long-wave infrared focal plane array based on noise source characterization,” Opt. Commun. 339, 236–242 (2015).
[Crossref]

Cevher, V.

R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010).
[Crossref]

Chen, W.

M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 1–6 (2017).
[Crossref]

Chen, X.

X. Chen, Z. Yu, S. Hoyos, B. M. Sadler, and J. Silva-Martinez, “A sub-Nyquist rate sampling receiver exploiting compressive sensing,” IEEE Trans. Circuits Syst. I 58(3), 507–520 (2011).
[Crossref]

Cumming, D. R.

de Cumis, M. S.

De Natale, P.

Deepthi, P. P.

A. S. Unde and P. P. Deepthi, “Block compressive sensing: Individual and joint reconstruction of correlated images,” J. Vis. Commun. Image. R. 44, 187–197 (2017).
[Crossref]

Duarte, M. F.

R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010).
[Crossref]

Dubois, J.

T. Toczek, F. Hamdi, B. Heyrman, J. Dubois, J. Miteran, and D. Ginhac, “Scene-based non-uniformity correction: from algorithm to implementation on a smart camera,” J. Syst. Architect. 59(10), 833–846 (2013).
[Crossref]

Dun, X.

Y. Sheng, X. Dun, W. Jin, F. Zhou, X. Wang, F. Mi, and S. Xiao, “The On-Orbit Non-Uniformity Correction Method with Modulated Internal Calibration Sources for Infrared Remote Sensing Systems,” Remote Sens. 10(6), 830 (2018).
[Crossref]

Escorcia-Carranza, I.

Fu, Z.

M. Sheng, J. Xie, and Z. Fu, “Calibration-based NUC method in real-time based on IRFPA,” Phys. Procedia 22, 372–380 (2011).
[Crossref]

Fujiwara, H.

M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
[Crossref]

Fujiyoshi, T.

M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
[Crossref]

Ginhac, D.

T. Toczek, F. Hamdi, B. Heyrman, J. Dubois, J. Miteran, and D. Ginhac, “Scene-based non-uniformity correction: from algorithm to implementation on a smart camera,” J. Syst. Architect. 59(10), 833–846 (2013).
[Crossref]

Grant, J.

Green, A.

Griffith, D.

A. E. Mudau, C. J. Willers, D. Griffith, and F. P. le Roux, “Non-uniformity correction and bad pixel replacement on LWIR and MWIR images,” (IEEE, 2011), pp. 1–5.

Guo, Q.

X. Jian, R. Lu, Q. Guo, and G. Wang, “Single image non-uniformity correction using compressive sensing,” Infrared Phys. Technol. 76, 360–364 (2016).
[Crossref]

Hamdi, F.

T. Toczek, F. Hamdi, B. Heyrman, J. Dubois, J. Miteran, and D. Ginhac, “Scene-based non-uniformity correction: from algorithm to implementation on a smart camera,” J. Syst. Architect. 59(10), 833–846 (2013).
[Crossref]

Han-Lin, Q.

R. Sheng-Hui, Z. Hui-Xin, Q. Han-Lin, L. Rui, and Q. Kun, “Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array,” Infrared Phys. Technol. 76, 691–697 (2016).
[Crossref]

Hecht, E.

E. Hecht, Optics (Pearson Education, 2016).

Hegde, C.

R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010).
[Crossref]

Herman, M. A.

M. A. Herman, J. Tidman, D. Hewitt, T. Weston, and L. McMackin, “A higher-speed compressive sensing camera through multi-diode design,” Proc. SPIE 8717, 871706 (2013).
[Crossref]

Hewitt, D.

M. A. Herman, J. Tidman, D. Hewitt, T. Weston, and L. McMackin, “A higher-speed compressive sensing camera through multi-diode design,” Proc. SPIE 8717, 871706 (2013).
[Crossref]

Heyrman, B.

