Abstract

Silicon has been studied as a room-temperature material for electrical-based gas sensing but the sensing performance after surface passivation or natural aging is unacceptable. In the present work, we report that for a gas sensor based on the femtosecond-laser structured silicon hyperdoped with sulfur, the gas sensing performance after long-term aging can be significantly enhanced by using a photovoltaic sensing mechanism. After sensor aging, the recorded response/recovery time is 478/2550 s in response to 50 ppm NH3. In comparison, by using the new mechanism, the response/recovery time is much decreased and the shortest is recorded as 292/930 s. Moreover, the relative gas response could be increased by nearly 2 orders of magnitude. Even at a dryer environment where the gas adsorption/desorption process could take hours long, a much enhanced and rapid response is available in the same way. The enhanced sensing performance could be controlled by the bias voltage or by the light density. The results show that for the aged silicon surface, it can also be a potential gas sensing material through different working principles.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced responsivity of co-hyperdoped silicon photodetectors fabricated by femtosecond laser irradiation in a mixed SF6/NF3 atmosphere

Sheng-Xiang Ma, Xiao-Long Liu, Hai-Bin Sun, Yang Zhao, Yue Hu, Xi-Jing Ning, Li Zhao, and Jun Zhuang
J. Opt. Soc. Am. B 37(3) 730-735 (2020)

Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure

Zixi Jia, Qiang Wu, Xiaorong Jin, Song Huang, Jinze Li, Ming Yang, Hui Huang, Jianghong Yao, and Jingjun Xu
Opt. Express 28(4) 5239-5247 (2020)

Localized surface plasmon enhanced Ga2O3 solar blind photodetectors

Ruifan Tang, Guanqi Li, Cheng Li, Jinchai Li, Yanfang Zhang, Kai Huang, Jiandong Ye, Cheng Li, Junyong Kang, Rong Zhang, and Youdou Zheng
Opt. Express 28(4) 5731-5740 (2020)

References

  • View by:
  • |
  • |
  • |

  1. L. T. T. Tuyen, D. X. Vinh, P. H. Khoi, and G. Gerlach, “Highly sensitive NOx gas sensor based on a Au/n-Si Schottky diode,” Sens. Actuators, B 84(2-3), 226–230 (2002).
    [Crossref]
  2. G. Korotcenkov and B. K. Cho, “Porous semiconductors: advanced material for gas sensor applications,” Crit. Rev. Solid State Mater. Sci. 35(1), 1–37 (2010).
    [Crossref]
  3. X.-L. Liu, S.-W. Zhu, H.-B. Sun, Y. Hu, S.-X. Ma, X.-J. Ning, L. Zhao, and J. Zhuang, “‘Infinite sensitivity’ of black silicon ammonia sensor achieved by optical and electric dual drives,” ACS Appl. Mater. Interfaces 10(5), 5061–5071 (2018).
    [Crossref]
  4. A. Helwig, G. Müller, G. Sberveglieri, and G. Faglia, “Gas sensing properties of hydrogenated amorphous silicon films,” IEEE Sens. J. 7(11), 1506–1512 (2007).
    [Crossref]
  5. J. Yun, C. Y. Jin, J. H. Ahn, S. Jeon, and I. Park, “A self-heated silicon nanowire array: Selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications,” Nanoscale 5(15), 6851–6856 (2013).
    [Crossref]
  6. X.-L. Liu, S.-X. Ma, S.-W. Zhu, Y. Zhao, X.-J. Ning, L. Zhao, and J. Zhuang, “Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyperdoped silicon,” Sens. Actuators, B 291(C), 345–353 (2019).
    [Crossref]
  7. N. K. Ali, M. R. Hashim, and A. A. Aziz, “Effects of surface passivation in porous silicon as H2 gas sensor,” Solid-State Electron. 52(7), 1071–1074 (2008).
    [Crossref]
  8. J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies, T. Jalkanen, R. Hahn, P. Schmuki, and E. Makila, “Thermal carbonization of porous silicon: The current status and recent applications,” ECS Trans. 69(2), 167–176 (2015).
    [Crossref]
  9. B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications—a review,” Sens. Actuators, B 107(2), 666–677 (2005).
    [Crossref]
  10. X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
    [Crossref]
  11. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
    [Crossref]
  12. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
    [Crossref]
  13. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79(7), 1635–1641 (2004).
    [Crossref]
  14. G. Korotcenkov, Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications (Springer, 2014).

