Abstract

In this paper, we demonstrate a multifunctional optofluidic (MO) lens with beam steering, which is actuated by electrowetting effect. A liquid lens chamber and a liquid prism chamber are stacked to form the MO lens. When the liquid lens chamber is actuated with voltage, the curvature of liquid-liquid interface changes accordingly and the focal length of the liquid lens can be varied. In the liquid prism chamber, a navigation sheet is just placed on the position of the liquid-liquid interface. When the liquid prism chamber is applied with voltage, the navigation sheet can be tilted to different angles in order to adjust the beam steering angle and keep high beam quality. Thereby, the MO lens has the zoom lens and the beam steering functions. The experiments show that the focal length can be tuned from -180 mm to -∞ and +∞ to 161 mm and the maximum beam tilt angle can be adjusted from 0° to 22.8° when the voltage is applied on one side of the electrode. The proposed MO lens can be applied in zoom imaging system, laser detecting system, and lighting system.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography

Chao Liu, Di Wang, Qiong-Hua Wang, and Jiancheng Fang
Opt. Express 27(9) 12963-12975 (2019)

Multifunction reflector controlled by liquid piston for optical switch and beam steering

Chao Liu, Di Wang, Lei Li, and Qiong-Hua Wang
Opt. Express 27(23) 33233-33242 (2019)

Displaceable and focus-tunable electrowetting optofluidic lens

Lei Li, Jin-Hui Wang, Qiong-Hua Wang, and Shin-Tson Wu
Opt. Express 26(20) 25839-25848 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
    [Crossref]
  2. L. Liang, X. Q. Zhu, H. L. Liu, Y. Shi, and Y. Yang, “A switchable 3D liquid-liquid biconvex lens with enhanced resolution using Dean flow,” Lab Chip 17(19), 3258–3263 (2017).
    [Crossref]
  3. Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
    [Crossref]
  4. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [Crossref]
  5. P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
    [Crossref]
  6. J. H. Chang, K. D. Jung, E. Lee, M. Choi, S. W. Lee, and W. Kim, “Variable aperture controlled by microelectrofluidic iris,” Opt. Lett. 38(15), 2919–2922 (2013).
    [Crossref]
  7. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
    [Crossref]
  8. Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-high transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
    [Crossref]
  9. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
    [Crossref]
  10. S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
    [Crossref]
  11. Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
    [Crossref]
  12. M. Oliva-Ramirez, A. Barranco, M. Löffler, F. Yubero, and A. R. González-Elipe, “Optofluidic modulation of self-associated nanostructural units forming planar Bragg microcavities,” ACS Nano 10(1), 1256–1264 (2016).
    [Crossref]
  13. M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
    [Crossref]
  14. J. Wan, F. L. Xue, C. J. Liu, S. Q. Huang, S. Z. Fan, and F. R. Hu, “Optofluidic variable optical attenuator controlled by electricity,” Appl. Opt. 57(28), 8114–8118 (2018).
    [Crossref]
  15. P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
    [Crossref]
  16. F. Lahoz, I. R. Martin, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Lumin. 206, 492–497 (2019).
    [Crossref]
  17. F. Lahoz, I. R. Martín, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Alloys Compd. 777, 198–203 (2019).
    [Crossref]
  18. X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
    [Crossref]
  19. Y. Shi, X. Q. Zhu, L. Liang, and Y. Yang, “Tunable focusing properties using optofluidic Fresnel zone plates,” Lab Chip 16(23), 4554–4559 (2016).
    [Crossref]
  20. H. Huang, X. L. Mao, S. C. S. Lin, B. Kiraly, Y. P. Huang, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
    [Crossref]
  21. D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
    [Crossref]
  22. K. L. V. Grinsven, A. O. Ashtiani, and H. Jiang, “Fabrication and actuation of an electrowetting droplet array on a flexible substrate,” Micromachines 8(11), 334 (2017).
    [Crossref]
  23. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
    [Crossref]
  24. S. Xu, Y. Liu, H. Ren, and S. T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010).
    [Crossref]
  25. K. L. V. Grinsven, A. O. Ashtiani, and H. Jiang, “Flexible electrowetting on dielectric microlens array sheet,” Micromachines 10(7), 464 (2019).
    [Crossref]
  26. I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators, A 273, 317–323 (2018).
    [Crossref]
  27. N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25(6), 6700–6711 (2017).
    [Crossref]
  28. K. Mishra, A. Narayanan, and F. Mugele, “Design and wavefront characterization of an electrically tunable aspherical optofluidic lens,” Opt. Express 27(13), 17601–17609 (2019).
    [Crossref]
  29. C. Liu, D. Wang, and Q. H. Wang, “Variable aperture with graded attenuation combined with adjustable focal length lens,” Opt. Express 27(10), 14075–14084 (2019).
    [Crossref]
  30. C. Liu, D. Wang, Q. H. Wang, and J. C. Fang, “Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography,” Opt. Express 27(9), 12963–12975 (2019).
    [Crossref]
  31. C. Liu, D. Wang, and Q. H. Wang, “Holographic display system with adjustable viewing angle based on multi-focus optofluidic lens,” Opt. Express 27(13), 18210–18221 (2019).
    [Crossref]
  32. J. Cheng and C. L. Chen, “Adaptive beam tracking and steering via electrowetting controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
    [Crossref]
  33. U. Hofmann, J. Janes, and H. J. Quenzer, “High-Q MEMS resonators for laser beam scanning displays,” Micromachines 3(2), 509–528 (2012).
    [Crossref]
  34. Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
    [Crossref]
  35. C. Liu, D. Wang, and Q. H. Wang, “A multidirectional beam steering reflector actuated by hydraulic control,” Sci. Rep. 9(1), 5086 (2019).
    [Crossref]
  36. F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
    [Crossref]
  37. D. Kopp and H. Zappe, “Tubular focus-tunable fluidic lens based on structured polyimide foils,” IEEE Photonics Technol. Lett. 28(5), 597–600 (2016).
    [Crossref]
  38. F. Mugele and J. Heikenfeld, Electrowetting: Fundamental principles and practical applications, (Wiley-VCH2019).
  39. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
    [Crossref]