T. Toczek, F. Hamdi, B. Heyrman, J. Dubois, J. Miteran, and D. Ginhac, “Scene-based non-uniformity correction: from algorithm to implementation on a smart camera,” J. Syst. Architect. 59(10), 833–846 (2013).
[Crossref]

Honda, M.

M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
[Crossref]

Hoyos, S.

X. Chen, Z. Yu, S. Hoyos, B. M. Sadler, and J. Silva-Martinez, “A sub-Nyquist rate sampling receiver exploiting compressive sensing,” IEEE Trans. Circuits Syst. I 58(3), 507–520 (2011).
[Crossref]

Huang, J.

M. Sun, H. Wang, and J. Huang, “Improving the performance of computational ghost imaging by using a quadrant detector and digital micro-scanning,” Sci Rep-UK 9(1), 4105 (2019).
[Crossref]

Hudson, H.

M. Penn, S. Krucker, H. Hudson, M. Jhabvala, D. Jennings, A. Lunsford, and P. Kaufmann, “Spectral and imaging observations of a white-light solar flare in the Mid-infrared,” Astrophys. J., Lett. 819(2), L30 (2016).
[Crossref]

Hughes, C.

C. Hughes and M. J. Baker, “Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? A patient paradigm,” Analyst 141(2), 467–475 (2016).
[Crossref]

Hui-Xin, Z.

R. Sheng-Hui, Z. Hui-Xin, Q. Han-Lin, L. Rui, and Q. Kun, “Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array,” Infrared Phys. Technol. 76, 691–697 (2016).
[Crossref]

Jennings, D.

M. Penn, S. Krucker, H. Hudson, M. Jhabvala, D. Jennings, A. Lunsford, and P. Kaufmann, “Spectral and imaging observations of a white-light solar flare in the Mid-infrared,” Astrophys. J., Lett. 819(2), L30 (2016).
[Crossref]

Jhabvala, M.

M. Penn, S. Krucker, H. Hudson, M. Jhabvala, D. Jennings, A. Lunsford, and P. Kaufmann, “Spectral and imaging observations of a white-light solar flare in the Mid-infrared,” Astrophys. J., Lett. 819(2), L30 (2016).
[Crossref]

Jian, X.

X. Jian, R. Lu, Q. Guo, and G. Wang, “Single image non-uniformity correction using compressive sensing,” Infrared Phys. Technol. 76, 360–364 (2016).
[Crossref]

Jin, W.

Y. Sheng, X. Dun, W. Jin, F. Zhou, X. Wang, F. Mi, and S. Xiao, “The On-Orbit Non-Uniformity Correction Method with Modulated Internal Calibration Sources for Infrared Remote Sensing Systems,” Remote Sens. 10(6), 830 (2018).
[Crossref]

Kambhamettu, C.

Y. Zheng, S. Lin, C. Kambhamettu, J. Yu, and S. B. Kang, “Single-image vignetting correction,” IEEE Trans. Pattern Anal. 31(12), 2243–2256 (2009).
[Crossref]

Kamizuka, T.

M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
[Crossref]

Kang, S. B.

Y. Zheng, S. Lin, C. Kambhamettu, J. Yu, and S. B. Kang, “Single-image vignetting correction,” IEEE Trans. Pattern Anal. 31(12), 2243–2256 (2009).
[Crossref]

Kastek, M.

M. Kowalski and M. Kastek, “Comparative studies of passive imaging in terahertz and mid-wavelength infrared ranges for object detection,” IEEE Trans. Inf. Forensics Secur. 11(9), 2028–2035 (2016).
[Crossref]

Kaufmann, P.

M. Penn, S. Krucker, H. Hudson, M. Jhabvala, D. Jennings, A. Lunsford, and P. Kaufmann, “Spectral and imaging observations of a white-light solar flare in the Mid-infrared,” Astrophys. J., Lett. 819(2), L30 (2016).
[Crossref]

Kenney, M.

Kowalski, M.