2019 (1)

X.-L. Liu, S.-X. Ma, S.-W. Zhu, Y. Zhao, X.-J. Ning, L. Zhao, and J. Zhuang, “Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyperdoped silicon,” Sens. Actuators, B 291(C), 345–353 (2019).
[Crossref]

2018 (1)

X.-L. Liu, S.-W. Zhu, H.-B. Sun, Y. Hu, S.-X. Ma, X.-J. Ning, L. Zhao, and J. Zhuang, “‘Infinite sensitivity’ of black silicon ammonia sensor achieved by optical and electric dual drives,” ACS Appl. Mater. Interfaces 10(5), 5061–5071 (2018).
[Crossref]

2015 (1)

J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies, T. Jalkanen, R. Hahn, P. Schmuki, and E. Makila, “Thermal carbonization of porous silicon: The current status and recent applications,” ECS Trans. 69(2), 167–176 (2015).
[Crossref]

2014 (1)

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

2013 (1)

J. Yun, C. Y. Jin, J. H. Ahn, S. Jeon, and I. Park, “A self-heated silicon nanowire array: Selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications,” Nanoscale 5(15), 6851–6856 (2013).
[Crossref]

2010 (1)

G. Korotcenkov and B. K. Cho, “Porous semiconductors: advanced material for gas sensor applications,” Crit. Rev. Solid State Mater. Sci. 35(1), 1–37 (2010).
[Crossref]

2008 (1)

N. K. Ali, M. R. Hashim, and A. A. Aziz, “Effects of surface passivation in porous silicon as H2 gas sensor,” Solid-State Electron. 52(7), 1071–1074 (2008).
[Crossref]

2007 (1)

A. Helwig, G. Müller, G. Sberveglieri, and G. Faglia, “Gas sensing properties of hydrogenated amorphous silicon films,” IEEE Sens. J. 7(11), 1506–1512 (2007).
[Crossref]

2005 (2)

B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications—a review,” Sens. Actuators, B 107(2), 666–677 (2005).
[Crossref]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref]

2004 (2)

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79(7), 1635–1641 (2004).
[Crossref]

2002 (1)

L. T. T. Tuyen, D. X. Vinh, P. H. Khoi, and G. Gerlach, “Highly sensitive NOx gas sensor based on a Au/n-Si Schottky diode,” Sens. Actuators, B 84(2-3), 226–230 (2002).
[Crossref]

Ahn, J. H.

J. Yun, C. Y. Jin, J. H. Ahn, S. Jeon, and I. Park, “A self-heated silicon nanowire array: Selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications,” Nanoscale 5(15), 6851–6856 (2013).
[Crossref]

Ali, N. K.

N. K. Ali, M. R. Hashim, and A. A. Aziz, “Effects of surface passivation in porous silicon as H2 gas sensor,” Solid-State Electron. 52(7), 1071–1074 (2008).
[Crossref]

Aziz, A. A.

N. K. Ali, M. R. Hashim, and A. A. Aziz, “Effects of surface passivation in porous silicon as H2 gas sensor,” Solid-State Electron. 52(7), 1071–1074 (2008).
[Crossref]

Aziz, M. J.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

Carey, J. E.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79(7), 1635–1641 (2004).
[Crossref]

Cho, B. K.

