Abstract

We realize a high-stability laser by modulation transfer spectroscopy and apply it to implement a high-performance compact optically pumped cesium beam atomic clock. Evaluated by the optical heterodyne method with two identical frequency-stabilized lasers, the frequency instability of the 852 nm laser directly referenced on thermal atoms is 2.6×10−13 at the averaging time of 5 s. Factors degrading the frequency stability of the laser are analyzed, and we will further control it to reduce the frequency noise of the laser. By comparing with a Hydrogen maser, the measured Allan deviation of the high-stability-laser-based cesium beam atomic clock is 2$\times 10^{-12}/\sqrt {\tau }$, dropping to 1×10−14 in less than half a day of averaging time. To our knowledge, the Allan deviation of our cesium clock is better than that of any reported compact cesium beam atomic clocks at the averaging time of half-day. The high-performance atomic clock can promote the fields in metrology and timekeeping, and the high-stability laser additionally possesses great potential to be a compact optical frequency standard.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cold-atom clock based on a diffractive optic

R. Elvin, G. W. Hoth, M. Wright, B. Lewis, J. P. McGilligan, A. S. Arnold, P. F. Griffin, and E. Riis
Opt. Express 27(26) 38359-38366 (2019)

Optimization of laser dynamics for active stabilization of DF-VECSELs dedicated to cesium CPT clocks

Grégory Gredat, Hui Liu, Jérémie Cotxet, François Tricot, Ghaya Baili, François Gutty, Fabienne Goldfarb, Isabelle Sagnes, and Fabien Bretenaker
J. Opt. Soc. Am. B 37(4) 1196-1207 (2020)

Integrated multiple wavelength stabilization on a multi-channel cavity for a transportable optical clock

Shaomao Wang, Jian Cao, Jinbo Yuan, Daoxin Liu, Hualin Shu, and Xueren Huang
Opt. Express 28(8) 11852-11860 (2020)