M. Kowalski and M. Kastek, “Comparative studies of passive imaging in terahertz and mid-wavelength infrared ranges for object detection,” IEEE Trans. Inf. Forensics Secur. 11(9), 2028–2035 (2016).
[Crossref]

Krucker, S.

M. Penn, S. Krucker, H. Hudson, M. Jhabvala, D. Jennings, A. Lunsford, and P. Kaufmann, “Spectral and imaging observations of a white-light solar flare in the Mid-infrared,” Astrophys. J., Lett. 819(2), L30 (2016).
[Crossref]

Kun, Q.

R. Sheng-Hui, Z. Hui-Xin, Q. Han-Lin, L. Rui, and Q. Kun, “Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array,” Infrared Phys. Technol. 76, 691–697 (2016).
[Crossref]

Lamrini, S.

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, and O. Bang, “Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy,” Laser Focus World 52(2), 50–53 (2016).

le Roux, F. P.

A. E. Mudau, C. J. Willers, D. Griffith, and F. P. le Roux, “Non-uniformity correction and bad pixel replacement on LWIR and MWIR images,” (IEEE, 2011), pp. 1–5.

Li, L.

M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 1–6 (2017).
[Crossref]

Li, Y.

Y. Cao and Y. Li, “Strip non-uniformity correction in uncooled long-wave infrared focal plane array based on noise source characterization,” Opt. Commun. 339, 236–242 (2015).
[Crossref]

Limberopoulos, N. I.

Lin, S.

Y. Zheng, S. Lin, C. Kambhamettu, J. Yu, and S. B. Kang, “Single-image vignetting correction,” IEEE Trans. Pattern Anal. 31(12), 2243–2256 (2009).
[Crossref]

Lindsay, I.

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, and O. Bang, “Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy,” Laser Focus World 52(2), 50–53 (2016).

Liu, T.

M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 1–6 (2017).
[Crossref]

Lu, R.

X. Jian, R. Lu, Q. Guo, and G. Wang, “Single image non-uniformity correction using compressive sensing,” Infrared Phys. Technol. 76, 360–364 (2016).
[Crossref]

Lunsford, A.

M. Penn, S. Krucker, H. Hudson, M. Jhabvala, D. Jennings, A. Lunsford, and P. Kaufmann, “Spectral and imaging observations of a white-light solar flare in the Mid-infrared,” Astrophys. J., Lett. 819(2), L30 (2016).
[Crossref]

Mahalanobis, A.

McMackin, L.

M. A. Herman, J. Tidman, D. Hewitt, T. Weston, and L. McMackin, “A higher-speed compressive sensing camera through multi-diode design,” Proc. SPIE 8717, 871706 (2013).
[Crossref]

Mi, F.

Y. Sheng, X. Dun, W. Jin, F. Zhou, X. Wang, F. Mi, and S. Xiao, “The On-Orbit Non-Uniformity Correction Method with Modulated Internal Calibration Sources for Infrared Remote Sensing Systems,” Remote Sens. 10(6), 830 (2018).
[Crossref]

Miteran, J.

T. Toczek, F. Hamdi, B. Heyrman, J. Dubois, J. Miteran, and D. Ginhac, “Scene-based non-uniformity correction: from algorithm to implementation on a smart camera,” J. Syst. Architect. 59(10), 833–846 (2013).
[Crossref]

Miyata, T.

M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
[Crossref]

Mizaikoff, B.

B. Mizaikoff, “Infrared optical sensors for water quality monitoring,” Water Sci. Technol. 47(2), 35–42 (2003).
[Crossref]

Möllmann, K.

M. Vollmer and K. Möllmann, Infrared thermal imaging: fundamentals, research and applications (John Wiley & Sons, 2017).

Moselund, P. M.

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, and O. Bang, “Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy,” Laser Focus World 52(2), 50–53 (2016).

Mudau, A. E.

A. E. Mudau, C. J. Willers, D. Griffith, and F. P. le Roux, “Non-uniformity correction and bad pixel replacement on LWIR and MWIR images,” (IEEE, 2011), pp. 1–5.