G. Korotcenkov and B. K. Cho, “Porous semiconductors: advanced material for gas sensor applications,” Crit. Rev. Solid State Mater. Sci. 35(1), 1–37 (2010).
[Crossref]

Cole, J. M.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Coxon, P. R.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Crouch, C. H.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79(7), 1635–1641 (2004).
[Crossref]

Faglia, G.

A. Helwig, G. Müller, G. Sberveglieri, and G. Faglia, “Gas sensing properties of hydrogenated amorphous silicon films,” IEEE Sens. J. 7(11), 1506–1512 (2007).
[Crossref]

Fray, D. J.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Génin, F. Y.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79(7), 1635–1641 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

Gerlach, G.

L. T. T. Tuyen, D. X. Vinh, P. H. Khoi, and G. Gerlach, “Highly sensitive NOx gas sensor based on a Au/n-Si Schottky diode,” Sens. Actuators, B 84(2-3), 226–230 (2002).
[Crossref]

Hahn, R.

J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies, T. Jalkanen, R. Hahn, P. Schmuki, and E. Makila, “Thermal carbonization of porous silicon: The current status and recent applications,” ECS Trans. 69(2), 167–176 (2015).
[Crossref]

Hakamies, M.

J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies, T. Jalkanen, R. Hahn, P. Schmuki, and E. Makila, “Thermal carbonization of porous silicon: The current status and recent applications,” ECS Trans. 69(2), 167–176 (2015).
[Crossref]

Hashim, M. R.

N. K. Ali, M. R. Hashim, and A. A. Aziz, “Effects of surface passivation in porous silicon as H2 gas sensor,” Solid-State Electron. 52(7), 1071–1074 (2008).
[Crossref]

Helwig, A.

A. Helwig, G. Müller, G. Sberveglieri, and G. Faglia, “Gas sensing properties of hydrogenated amorphous silicon films,” IEEE Sens. J. 7(11), 1506–1512 (2007).
[Crossref]

Hoex, B.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Hu, Y.

X.-L. Liu, S.-W. Zhu, H.-B. Sun, Y. Hu, S.-X. Ma, X.-J. Ning, L. Zhao, and J. Zhuang, “‘Infinite sensitivity’ of black silicon ammonia sensor achieved by optical and electric dual drives,” ACS Appl. Mater. Interfaces 10(5), 5061–5071 (2018).
[Crossref]

Jalkanen, T.

J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies, T. Jalkanen, R. Hahn, P. Schmuki, and E. Makila, “Thermal carbonization of porous silicon: The current status and recent applications,” ECS Trans. 69(2), 167–176 (2015).
[Crossref]

Jeon, S.

J. Yun, C. Y. Jin, J. H. Ahn, S. Jeon, and I. Park, “A self-heated silicon nanowire array: Selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications,” Nanoscale 5(15), 6851–6856 (2013).
[Crossref]

Jin, C. Y.

J. Yun, C. Y. Jin, J. H. Ahn, S. Jeon, and I. Park, “A self-heated silicon nanowire array: Selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications,” Nanoscale 5(15), 6851–6856 (2013).
[Crossref]

Kaasalainen, M.

J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies, T. Jalkanen, R. Hahn, P. Schmuki, and E. Makila, “Thermal carbonization of porous silicon: The current status and recent applications,” ECS Trans. 69(2), 167–176 (2015).
[Crossref]

Khoi, P. H.

L. T. T. Tuyen, D. X. Vinh, P. H. Khoi, and G. Gerlach, “Highly sensitive NOx gas sensor based on a Au/n-Si Schottky diode,” Sens. Actuators, B 84(2-3), 226–230 (2002).
[Crossref]

Korotcenkov, G.

G. Korotcenkov and B. K. Cho, “Porous semiconductors: advanced material for gas sensor applications,” Crit. Rev. Solid State Mater. Sci. 35(1), 1–37 (2010).
[Crossref]

G. Korotcenkov, Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications (Springer, 2014).

Lassila, L.