References

  • View by:
  • |
  • |
  • |

  1. L. Maleki and J. Prestage, “Applications of clocks and frequency standards: from the routine to tests of fundamental models,” Metrologia 42(3), S145–S153 (2005).
    [Crossref]
  2. J. Levine, “Timing in telecommunications networks,” Metrologia 48(4), S203–S212 (2011).
    [Crossref]
  3. S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94(12), 124043 (2016).
    [Crossref]
  4. J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
    [Crossref]
  5. W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
    [Crossref]
  6. S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
    [Crossref]
  7. S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7 × 10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
    [Crossref]
  8. H. Shang, X. Zhang, S. Zhang, D. Pan, H. Chen, and J. Chen, “Miniaturized calcium beam optical frequency standard using fully sealed vacuum tube with 10−15 instability,” Opt. Express 25(24), 30459–30467 (2017).
    [Crossref]
  9. J. L. Picqué, “Hyperfine optical pumping of a cesium atomic beam, and applications,” Metrologia 13(3), 115–119 (1977).
    [Crossref]
  10. A. Makdissi and E. D. Clercq, “Evaluation of the accuracy of the optically pumped cesium beam primary frequency standard of BNM-LPTF,” Metrologia 38(5), 409–425 (2001).
    [Crossref]
  11. J. H. Shirley, W. D. Lee, and R. E. Drullinger, “Accuracy evaluation of the primary frequency standard NIST-7,” Metrologia 38(5), 427–458 (2001).
    [Crossref]
  12. K. Hagimoto, Y. Koga, and T. Ikegami, “Reevaluation of the optically pumped cesium frequency standard NRLM-4 with an H-Bend ring cavity,” IEEE Trans. Instrum. Meas. 57(10), 2212–2217 (2008).
    [Crossref]
  13. S. H. Lee, Y. H. Park, S. E. Park, H. S. Lee, S. H. Yang, D. H. Yu, and T. Y. Kwon, “Accuracy evaluation of an optically pumped caesium beam frequency standard KRISS-1,” Metrologia 46(3), 227–236 (2009).
    [Crossref]
  14. B. Bousset, G. L. Leclin, F. Hamouda, P. Cerez, and G. Theobald, “Frequency performances of a miniature optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(2), 366–371 (1999).
    [Crossref]
  15. J. Chen, F. Wang, Y. Wang, and D. Yang, “A new design of a diffused laser light optically pumped small cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 47(2), 457–460 (2000).
    [Crossref]
  16. C. Sallot, M. Baldy, D. Gin, and R. Petit, “3 · 10 −12 · τ−1/2 on industrial prototype optically pumped cesium beam frequency standard,” in Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition Jointly with 17th European Frequency and Time Forum (IEEE, 2003), pp. 100–104.
  17. J. Zhang, J. Chen, F. Wang, D. Yang, and Y. Wang, “Influence of a static magnetic field on the detected atomic velocity distribution in an optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(9), 1210–1213 (2003).
    [Crossref]
  18. S. Lecomte, M. Haldimann, R. Ruffieux, P. Berthoud, and P. Thomann, “Performance demonstration of a compact, single optical frequency cesium beam clock for space applications,” in Proceedings of IEEE International Frequency Control Symposium-Jointly with the 21st European Frequency and Time Forum (IEEE, 2007), pp. 1127–1131.
  19. R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.
  20. N. Dimarcq, V. Giordano, P. Cerez, and G. Theobald, “Analysis of the noise sources in an optically pumped cesium beam resonator,” IEEE Trans. Instrum. Meas. 42(2), 115–120 (1993).
    [Crossref]
  21. G. L. Leclin, P. Cerez, and N. Dimarcq, “Laser-induced noise contribution due to imperfect atomic state preparation in an optically pumped caesium beam resonator,” J. Phys. B: At., Mol. Opt. Phys. 32(2), 327–340 (1999).
    [Crossref]
  22. P. Dumont, F. Camargo, J. M. Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. L. Leclin, “Low-noise dual frequency laser for compact Cs atomic clocks,” J. Lightwave Technol. 32(20), 3817–3823 (2014).
    [Crossref]
  23. G. D. Roverae, G. Santarell, and A. Clairon, “A laser diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65(5), 1502–1505 (1994).
    [Crossref]