2019 (9)

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

F. Lahoz, I. R. Martin, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Lumin. 206, 492–497 (2019).
[Crossref]

F. Lahoz, I. R. Martín, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Alloys Compd. 777, 198–203 (2019).
[Crossref]

K. Mishra, A. Narayanan, and F. Mugele, “Design and wavefront characterization of an electrically tunable aspherical optofluidic lens,” Opt. Express 27(13), 17601–17609 (2019).
[Crossref]

C. Liu, D. Wang, and Q. H. Wang, “Variable aperture with graded attenuation combined with adjustable focal length lens,” Opt. Express 27(10), 14075–14084 (2019).
[Crossref]

C. Liu, D. Wang, Q. H. Wang, and J. C. Fang, “Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography,” Opt. Express 27(9), 12963–12975 (2019).
[Crossref]

C. Liu, D. Wang, and Q. H. Wang, “Holographic display system with adjustable viewing angle based on multi-focus optofluidic lens,” Opt. Express 27(13), 18210–18221 (2019).
[Crossref]

K. L. V. Grinsven, A. O. Ashtiani, and H. Jiang, “Flexible electrowetting on dielectric microlens array sheet,” Micromachines 10(7), 464 (2019).
[Crossref]

C. Liu, D. Wang, and Q. H. Wang, “A multidirectional beam steering reflector actuated by hydraulic control,” Sci. Rep. 9(1), 5086 (2019).
[Crossref]

2018 (3)

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators, A 273, 317–323 (2018).
[Crossref]

J. Wan, F. L. Xue, C. J. Liu, S. Q. Huang, S. Z. Fan, and F. R. Hu, “Optofluidic variable optical attenuator controlled by electricity,” Appl. Opt. 57(28), 8114–8118 (2018).
[Crossref]

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

2017 (5)

L. Liang, X. Q. Zhu, H. L. Liu, Y. Shi, and Y. Yang, “A switchable 3D liquid-liquid biconvex lens with enhanced resolution using Dean flow,” Lab Chip 17(19), 3258–3263 (2017).
[Crossref]

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25(6), 6700–6711 (2017).
[Crossref]

D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
[Crossref]

K. L. V. Grinsven, A. O. Ashtiani, and H. Jiang, “Fabrication and actuation of an electrowetting droplet array on a flexible substrate,” Micromachines 8(11), 334 (2017).
[Crossref]

2016 (3)