J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies, T. Jalkanen, R. Hahn, P. Schmuki, and E. Makila, “Thermal carbonization of porous silicon: The current status and recent applications,” ECS Trans. 69(2), 167–176 (2015).
[Crossref]

Liu, X.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Liu, X.-L.

X.-L. Liu, S.-X. Ma, S.-W. Zhu, Y. Zhao, X.-J. Ning, L. Zhao, and J. Zhuang, “Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyperdoped silicon,” Sens. Actuators, B 291(C), 345–353 (2019).
[Crossref]

X.-L. Liu, S.-W. Zhu, H.-B. Sun, Y. Hu, S.-X. Ma, X.-J. Ning, L. Zhao, and J. Zhuang, “‘Infinite sensitivity’ of black silicon ammonia sensor achieved by optical and electric dual drives,” ACS Appl. Mater. Interfaces 10(5), 5061–5071 (2018).
[Crossref]

Ma, S.-X.

X.-L. Liu, S.-X. Ma, S.-W. Zhu, Y. Zhao, X.-J. Ning, L. Zhao, and J. Zhuang, “Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyperdoped silicon,” Sens. Actuators, B 291(C), 345–353 (2019).
[Crossref]

X.-L. Liu, S.-W. Zhu, H.-B. Sun, Y. Hu, S.-X. Ma, X.-J. Ning, L. Zhao, and J. Zhuang, “‘Infinite sensitivity’ of black silicon ammonia sensor achieved by optical and electric dual drives,” ACS Appl. Mater. Interfaces 10(5), 5061–5071 (2018).
[Crossref]

Makila, E.

J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies, T. Jalkanen, R. Hahn, P. Schmuki, and E. Makila, “Thermal carbonization of porous silicon: The current status and recent applications,” ECS Trans. 69(2), 167–176 (2015).
[Crossref]

Mazur, E.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79(7), 1635–1641 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

Müller, G.

A. Helwig, G. Müller, G. Sberveglieri, and G. Faglia, “Gas sensing properties of hydrogenated amorphous silicon films,” IEEE Sens. J. 7(11), 1506–1512 (2007).
[Crossref]

Ning, X.-J.

X.-L. Liu, S.-X. Ma, S.-W. Zhu, Y. Zhao, X.-J. Ning, L. Zhao, and J. Zhuang, “Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyperdoped silicon,” Sens. Actuators, B 291(C), 345–353 (2019).
[Crossref]

X.-L. Liu, S.-W. Zhu, H.-B. Sun, Y. Hu, S.-X. Ma, X.-J. Ning, L. Zhao, and J. Zhuang, “‘Infinite sensitivity’ of black silicon ammonia sensor achieved by optical and electric dual drives,” ACS Appl. Mater. Interfaces 10(5), 5061–5071 (2018).
[Crossref]

Olthuis, W.

B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications—a review,” Sens. Actuators, B 107(2), 666–677 (2005).
[Crossref]

Park, I.

J. Yun, C. Y. Jin, J. H. Ahn, S. Jeon, and I. Park, “A self-heated silicon nanowire array: Selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications,” Nanoscale 5(15), 6851–6856 (2013).
[Crossref]

Peters, M.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Rauhala, O.-P.

J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies, T. Jalkanen, R. Hahn, P. Schmuki, and E. Makila, “Thermal carbonization of porous silicon: The current status and recent applications,” ECS Trans. 69(2), 167–176 (2015).
[Crossref]

Salonen, J.

J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies, T. Jalkanen, R. Hahn, P. Schmuki, and E. Makila, “Thermal carbonization of porous silicon: The current status and recent applications,” ECS Trans. 69(2), 167–176 (2015).
[Crossref]

Sberveglieri, G.

A. Helwig, G. Müller, G. Sberveglieri, and G. Faglia, “Gas sensing properties of hydrogenated amorphous silicon films,” IEEE Sens. J. 7(11), 1506–1512 (2007).
[Crossref]

Schmuki, P.