  24. F. Bertinetto, P. Cordiale, G. Galzerano, and B. Elio, “Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method,” IEEE Trans. Instrum. Meas. 50(2), 490–492 (2001).
    [Crossref]
  25. J. Peng and H. Ahn, “Diode-laser frequency stabilization by two-frequency Doppler-broadened absorption spectroscopy,” Appl. Opt. 43(31), 5860–5863 (2004).
    [Crossref]
  26. O. V. Zhuravleva, A. V. Ivanov, A. I. Leonovich, V. D. Kurnosov, K. V. Kurnosov, R. V. Chernov, V. V. Shishkov, and S. A. Pleshanov, “Single-frequency tunable laser for pumping cesium frequency standards,” Quantum Electron. 36(8), 741–744 (2006).
    [Crossref]
  27. T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed bragg reflector laser diode to the Cs-D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78(2), 026105 (2007).
    [Crossref]
  28. B. Cocquelin, D. Holleville, G. L. Leclin, I. Sagnes, A. Garnache, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95(2), 315–321 (2009).
    [Crossref]
  29. H. Noh, “Lineshapes in two-color polarization spectroscopy for cesium,” Opt. Express 20(19), 21784–21791 (2012).
    [Crossref]
  30. F. Zi, X. Wu, W. Zhong, R. Parker, C. Yu, S. Budker, X. Lu, and H. Müller, “Laser frequency stabilization by combining modulation transfer and frequency modulation spectroscopy,” Appl. Opt. 56(10), 2649–2652 (2017).
    [Crossref]
  31. R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44(19), 1251–1254 (1980).
    [Crossref]
  32. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
    [Crossref]
  33. J. Ye, L. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87(27), 270801 (2001).
    [Crossref]
  34. E. Zang, J. Cao, Y. Li, C. Li, Y. Deng, and C. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56(2), 673–676 (2007).
    [Crossref]
  35. S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
    [Crossref]
  36. B. Wu, Y. Zhou, K. Weng, D. Zhu, Z. Fu, B. Cheng, X. Wang, and Q. Lin, “Modulation transfer spectroscopy for D1 transition line of rubidium,” J. Opt. Soc. Am. B 35(11), 2705–2710 (2018).
    [Crossref]
  37. P. Chang, S. Zhang, H. Shang, and J. Chen, “Stabilizing diode laser to 1 Hz-level Allan deviation with atomic spectroscopy for Rb four-level active optical frequency standard,” Appl. Phys. B 125(11), 196 (2019).
    [Crossref]
  38. K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
    [Crossref]
  39. Y. Cao, X. Zhao, W. Xie, Q. Wei, L. Yang, H. Chen, and S. Zhang, “A merchandized optically pumped cesium atomic clock,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 618–621.
  40. Z. Jiang, Q. Zhou, Z. Tao, X. Zhang, S. Zhang, C. Zhu, P. Lin, and J. Chen, “Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter,” Chin. Phys. B 25(8), 083201 (2016).
    [Crossref]
  41. E. Jaatinen, “Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy,” Opt. Commun. 120(1-2), 91–97 (1995).
    [Crossref]
  42. K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
    [Crossref]
  43. N. Papageorgiou, M. Fichet, V. Sautenkov, D. Bloch, and M. Ducloy, “Doppler-free reflection spectroscopy of self-induced and krypton-induced collisional shift and broadening of cesium D2 line components in optically dense vapor,” Laser Phys. 4(2), 392–395 (1994).
  44. D. A. Steck, “Cesium D line data (revision 2.1.4),” http://steck.us/alkalidata (2010).
  45. L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83(4), 043111 (2012).
    [Crossref]
  46. W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10−6 for frequency modulation and laser stabilization,” Opt. Lett. 39(7), 1980–1983 (2014).
    [Crossref]
  47. Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41(23), 5584–5587 (2016).
    [Crossref]
  48. E. A. Whittker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2(8), 1320–1326 (1985).
    [Crossref]
  49. Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M. Suh, K. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddam, J. Kitching, S. B. Papp, and M. T. Hummon, “Architecture for the photonic integration of an optical atomic clock,” Optica 6(5), 680–685 (2019).
    [Crossref]