Muise, R.

Mulders, G. D.

M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
[Crossref]

Murphy, R.

Nahrendorf, M.

R. Weissleder and M. Nahrendorf, “Advancing biomedical imaging,” Proc. Natl. Acad. Sci. 112(47), 14424–14428 (2015).
[Crossref]

Napier, B.

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, and O. Bang, “Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy,” Laser Focus World 52(2), 50–53 (2016).

Nguyen, B.

M. Razeghi and B. Nguyen, “Advances in mid-infrared detection and imaging: a key issues review,” Rep. Prog. Phys. 77(8), 082401 (2014).
[Crossref]

Ohsawa, R.

M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
[Crossref]

Okada, K.

M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
[Crossref]

Patimisco, P.

Pedrotti, F. L.

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics (Cambridge University, 2017).

Pedrotti, L. M.

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics (Cambridge University, 2017).

Pedrotti, L. S.

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics (Cambridge University, 2017).

Penn, M.

M. Penn, S. Krucker, H. Hudson, M. Jhabvala, D. Jennings, A. Lunsford, and P. Kaufmann, “Spectral and imaging observations of a white-light solar flare in the Mid-infrared,” Astrophys. J., Lett. 819(2), L30 (2016).
[Crossref]

Razeghi, M.

M. Razeghi and B. Nguyen, “Advances in mid-infrared detection and imaging: a key issues review,” Rep. Prog. Phys. 77(8), 082401 (2014).
[Crossref]

Rogalski, A.

A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron. 36(2-3), 342–473 (2012).
[Crossref]

Rui, L.

R. Sheng-Hui, Z. Hui-Xin, Q. Han-Lin, L. Rui, and Q. Kun, “Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array,” Infrared Phys. Technol. 76, 691–697 (2016).
[Crossref]

Sadler, B. M.

X. Chen, Z. Yu, S. Hoyos, B. M. Sadler, and J. Silva-Martinez, “A sub-Nyquist rate sampling receiver exploiting compressive sensing,” IEEE Trans. Circuits Syst. I 58(3), 507–520 (2011).
[Crossref]

Sampaolo, A.

Scamarcio, G.

Seddon, A. B.

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, and O. Bang, “Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy,” Laser Focus World 52(2), 50–53 (2016).

Shah, Y. D.

Sheng, M.

M. Sheng, J. Xie, and Z. Fu, “Calibration-based NUC method in real-time based on IRFPA,” Phys. Procedia 22, 372–380 (2011).
[Crossref]

Sheng, Y.

Y. Sheng, X. Dun, W. Jin, F. Zhou, X. Wang, F. Mi, and S. Xiao, “The On-Orbit Non-Uniformity Correction Method with Modulated Internal Calibration Sources for Infrared Remote Sensing Systems,” Remote Sens. 10(6), 830 (2018).
[Crossref]

Sheng-Hui, R.

R. Sheng-Hui, Z. Hui-Xin, Q. Han-Lin, L. Rui, and Q. Kun, “Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array,” Infrared Phys. Technol. 76, 691–697 (2016).
[Crossref]

Shilling, R.

Silva-Martinez, J.

X. Chen, Z. Yu, S. Hoyos, B. M. Sadler, and J. Silva-Martinez, “A sub-Nyquist rate sampling receiver exploiting compressive sensing,” IEEE Trans. Circuits Syst. I 58(3), 507–520 (2011).
[Crossref]

Spagnolo, V.

Stone, N.

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, and O. Bang, “Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy,” Laser Focus World 52(2), 50–53 (2016).

Sun, M.

M. Sun, H. Wang, and J. Huang, “Improving the performance of computational ghost imaging by using a quadrant detector and digital micro-scanning,” Sci Rep-UK 9(1), 4105 (2019).
[Crossref]

M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 1–6 (2017).
[Crossref]

Swearingen, J. R.

M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
[Crossref]

Tidman, J.