Y. Shi, X. Q. Zhu, L. Liang, and Y. Yang, “Tunable focusing properties using optofluidic Fresnel zone plates,” Lab Chip 16(23), 4554–4559 (2016).
[Crossref]

D. Kopp and H. Zappe, “Tubular focus-tunable fluidic lens based on structured polyimide foils,” IEEE Photonics Technol. Lett. 28(5), 597–600 (2016).
[Crossref]

M. Oliva-Ramirez, A. Barranco, M. Löffler, F. Yubero, and A. R. González-Elipe, “Optofluidic modulation of self-associated nanostructural units forming planar Bragg microcavities,” ACS Nano 10(1), 1256–1264 (2016).
[Crossref]

2015 (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

2013 (2)

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref]

J. H. Chang, K. D. Jung, E. Lee, M. Choi, S. W. Lee, and W. Kim, “Variable aperture controlled by microelectrofluidic iris,” Opt. Lett. 38(15), 2919–2922 (2013).
[Crossref]

2012 (1)

U. Hofmann, J. Janes, and H. J. Quenzer, “High-Q MEMS resonators for laser beam scanning displays,” Micromachines 3(2), 509–528 (2012).
[Crossref]

2011 (4)

J. Cheng and C. L. Chen, “Adaptive beam tracking and steering via electrowetting controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
[Crossref]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
[Crossref]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref]

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

2010 (3)

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref]

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

S. Xu, Y. Liu, H. Ren, and S. T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010).
[Crossref]

2009 (2)

H. Huang, X. L. Mao, S. C. S. Lin, B. Kiraly, Y. P. Huang, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref]

Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
[Crossref]

2008 (1)

Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-high transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
[Crossref]

2006 (3)

2005 (1)

F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Abeysinghe, D. C.

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]

Alam, M. K.

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Anderson, P. A.

Ashtiani, A. O.

K. L. V. Grinsven, A. O. Ashtiani, and H. Jiang, “Flexible electrowetting on dielectric microlens array sheet,” Micromachines 10(7), 464 (2019).
[Crossref]

K. L. V. Grinsven, A. O. Ashtiani, and H. Jiang, “Fabrication and actuation of an electrowetting droplet array on a flexible substrate,” Micromachines 8(11), 334 (2017).
[Crossref]

Bachman, H.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Bao, J. M.

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Baret, J. C.

F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Barranco, A.

M. Oliva-Ramirez, A. Barranco, M. Löffler, F. Yubero, and A. R. González-Elipe, “Optofluidic modulation of self-associated nanostructural units forming planar Bragg microcavities,” ACS Nano 10(1), 1256–1264 (2016).
[Crossref]

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]

Brender, T.

Cáceres, J. M.

F. Lahoz, I. R. Martin, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Lumin. 206, 492–497 (2019).
[Crossref]

F. Lahoz, I. R. Martín, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Alloys Compd. 777, 198–203 (2019).
[Crossref]

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

Chang, J. H.

Chen, C. L.

J. Cheng and C. L. Chen, “Adaptive beam tracking and steering via electrowetting controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
[Crossref]

Chen, K. M.

Cheng, J.

J. Cheng and C. L. Chen, “Adaptive beam tracking and steering via electrowetting controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
[Crossref]

Chin, L. K.

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref]

Choi, M.

Chung, S. K.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators, A 273, 317–323 (2018).
[Crossref]

Dai, B.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Deng, J. D.

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]

Dong, S. H.

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Fan, S. Z.

Fang, J. C.

Fox, D.

Fu, Y.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Gil-Rostra, J.

F. Lahoz, I. R. Martín, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Alloys Compd. 777, 198–203 (2019).
[Crossref]

F. Lahoz, I. R. Martin, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Lumin. 206, 492–497 (2019).
[Crossref]

González-Elipe, A. R.

M. Oliva-Ramirez, A. Barranco, M. Löffler, F. Yubero, and A. R. González-Elipe, “Optofluidic modulation of self-associated nanostructural units forming planar Bragg microcavities,” ACS Nano 10(1), 1256–1264 (2016).
[Crossref]

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref]

González-García, L.

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref]

Grinsven, K. L. V.