2019 (3)

P. Chang, S. Zhang, H. Shang, and J. Chen, “Stabilizing diode laser to 1 Hz-level Allan deviation with atomic spectroscopy for Rb four-level active optical frequency standard,” Appl. Phys. B 125(11), 196 (2019).
[Crossref]

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M. Suh, K. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddam, J. Kitching, S. B. Papp, and M. T. Hummon, “Architecture for the photonic integration of an optical atomic clock,” Optica 6(5), 680–685 (2019).
[Crossref]

2018 (4)

K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
[Crossref]

B. Wu, Y. Zhou, K. Weng, D. Zhu, Z. Fu, B. Cheng, X. Wang, and Q. Lin, “Modulation transfer spectroscopy for D1 transition line of rubidium,” J. Opt. Soc. Am. B 35(11), 2705–2710 (2018).
[Crossref]

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

2017 (5)

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7 × 10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

H. Shang, X. Zhang, S. Zhang, D. Pan, H. Chen, and J. Chen, “Miniaturized calcium beam optical frequency standard using fully sealed vacuum tube with 10−15 instability,” Opt. Express 25(24), 30459–30467 (2017).
[Crossref]

F. Zi, X. Wu, W. Zhong, R. Parker, C. Yu, S. Budker, X. Lu, and H. Müller, “Laser frequency stabilization by combining modulation transfer and frequency modulation spectroscopy,” Appl. Opt. 56(10), 2649–2652 (2017).
[Crossref]

S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
[Crossref]

2016 (3)

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41(23), 5584–5587 (2016).
[Crossref]

Z. Jiang, Q. Zhou, Z. Tao, X. Zhang, S. Zhang, C. Zhu, P. Lin, and J. Chen, “Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter,” Chin. Phys. B 25(8), 083201 (2016).
[Crossref]

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

2014 (2)

2012 (2)

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83(4), 043111 (2012).
[Crossref]

H. Noh, “Lineshapes in two-color polarization spectroscopy for cesium,” Opt. Express 20(19), 21784–21791 (2012).
[Crossref]

2011 (1)

J. Levine, “Timing in telecommunications networks,” Metrologia 48(4), S203–S212 (2011).
[Crossref]

2009 (2)

S. H. Lee, Y. H. Park, S. E. Park, H. S. Lee, S. H. Yang, D. H. Yu, and T. Y. Kwon, “Accuracy evaluation of an optically pumped caesium beam frequency standard KRISS-1,” Metrologia 46(3), 227–236 (2009).
[Crossref]

B. Cocquelin, D. Holleville, G. L. Leclin, I. Sagnes, A. Garnache, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95(2), 315–321 (2009).
[Crossref]

2008 (1)

K. Hagimoto, Y. Koga, and T. Ikegami, “Reevaluation of the optically pumped cesium frequency standard NRLM-4 with an H-Bend ring cavity,” IEEE Trans. Instrum. Meas. 57(10), 2212–2217 (2008).
[Crossref]

2007 (2)

T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed bragg reflector laser diode to the Cs-D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78(2), 026105 (2007).
[Crossref]

E. Zang, J. Cao, Y. Li, C. Li, Y. Deng, and C. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56(2), 673–676 (2007).
[Crossref]

2006 (1)

O. V. Zhuravleva, A. V. Ivanov, A. I. Leonovich, V. D. Kurnosov, K. V. Kurnosov, R. V. Chernov, V. V. Shishkov, and S. A. Pleshanov, “Single-frequency tunable laser for pumping cesium frequency standards,” Quantum Electron. 36(8), 741–744 (2006).
[Crossref]

2005 (1)

L. Maleki and J. Prestage, “Applications of clocks and frequency standards: from the routine to tests of fundamental models,” Metrologia 42(3), S145–S153 (2005).
[Crossref]

2004 (1)

2003 (1)

J. Zhang, J. Chen, F. Wang, D. Yang, and Y. Wang, “Influence of a static magnetic field on the detected atomic velocity distribution in an optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(9), 1210–1213 (2003).
[Crossref]

2001 (4)

A. Makdissi and E. D. Clercq, “Evaluation of the accuracy of the optically pumped cesium beam primary frequency standard of BNM-LPTF,” Metrologia 38(5), 409–425 (2001).
[Crossref]

J. H. Shirley, W. D. Lee, and R. E. Drullinger, “Accuracy evaluation of the primary frequency standard NIST-7,” Metrologia 38(5), 427–458 (2001).
[Crossref]

F. Bertinetto, P. Cordiale, G. Galzerano, and B. Elio, “Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method,” IEEE Trans. Instrum. Meas. 50(2), 490–492 (2001).
[Crossref]

J. Ye, L. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87(27), 270801 (2001).
[Crossref]

2000 (1)

J. Chen, F. Wang, Y. Wang, and D. Yang, “A new design of a diffused laser light optically pumped small cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 47(2), 457–460 (2000).
[Crossref]

1999 (2)

G. L. Leclin, P. Cerez, and N. Dimarcq, “Laser-induced noise contribution due to imperfect atomic state preparation in an optically pumped caesium beam resonator,” J. Phys. B: At., Mol. Opt. Phys. 32(2), 327–340 (1999).
[Crossref]