M. A. Herman, J. Tidman, D. Hewitt, T. Weston, and L. McMackin, “A higher-speed compressive sensing camera through multi-diode design,” Proc. SPIE 8717, 871706 (2013).
[Crossref]

Toczek, T.

T. Toczek, F. Hamdi, B. Heyrman, J. Dubois, J. Miteran, and D. Ginhac, “Scene-based non-uniformity correction: from algorithm to implementation on a smart camera,” J. Syst. Architect. 59(10), 833–846 (2013).
[Crossref]

Uchiyama, M.

M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
[Crossref]

Unde, A. S.

A. S. Unde and P. P. Deepthi, “Block compressive sensing: Individual and joint reconstruction of correlated images,” J. Vis. Commun. Image. R. 44, 187–197 (2017).
[Crossref]

Urbas, A. M.

Viciani, S.

Vollmer, M.

M. Vollmer and K. Möllmann, Infrared thermal imaging: fundamentals, research and applications (John Wiley & Sons, 2017).

Wang, G.

X. Jian, R. Lu, Q. Guo, and G. Wang, “Single image non-uniformity correction using compressive sensing,” Infrared Phys. Technol. 76, 360–364 (2016).
[Crossref]

Wang, H.

M. Sun, H. Wang, and J. Huang, “Improving the performance of computational ghost imaging by using a quadrant detector and digital micro-scanning,” Sci Rep-UK 9(1), 4105 (2019).
[Crossref]

Wang, X.

Z. Wu and X. Wang, “Focal plane array-based compressive imaging in medium wave infrared: modeling, implementation, and challenges,” Appl. Opt. 58(31), 8433–8441 (2019).
[Crossref]

Y. Sheng, X. Dun, W. Jin, F. Zhou, X. Wang, F. Mi, and S. Xiao, “The On-Orbit Non-Uniformity Correction Method with Modulated Internal Calibration Sources for Infrared Remote Sensing Systems,” Remote Sens. 10(6), 830 (2018).
[Crossref]

Weissleder, R.

R. Weissleder and M. Nahrendorf, “Advancing biomedical imaging,” Proc. Natl. Acad. Sci. 112(47), 14424–14428 (2015).
[Crossref]

Weston, T.

M. A. Herman, J. Tidman, D. Hewitt, T. Weston, and L. McMackin, “A higher-speed compressive sensing camera through multi-diode design,” Proc. SPIE 8717, 871706 (2013).
[Crossref]

Willers, C. J.

A. E. Mudau, C. J. Willers, D. Griffith, and F. P. le Roux, “Non-uniformity correction and bad pixel replacement on LWIR and MWIR images,” (IEEE, 2011), pp. 1–5.

Wu, Z.

Xiao, S.

Y. Sheng, X. Dun, W. Jin, F. Zhou, X. Wang, F. Mi, and S. Xiao, “The On-Orbit Non-Uniformity Correction Method with Modulated Internal Calibration Sources for Infrared Remote Sensing Systems,” Remote Sens. 10(6), 830 (2018).
[Crossref]

Xie, J.

M. Sheng, J. Xie, and Z. Fu, “Calibration-based NUC method in real-time based on IRFPA,” Phys. Procedia 22, 372–380 (2011).
[Crossref]

Yu, J.

Y. Zheng, S. Lin, C. Kambhamettu, J. Yu, and S. B. Kang, “Single-image vignetting correction,” IEEE Trans. Pattern Anal. 31(12), 2243–2256 (2009).
[Crossref]

Yu, Z.

X. Chen, Z. Yu, S. Hoyos, B. M. Sadler, and J. Silva-Martinez, “A sub-Nyquist rate sampling receiver exploiting compressive sensing,” IEEE Trans. Circuits Syst. I 58(3), 507–520 (2011).
[Crossref]

Zheng, Y.

Y. Zheng, S. Lin, C. Kambhamettu, J. Yu, and S. B. Kang, “Single-image vignetting correction,” IEEE Trans. Pattern Anal. 31(12), 2243–2256 (2009).
[Crossref]

Zhou, F.