J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies, T. Jalkanen, R. Hahn, P. Schmuki, and E. Makila, “Thermal carbonization of porous silicon: The current status and recent applications,” ECS Trans. 69(2), 167–176 (2015).
[Crossref]

Shen, M.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79(7), 1635–1641 (2004).
[Crossref]

Sun, H.-B.

X.-L. Liu, S.-W. Zhu, H.-B. Sun, Y. Hu, S.-X. Ma, X.-J. Ning, L. Zhao, and J. Zhuang, “‘Infinite sensitivity’ of black silicon ammonia sensor achieved by optical and electric dual drives,” ACS Appl. Mater. Interfaces 10(5), 5061–5071 (2018).
[Crossref]

Timmer, B.

B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications—a review,” Sens. Actuators, B 107(2), 666–677 (2005).
[Crossref]

Tuyen, L. T. T.

L. T. T. Tuyen, D. X. Vinh, P. H. Khoi, and G. Gerlach, “Highly sensitive NOx gas sensor based on a Au/n-Si Schottky diode,” Sens. Actuators, B 84(2-3), 226–230 (2002).
[Crossref]

van den Berg, A.

B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications—a review,” Sens. Actuators, B 107(2), 666–677 (2005).
[Crossref]

Vinh, D. X.

L. T. T. Tuyen, D. X. Vinh, P. H. Khoi, and G. Gerlach, “Highly sensitive NOx gas sensor based on a Au/n-Si Schottky diode,” Sens. Actuators, B 84(2-3), 226–230 (2002).
[Crossref]

Warrender, J. M.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

Yun, J.

J. Yun, C. Y. Jin, J. H. Ahn, S. Jeon, and I. Park, “A self-heated silicon nanowire array: Selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications,” Nanoscale 5(15), 6851–6856 (2013).
[Crossref]

Zhao, L.

X.-L. Liu, S.-X. Ma, S.-W. Zhu, Y. Zhao, X.-J. Ning, L. Zhao, and J. Zhuang, “Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyperdoped silicon,” Sens. Actuators, B 291(C), 345–353 (2019).
[Crossref]

X.-L. Liu, S.-W. Zhu, H.-B. Sun, Y. Hu, S.-X. Ma, X.-J. Ning, L. Zhao, and J. Zhuang, “‘Infinite sensitivity’ of black silicon ammonia sensor achieved by optical and electric dual drives,” ACS Appl. Mater. Interfaces 10(5), 5061–5071 (2018).
[Crossref]

Zhao, Y.

X.-L. Liu, S.-X. Ma, S.-W. Zhu, Y. Zhao, X.-J. Ning, L. Zhao, and J. Zhuang, “Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyperdoped silicon,” Sens. Actuators, B 291(C), 345–353 (2019).
[Crossref]

Zhu, S.-W.

X.-L. Liu, S.-X. Ma, S.-W. Zhu, Y. Zhao, X.-J. Ning, L. Zhao, and J. Zhuang, “Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyperdoped silicon,” Sens. Actuators, B 291(C), 345–353 (2019).
[Crossref]

X.-L. Liu, S.-W. Zhu, H.-B. Sun, Y. Hu, S.-X. Ma, X.-J. Ning, L. Zhao, and J. Zhuang, “‘Infinite sensitivity’ of black silicon ammonia sensor achieved by optical and electric dual drives,” ACS Appl. Mater. Interfaces 10(5), 5061–5071 (2018).
[Crossref]

Zhuang, J.