K. L. V. Grinsven, A. O. Ashtiani, and H. Jiang, “Flexible electrowetting on dielectric microlens array sheet,” Micromachines 10(7), 464 (2019).
[Crossref]

K. L. V. Grinsven, A. O. Ashtiani, and H. Jiang, “Fabrication and actuation of an electrowetting droplet array on a flexible substrate,” Micromachines 8(11), 334 (2017).
[Crossref]

Han, X.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Haus, J. W.

Heikenfeld, J.

Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-high transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
[Crossref]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref]

F. Mugele and J. Heikenfeld, Electrowetting: Fundamental principles and practical applications, (Wiley-VCH2019).

Hofmann, U.

U. Hofmann, J. Janes, and H. J. Quenzer, “High-Q MEMS resonators for laser beam scanning displays,” Micromachines 3(2), 509–528 (2012).
[Crossref]

Hu, F. R.

Hu, Y. L.

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Huang, H.

H. Huang, X. L. Mao, S. C. S. Lin, B. Kiraly, Y. P. Huang, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref]

Huang, S. Q.

Huang, T. J.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref]

H. Huang, X. L. Mao, S. C. S. Lin, B. Kiraly, Y. P. Huang, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref]

Huang, Y.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Huang, Y. P.

H. Huang, X. L. Mao, S. C. S. Lin, B. Kiraly, Y. P. Huang, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref]

Janes, J.

U. Hofmann, J. Janes, and H. J. Quenzer, “High-Q MEMS resonators for laser beam scanning displays,” Micromachines 3(2), 509–528 (2012).
[Crossref]

Jiang, H.

K. L. V. Grinsven, A. O. Ashtiani, and H. Jiang, “Flexible electrowetting on dielectric microlens array sheet,” Micromachines 10(7), 464 (2019).
[Crossref]

K. L. V. Grinsven, A. O. Ashtiani, and H. Jiang, “Fabrication and actuation of an electrowetting droplet array on a flexible substrate,” Micromachines 8(11), 334 (2017).
[Crossref]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]

Jiao, Z.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Jung, K. D.

Kim, W.

Kiraly, B.

H. Huang, X. L. Mao, S. C. S. Lin, B. Kiraly, Y. P. Huang, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref]

Kloss, A.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

Kopp, D.

D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
[Crossref]

D. Kopp and H. Zappe, “Tubular focus-tunable fluidic lens based on structured polyimide foils,” IEEE Photonics Technol. Lett. 28(5), 597–600 (2016).
[Crossref]

Ku, G.

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Lahoz, F.

F. Lahoz, I. R. Martín, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Alloys Compd. 777, 198–203 (2019).
[Crossref]

F. Lahoz, I. R. Martin, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Lumin. 206, 492–497 (2019).
[Crossref]

Lao, Y.

Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-high transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
[Crossref]

Lee, E.

Lee, S. W.

Li, J. R.

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Li, J. W.

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Liang, L.

L. Liang, X. Q. Zhu, H. L. Liu, Y. Shi, and Y. Yang, “A switchable 3D liquid-liquid biconvex lens with enhanced resolution using Dean flow,” Lab Chip 17(19), 3258–3263 (2017).
[Crossref]

Y. Shi, X. Q. Zhu, L. Liang, and Y. Yang, “Tunable focusing properties using optofluidic Fresnel zone plates,” Lab Chip 16(23), 4554–4559 (2016).
[Crossref]

Liebetraut, P.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

Lima, N. C.

Lin, F.

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Lin, S. C. S.

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref]

H. Huang, X. L. Mao, S. C. S. Lin, B. Kiraly, Y. P. Huang, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref]

Lin, Y. J.

Liu, A. Q.

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref]

Liu, C.

Liu, C. J.

Liu, D.

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Liu, H. L.

L. Liang, X. Q. Zhu, H. L. Liu, Y. Shi, and Y. Yang, “A switchable 3D liquid-liquid biconvex lens with enhanced resolution using Dean flow,” Lab Chip 17(19), 3258–3263 (2017).
[Crossref]

Liu, Y.

Löffler, M.

M. Oliva-Ramirez, A. Barranco, M. Löffler, F. Yubero, and A. R. González-Elipe, “Optofluidic modulation of self-associated nanostructural units forming planar Bragg microcavities,” ACS Nano 10(1), 1256–1264 (2016).
[Crossref]

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

Mao, X.

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref]

Mao, X. L.

H. Huang, X. L. Mao, S. C. S. Lin, B. Kiraly, Y. P. Huang, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref]

Martin, I. R.