Y. Sheng, X. Dun, W. Jin, F. Zhou, X. Wang, F. Mi, and S. Xiao, “The On-Orbit Non-Uniformity Correction Method with Modulated Internal Calibration Sources for Infrared Remote Sensing Systems,” Remote Sens. 10(6), 830 (2018).
[Crossref]

Analyst (1)

C. Hughes and M. J. Baker, “Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? A patient paradigm,” Analyst 141(2), 467–475 (2016).
[Crossref]

Appl. Opt. (2)

Astrophys. J., Lett. (1)

M. Penn, S. Krucker, H. Hudson, M. Jhabvala, D. Jennings, A. Lunsford, and P. Kaufmann, “Spectral and imaging observations of a white-light solar flare in the Mid-infrared,” Astrophys. J., Lett. 819(2), L30 (2016).
[Crossref]

IEEE Photonics J. (1)

M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 1–6 (2017).
[Crossref]

IEEE Signal Process. Mag. (1)

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[Crossref]

IEEE Trans. Circuits Syst. I (1)

X. Chen, Z. Yu, S. Hoyos, B. M. Sadler, and J. Silva-Martinez, “A sub-Nyquist rate sampling receiver exploiting compressive sensing,” IEEE Trans. Circuits Syst. I 58(3), 507–520 (2011).
[Crossref]

IEEE Trans. Inf. Forensics Secur. (1)

M. Kowalski and M. Kastek, “Comparative studies of passive imaging in terahertz and mid-wavelength infrared ranges for object detection,” IEEE Trans. Inf. Forensics Secur. 11(9), 2028–2035 (2016).
[Crossref]

IEEE Trans. Inf. Theory (1)

R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010).
[Crossref]

IEEE Trans. Pattern Anal. (1)

Y. Zheng, S. Lin, C. Kambhamettu, J. Yu, and S. B. Kang, “Single-image vignetting correction,” IEEE Trans. Pattern Anal. 31(12), 2243–2256 (2009).
[Crossref]

Infrared Phys. Technol. (2)

X. Jian, R. Lu, Q. Guo, and G. Wang, “Single image non-uniformity correction using compressive sensing,” Infrared Phys. Technol. 76, 360–364 (2016).
[Crossref]

R. Sheng-Hui, Z. Hui-Xin, Q. Han-Lin, L. Rui, and Q. Kun, “Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array,” Infrared Phys. Technol. 76, 691–697 (2016).
[Crossref]

J. Syst. Architect. (1)

T. Toczek, F. Hamdi, B. Heyrman, J. Dubois, J. Miteran, and D. Ginhac, “Scene-based non-uniformity correction: from algorithm to implementation on a smart camera,” J. Syst. Architect. 59(10), 833–846 (2013).
[Crossref]

J. Vis. Commun. Image. R. (1)

A. S. Unde and P. P. Deepthi, “Block compressive sensing: Individual and joint reconstruction of correlated images,” J. Vis. Commun. Image. R. 44, 187–197 (2017).
[Crossref]

Laser Focus World (1)

A. B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P. M. Moselund, N. Stone, and O. Bang, “Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy,” Laser Focus World 52(2), 50–53 (2016).

Opt. Commun. (1)

Y. Cao and Y. Li, “Strip non-uniformity correction in uncooled long-wave infrared focal plane array based on noise source characterization,” Opt. Commun. 339, 236–242 (2015).
[Crossref]

Opt. Express (3)

Phys. Procedia (1)

M. Sheng, J. Xie, and Z. Fu, “Calibration-based NUC method in real-time based on IRFPA,” Phys. Procedia 22, 372–380 (2011).
[Crossref]

Proc. Natl. Acad. Sci. (1)

R. Weissleder and M. Nahrendorf, “Advancing biomedical imaging,” Proc. Natl. Acad. Sci. 112(47), 14424–14428 (2015).
[Crossref]

Proc. SPIE (1)