X.-L. Liu, S.-X. Ma, S.-W. Zhu, Y. Zhao, X.-J. Ning, L. Zhao, and J. Zhuang, “Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyperdoped silicon,” Sens. Actuators, B 291(C), 345–353 (2019).
[Crossref]

X.-L. Liu, S.-W. Zhu, H.-B. Sun, Y. Hu, S.-X. Ma, X.-J. Ning, L. Zhao, and J. Zhuang, “‘Infinite sensitivity’ of black silicon ammonia sensor achieved by optical and electric dual drives,” ACS Appl. Mater. Interfaces 10(5), 5061–5071 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

X.-L. Liu, S.-W. Zhu, H.-B. Sun, Y. Hu, S.-X. Ma, X.-J. Ning, L. Zhao, and J. Zhuang, “‘Infinite sensitivity’ of black silicon ammonia sensor achieved by optical and electric dual drives,” ACS Appl. Mater. Interfaces 10(5), 5061–5071 (2018).
[Crossref]

Appl. Phys. A (1)

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79(7), 1635–1641 (2004).
[Crossref]

Appl. Phys. Lett. (1)

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

Crit. Rev. Solid State Mater. Sci. (1)

G. Korotcenkov and B. K. Cho, “Porous semiconductors: advanced material for gas sensor applications,” Crit. Rev. Solid State Mater. Sci. 35(1), 1–37 (2010).
[Crossref]

ECS Trans. (1)

J. Salonen, M. Kaasalainen, O.-P. Rauhala, L. Lassila, M. Hakamies, T. Jalkanen, R. Hahn, P. Schmuki, and E. Makila, “Thermal carbonization of porous silicon: The current status and recent applications,” ECS Trans. 69(2), 167–176 (2015).
[Crossref]

Energy Environ. Sci. (1)

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

IEEE Sens. J. (1)

A. Helwig, G. Müller, G. Sberveglieri, and G. Faglia, “Gas sensing properties of hydrogenated amorphous silicon films,” IEEE Sens. J. 7(11), 1506–1512 (2007).
[Crossref]

Nanoscale (1)

J. Yun, C. Y. Jin, J. H. Ahn, S. Jeon, and I. Park, “A self-heated silicon nanowire array: Selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications,” Nanoscale 5(15), 6851–6856 (2013).
[Crossref]

Opt. Lett. (1)

Sens. Actuators, B (3)

X.-L. Liu, S.-X. Ma, S.-W. Zhu, Y. Zhao, X.-J. Ning, L. Zhao, and J. Zhuang, “Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyperdoped silicon,” Sens. Actuators, B 291(C), 345–353 (2019).
[Crossref]

B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications—a review,” Sens. Actuators, B 107(2), 666–677 (2005).
[Crossref]

L. T. T. Tuyen, D. X. Vinh, P. H. Khoi, and G. Gerlach, “Highly sensitive NOx gas sensor based on a Au/n-Si Schottky diode,” Sens. Actuators, B 84(2-3), 226–230 (2002).
[Crossref]

Solid-State Electron. (1)

N. K. Ali, M. R. Hashim, and A. A. Aziz, “Effects of surface passivation in porous silicon as H2 gas sensor,” Solid-State Electron. 52(7), 1071–1074 (2008).
[Crossref]

Other (1)

G. Korotcenkov, Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications (Springer, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. SEM image of the sensing surface.
Fig. 2.
Fig. 2. Response transients of the sensor in (a) fresh (1 day) and (b) aged states (44 days).
Fig. 3.
Fig. 3. (a) Response transients of the aged sensor under the asymmetric light illumination of different light densities. Inset shows measurement circuit. (b) Gas response versus basecurrent plot with the fitting curve. (c) Response time versus basecurrent plot. (d) Recovery time versus basecurrent plot.
Fig. 4.
Fig. 4. Correlation between the RH and the measured response/recovery time at different light densities.
Fig. 5.
Fig. 5. Response transients of the aged sensor under the asymmetric light illumination and different bias voltages (VB). (a)|VB| ≫ |Vph|. (b)|VB| ∼ |Vph|.

Tables (2)

Tables Icon

Table 1. Effects of the RH on the sensor parameters.

Tables Icon

Table 2. Sensor parameters at different bias voltages.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = Δ G G 0 × 100 % .
R = Δ I I 0 × 100 % .

Metrics