F. Lahoz, I. R. Martin, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Lumin. 206, 492–497 (2019).
[Crossref]

Martín, I. R.

F. Lahoz, I. R. Martín, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Alloys Compd. 777, 198–203 (2019).
[Crossref]

Mishra, K.

Mönch, W.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Mugele, F.

K. Mishra, A. Narayanan, and F. Mugele, “Design and wavefront characterization of an electrically tunable aspherical optofluidic lens,” Opt. Express 27(13), 17601–17609 (2019).
[Crossref]

N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25(6), 6700–6711 (2017).
[Crossref]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
[Crossref]

F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

F. Mugele and J. Heikenfeld, Electrowetting: Fundamental principles and practical applications, (Wiley-VCH2019).

Müller, P.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

Murade, C. U.

Narayanan, A.

Nawaz, A. A.

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref]

Ni, J. C.

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
[Crossref]

Oh, S. H.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators, A 273, 317–323 (2018).
[Crossref]

Oliva-Ramirez, M.

M. Oliva-Ramirez, A. Barranco, M. Löffler, F. Yubero, and A. R. González-Elipe, “Optofluidic modulation of self-associated nanostructural units forming planar Bragg microcavities,” ACS Nano 10(1), 1256–1264 (2016).
[Crossref]

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref]

Park, I. S.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators, A 273, 317–323 (2018).
[Crossref]

Park, Y.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators, A 273, 317–323 (2018).
[Crossref]

Parra-Barranco, J.

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref]

Qiu, W. X.

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Quenzer, H. J.

U. Hofmann, J. Janes, and H. J. Quenzer, “High-Q MEMS resonators for laser beam scanning displays,” Micromachines 3(2), 509–528 (2012).
[Crossref]

Rao, S. L.

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Ren, H.

Roghair, I.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

Shi, Y.

L. Liang, X. Q. Zhu, H. L. Liu, Y. Shi, and Y. Yang, “A switchable 3D liquid-liquid biconvex lens with enhanced resolution using Dean flow,” Lab Chip 17(19), 3258–3263 (2017).
[Crossref]

Y. Shi, X. Q. Zhu, L. Liang, and Y. Yang, “Tunable focusing properties using optofluidic Fresnel zone plates,” Lab Chip 16(23), 4554–4559 (2016).
[Crossref]

Smith, N. R.

Soler-Carracedo, K.

F. Lahoz, I. R. Martín, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Alloys Compd. 777, 198–203 (2019).
[Crossref]

F. Lahoz, I. R. Martin, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Lumin. 206, 492–497 (2019).
[Crossref]

Song, S.

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Spengler, N.

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Stratton, Z. I.

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref]

Sugioka, K.

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Sun, B.

Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-high transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
[Crossref]

van den Ende, D.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
[Crossref]

Wan, J.

Wan, X.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Wang, D.

Wang, Q. H.

Wang, Y.

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Wang, Z. M.

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Wei, P. F.

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Wu, B.

Wu, D.

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Wu, S.

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Wu, S. T.

Xiong, S.

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref]

Xu, B.

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Xu, S.

Xue, F. L.

Yang, J. W.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators, A 273, 317–323 (2018).
[Crossref]

Yang, L.

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Yang, Y.

L. Liang, X. Q. Zhu, H. L. Liu, Y. Shi, and Y. Yang, “A switchable 3D liquid-liquid biconvex lens with enhanced resolution using Dean flow,” Lab Chip 17(19), 3258–3263 (2017).
[Crossref]

Y. Shi, X. Q. Zhu, L. Liang, and Y. Yang, “Tunable focusing properties using optofluidic Fresnel zone plates,” Lab Chip 16(23), 4554–4559 (2016).
[Crossref]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref]

Yubero, F.

F. Lahoz, I. R. Martín, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Alloys Compd. 777, 198–203 (2019).
[Crossref]

F. Lahoz, I. R. Martin, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Lumin. 206, 492–497 (2019).
[Crossref]

M. Oliva-Ramirez, A. Barranco, M. Löffler, F. Yubero, and A. R. González-Elipe, “Optofluidic modulation of self-associated nanostructural units forming planar Bragg microcavities,” ACS Nano 10(1), 1256–1264 (2016).
[Crossref]

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref]

Zappe, H.