M. A. Herman, J. Tidman, D. Hewitt, T. Weston, and L. McMackin, “A higher-speed compressive sensing camera through multi-diode design,” Proc. SPIE 8717, 871706 (2013).
[Crossref]

Prog. Quantum Electron. (1)

A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron. 36(2-3), 342–473 (2012).
[Crossref]

Publ. Astron. Soc. Jpn. (1)

M. Honda, K. Okada, T. Miyata, G. D. Mulders, J. R. Swearingen, T. Kamizuka, R. Ohsawa, T. Fujiyoshi, H. Fujiwara, and M. Uchiyama, “Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk,” Publ. Astron. Soc. Jpn. 70(3), 44 (2018).
[Crossref]

Remote Sens. (1)

Y. Sheng, X. Dun, W. Jin, F. Zhou, X. Wang, F. Mi, and S. Xiao, “The On-Orbit Non-Uniformity Correction Method with Modulated Internal Calibration Sources for Infrared Remote Sensing Systems,” Remote Sens. 10(6), 830 (2018).
[Crossref]

Rep. Prog. Phys. (1)

M. Razeghi and B. Nguyen, “Advances in mid-infrared detection and imaging: a key issues review,” Rep. Prog. Phys. 77(8), 082401 (2014).
[Crossref]

Sci Rep-UK (1)

M. Sun, H. Wang, and J. Huang, “Improving the performance of computational ghost imaging by using a quadrant detector and digital micro-scanning,” Sci Rep-UK 9(1), 4105 (2019).
[Crossref]

Water Sci. Technol. (1)

B. Mizaikoff, “Infrared optical sensors for water quality monitoring,” Water Sci. Technol. 47(2), 35–42 (2003).
[Crossref]

Other (7)

A. E. Mudau, C. J. Willers, D. Griffith, and F. P. le Roux, “Non-uniformity correction and bad pixel replacement on LWIR and MWIR images,” (IEEE, 2011), pp. 1–5.

Lynred by Sofradir & Ulis, “Widest range of advanced infrared detectors,” https://www.lynred.com/products .

Teledyne Scientific & Imaging, “Infrared and Visible FPAs,” http://www.teledyne-si.com/products-and-services/imaging-sensors/infrared-and-visible-fpas .

Leonardo, “Infrared cameras and detectors,” https://www.leonardocompany.com/en/land/optronics/infrared-cameras-and-detectors .