D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
[Crossref]

D. Kopp and H. Zappe, “Tubular focus-tunable fluidic lens based on structured polyimide foils,” IEEE Photonics Technol. Lett. 28(5), 597–600 (2016).
[Crossref]

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Zhang, D.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Zhang, Q. H.

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Zhang, Y.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Zhao, C.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Zheng, L.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Zhou, K.

Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-high transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
[Crossref]

Zhu, X. Q.

L. Liang, X. Q. Zhu, H. L. Liu, Y. Shi, and Y. Yang, “A switchable 3D liquid-liquid biconvex lens with enhanced resolution using Dean flow,” Lab Chip 17(19), 3258–3263 (2017).
[Crossref]

Y. Shi, X. Q. Zhu, L. Liang, and Y. Yang, “Tunable focusing properties using optofluidic Fresnel zone plates,” Lab Chip 16(23), 4554–4559 (2016).
[Crossref]

Zhu, Z.

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Zhuang, S.

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref]

ACS Nano (1)

M. Oliva-Ramirez, A. Barranco, M. Löffler, F. Yubero, and A. R. González-Elipe, “Optofluidic modulation of self-associated nanostructural units forming planar Bragg microcavities,” ACS Nano 10(1), 1256–1264 (2016).
[Crossref]

Adv. Opt. Mater. (1)

Y. L. Hu, S. L. Rao, S. Wu, P. F. Wei, W. X. Qiu, D. Wu, B. Xu, J. C. Ni, L. Yang, J. W. Li, J. R. Li, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Cheng and C. L. Chen, “Adaptive beam tracking and steering via electrowetting controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
[Crossref]

Biomicrofluidics (1)

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Kopp and H. Zappe, “Tubular focus-tunable fluidic lens based on structured polyimide foils,” IEEE Photonics Technol. Lett. 28(5), 597–600 (2016).
[Crossref]

J. Alloys Compd. (1)

F. Lahoz, I. R. Martín, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Alloys Compd. 777, 198–203 (2019).
[Crossref]

J. Disp. Technol. (1)

Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-high transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
[Crossref]

J. Lumin. (1)

F. Lahoz, I. R. Martin, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, “Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator,” J. Lumin. 206, 492–497 (2019).
[Crossref]

J. Microelectromech. Syst. (1)

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

J. Micromech. Microeng. (1)

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

J. Phys.: Condens. Matter (1)

F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Lab Chip (4)

Y. Shi, X. Q. Zhu, L. Liang, and Y. Yang, “Tunable focusing properties using optofluidic Fresnel zone plates,” Lab Chip 16(23), 4554–4559 (2016).
[Crossref]

H. Huang, X. L. Mao, S. C. S. Lin, B. Kiraly, Y. P. Huang, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref]

L. Liang, X. Q. Zhu, H. L. Liu, Y. Shi, and Y. Yang, “A switchable 3D liquid-liquid biconvex lens with enhanced resolution using Dean flow,” Lab Chip 17(19), 3258–3263 (2017).
[Crossref]

Light: Sci. Appl. (1)

B. Dai, Z. Jiao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Micromachines (3)

K. L. V. Grinsven, A. O. Ashtiani, and H. Jiang, “Fabrication and actuation of an electrowetting droplet array on a flexible substrate,” Micromachines 8(11), 334 (2017).
[Crossref]

K. L. V. Grinsven, A. O. Ashtiani, and H. Jiang, “Flexible electrowetting on dielectric microlens array sheet,” Micromachines 10(7), 464 (2019).
[Crossref]

U. Hofmann, J. Janes, and H. J. Quenzer, “High-Q MEMS resonators for laser beam scanning displays,” Micromachines 3(2), 509–528 (2012).
[Crossref]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]

Opt. Express (10)

Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
[Crossref]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
[Crossref]

N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25(6), 6700–6711 (2017).
[Crossref]

K. Mishra, A. Narayanan, and F. Mugele, “Design and wavefront characterization of an electrically tunable aspherical optofluidic lens,” Opt. Express 27(13), 17601–17609 (2019).
[Crossref]

C. Liu, D. Wang, and Q. H. Wang, “Holographic display system with adjustable viewing angle based on multi-focus optofluidic lens,” Opt. Express 27(13), 18210–18221 (2019).
[Crossref]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref]