M. Vollmer and K. Möllmann, Infrared thermal imaging: fundamentals, research and applications (John Wiley & Sons, 2017).

E. Hecht, Optics (Pearson Education, 2016).

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics (Cambridge University, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Schematic diagram of our MWIR FPA CI system, including an imaging lens, a DMD, a relay lens, a MWIR FPA sensor and a cooling board. (b) Photograph of the actual system.
Fig. 2.
Fig. 2. The non-uniformity in the reconstructed high-resolution images of the MWIR FPA CI system. In (a)-(c), the compression ratios are 0.125, 0.25 and 0.375, respectively. The same area of all image are zoomed in to highlight the non-uniformity. The temperature of the blackbody is 100°C.
Fig. 3.
Fig. 3. The non-uniformity in the low-resolution images obtained directly from the MWIR FPA sensor. In the first row of (a) - (f), the DMD mask patterns are on the left, and the corresponding MWIR images are on the right. In the second row, color-mapped MWIR images are used to represent the distributions of light and dark areas in the original image. In the DMD mask patterns, white squares stand for “opened” and grey squares for “closed”. The temperature of the blackbody is 100°C.
Fig. 4.
Fig. 4. The non-uniformity in the reconstructed high-resolution images, with the compression ratio of 0.125. In (a), the reconstructed image is computed from the original low-resolution images without NUC. One region is zoomed in to highlight the non-uniformity, and the corresponding color-mapped images are shown in (d). Similarly, the reconstructed high-resolution image with the traditional NUC method is depicted in (b) and (e). The reconstructed high-resolution image with the proposed NUC method is shown in (c) and (f).
Fig. 5.
Fig. 5. The non-uniformity in the reconstructed high-resolution images, with the compression ratio of 0.25. In (a) and (d), the reconstructed image is computed from the original low-resolution images without NUC. (b) and (e) show the reconstructed high-resolution image with the traditional NUC method. (c) and (f) are the image obtained by the proposed NUC method.
Fig. 6.
Fig. 6. The non-uniformity in the reconstructed high-resolution images, with the compression ratio of 0.375. In (a) and (d), the reconstructed image is computed from the original low-resolution images without NUC. (b) and (e) are the image obtained by the traditional NUC method. (c) and (f) show the reconstructed high-resolution image with the proposed NUC method.
Fig. 7.
Fig. 7. The non-uniformity contrast in the reconstructed high-resolution MWIR images.
Fig. 8.
Fig. 8. The non-uniformity in the reconstructed high-resolution images, with the temperature sampling interval of 20°C. In (a) and (d), the reconstructed image is computed at the compression ratio of 0.125. For (b) and (e), the compression ratio is 0.25, and for (c) and (f), that is 0.375. All of these high-resolution images are computed with the proposed NUC method.
Fig. 9.
Fig. 9. The non-uniformity contrast between two different temperature sampling intervals.
Fig. 10.
Fig. 10. Image contrast of USAF resolution test chart among the image reconstructions without NUC, with the traditional NUC method and with the proposed NUC method. (a) and (d) are the reconstructed images without NUC. (b) and (e) are the images with the traditional NUC method. (c) and (f) are the images with the proposed NUC method. The compression ratio is 0.125 in the first row, and 0.25 in the second row.
Fig. 11.
Fig. 11. Image contrast of electric iron among the image reconstructions without NUC, with the traditional NUC method and with the proposed NUC method. (a) and (d) are the reconstructed images without NUC. (b) and (e) are the images with the traditional NUC method. (c) and (f) are the images with the proposed NUC method. The compression ratio is 0.125 in the first row, and 0.25 in the second row.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

α = n u s e d / n u s e d n a l l n a l l
R > b 2 / b 2 λ λ
E ( x , y ) = C f exp [ i k ( f + x 2 + y 2 2 f ) ] Σ E ~ ( x 1 , y 1 ) exp [ i k f ( x x 1 + y y 1 ) ] d x 1 d y 1
E ~ ( x 1 , y 1 )  =  { ρ E i n ( x 1 , y 1 ) , if the micro-mirror at  ( x 1 , y 1 )  is opened 0 , if the micro-mirror at  ( x 1 , y 1 )  is closed
y i = Φ i x i
[ y i , 1 y i , 2 y i , 3 y i , 4 ] = [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 ] [ x i , 1 x i , 2 x i , 16 ]
G ¯ T 1 , m a s k 1 = 1 N × M i = 1 N j = 1 M I T 1 , m a s k 1 ( i , j )
G T 1 , m a s k = O P m a s k O P m a s k 1 G ¯ T 1 , m a s k 1 , = 1 , , n
g m a s k ( i , j ) = G T 1 , m a s k G T 2 , m a s k I T 1 , m a s k ( i , j ) I T 2 , m a s k ( i , j ) , = 1 , , n
o m a s k ( i , j ) = I T 1 , m a s k ( i , j ) G T 2 , m a s k I T 2 , m a s k ( i , j ) G T 1 , m a s k I T 1 , m a s k ( i , j ) I T 2 , m a s k ( i , j ) , = 1 , , n
I c o r , m a s k ( i , j ) = g m a s k ( i , j ) I o r i , m a s k ( i , j ) + o m a s k ( i , j ) , = 1 , , n
N U = 1 G ¯ 1 M × N ( D + H ) i = 1 N j = 1 M ( I ( i , j ) G ¯ ) 2
G ¯ = 1 M × N ( D + H ) i = 1 N j = 1 M I ( i , j )

Metrics