C. Liu, D. Wang, and Q. H. Wang, “Variable aperture with graded attenuation combined with adjustable focal length lens,” Opt. Express 27(10), 14075–14084 (2019).
[Crossref]

S. Xu, Y. Liu, H. Ren, and S. T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010).
[Crossref]

C. Liu, D. Wang, Q. H. Wang, and J. C. Fang, “Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography,” Opt. Express 27(9), 12963–12975 (2019).
[Crossref]

Opt. Lett. (1)

Sci. Adv. (1)

Y. Wang, Q. H. Zhang, Z. Zhu, F. Lin, J. D. Deng, G. Ku, S. H. Dong, S. Song, M. K. Alam, D. Liu, Z. M. Wang, and J. M. Bao, “Laser streaming: turning a laser beam into a flow of liquid,” Sci. Adv. 3(9), e1700555 (2017).
[Crossref]

Sci. Rep. (2)

C. Liu, D. Wang, and Q. H. Wang, “A multidirectional beam steering reflector actuated by hydraulic control,” Sci. Rep. 9(1), 5086 (2019).
[Crossref]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

Sens. Actuators, A (1)

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators, A 273, 317–323 (2018).
[Crossref]

Other (1)

F. Mugele and J. Heikenfeld, Electrowetting: Fundamental principles and practical applications, (Wiley-VCH2019).

Supplementary Material (3)

NameDescription
» Visualization 1       The dynamic response video of the liquid lens.
» Visualization 2       The principle dynamic video of the beam steering function.
» Visualization 3       The dynamic response video of the lighting application.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Structure and mechanism of the MO lens. (a) Cross-section of the MO lens and the pattern of the LP electrode; (b) Applying voltage on one side of the LP electrode; (c) Applying voltage on the opposite side of the LP electrode; (d) Applying voltages on both the LP and LL parts.
Fig. 2.
Fig. 2. Actitation mechanism of the LP part. (a) Actitation mechanism of electrowetting in the sidewall of the LP chamber; (b) Mechanism of the beam steering by the navigation sheet when different voltages are applied.
Fig. 3.
Fig. 3. Fabrication procedure of the MO lens. (a) Coating the dielectric layers on the bottom substrate; (b) Coating the dielectric layers on the sidewall of the LL chamber; (c) Coating the dielectric layers on the top substrate; (d) Fixing the LP chamber; (e) Fabricating the electrodes and coating the dielectric layers on the sidewall of the LP chamber; (f) Fixing the navigation sheet and filling the liquids; (g) Elements of the MO lens.
Fig. 4.
Fig. 4. Captured images changing during driven procedure. (a) Initial state; (b) State when U = 40 V; (c) State when U = 50 V; (d) State when U = 60 V; (e) State when U = 70 V; (f) State when U = 80 V.
Fig. 5.
Fig. 5. Focal lengths change when the MO lens is applied with voltages.
Fig. 6.
Fig. 6. Beam steering experimental setup.
Fig. 7.
Fig. 7. Tilt angles of the liquid-liquid interface. (a) U3=110 V; (b) No voltage; (c) U6=110 V.
Fig. 8.
Fig. 8. Beam steering experiments. (a) Initial state; (b) Applied voltage of U1; (c) Applied voltage of U2; (d) Applied voltage of U3; (e) Applied voltage of U4; (f) Applied voltage of U5; (g) Applied voltage of U6.
Fig. 9.
Fig. 9. Tilt angles when different sides of the electrodes are actuated.
Fig. 10.
Fig. 10. Response time of the MO lens.
Fig. 11.
Fig. 11. Application of adjusting the FOV. (a) Initial state; (b) Applied voltage U1; (c) Applied voltage U2; (d) Applied voltage U3; (e) Applied voltage U4; (f) Applied voltage U5; (g) Applied voltage U6.
Fig. 12.
Fig. 12. Application of lighting. (a) LL part driven with 30 V-50 V and LP part driven with 0 V; (b) LL part driven with 30 V-50 V and LP part driven with 70 V on one electrode.

Tables (1)

Tables Icon

Table 1. Characteristics of the materials in the MO lens

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

cos θ Y = cos θ 0 + U 2 ε 2 d γ 12 ,
γ D 2 + γ 12 cos θ 0 = γ 1 D ,
F + γ D 2 = γ 12 cos θ Y + γ 1 D ,

Metrics