B. Bousset, G. L. Leclin, F. Hamouda, P. Cerez, and G. Theobald, “Frequency performances of a miniature optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(2), 366–371 (1999).
[Crossref]

1995 (1)

E. Jaatinen, “Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy,” Opt. Commun. 120(1-2), 91–97 (1995).
[Crossref]

1994 (2)

G. D. Roverae, G. Santarell, and A. Clairon, “A laser diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65(5), 1502–1505 (1994).
[Crossref]

N. Papageorgiou, M. Fichet, V. Sautenkov, D. Bloch, and M. Ducloy, “Doppler-free reflection spectroscopy of self-induced and krypton-induced collisional shift and broadening of cesium D2 line components in optically dense vapor,” Laser Phys. 4(2), 392–395 (1994).

1993 (1)

N. Dimarcq, V. Giordano, P. Cerez, and G. Theobald, “Analysis of the noise sources in an optically pumped cesium beam resonator,” IEEE Trans. Instrum. Meas. 42(2), 115–120 (1993).
[Crossref]

1985 (1)

1981 (1)

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
[Crossref]

1980 (1)

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44(19), 1251–1254 (1980).
[Crossref]

1977 (1)

J. L. Picqué, “Hyperfine optical pumping of a cesium atomic beam, and applications,” Metrologia 13(3), 115–119 (1977).
[Crossref]

Ahn, H.

Al-Masoudi, A.

S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7 × 10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

Araya, A.

T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed bragg reflector laser diode to the Cs-D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78(2), 026105 (2007).
[Crossref]

Aspelmeyer, M.

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
[Crossref]

Baili, G.

Baldy, M.

C. Sallot, M. Baldy, D. Gin, and R. Petit, “3 · 10 −12 · τ−1/2 on industrial prototype optically pumped cesium beam frequency standard,” in Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition Jointly with 17th European Frequency and Time Forum (IEEE, 2003), pp. 100–104.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Barbieri, P.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Bawamia, A.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Baynes, F. N.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Beaudoin, G.

Beloy, K.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Benko, C.

Berthoud, P.

S. Lecomte, M. Haldimann, R. Ruffieux, P. Berthoud, and P. Thomann, “Performance demonstration of a compact, single optical frequency cesium beam clock for space applications,” in Proceedings of IEEE International Frequency Control Symposium-Jointly with the 21st European Frequency and Time Forum (IEEE, 2007), pp. 1127–1131.

Bertinetto, F.

F. Bertinetto, P. Cordiale, G. Galzerano, and B. Elio, “Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method,” IEEE Trans. Instrum. Meas. 50(2), 490–492 (2001).
[Crossref]

Bigelow, M. S.

K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
[Crossref]

Bishop, M. W.

K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
[Crossref]

Bjorklund, G. C.

Bloch, D.

N. Papageorgiou, M. Fichet, V. Sautenkov, D. Bloch, and M. Ducloy, “Doppler-free reflection spectroscopy of self-induced and krypton-induced collisional shift and broadening of cesium D2 line components in optically dense vapor,” Laser Phys. 4(2), 392–395 (1994).

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44(19), 1251–1254 (1980).
[Crossref]

Bloom, B. J.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

Bousset, B.

B. Bousset, G. L. Leclin, F. Hamouda, P. Cerez, and G. Theobald, “Frequency performances of a miniature optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(2), 366–371 (1999).
[Crossref]

Braxmaier, C.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Bregolin, F.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Briles, T. C.

Brown, R. C.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Budker, S.

Burke, J. H.

K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
[Crossref]

Calonico, D.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Camargo, F.

Campbell, S. L.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

Camy, G.

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44(19), 1251–1254 (1980).
[Crossref]

Cao, J.

E. Zang, J. Cao, Y. Li, C. Li, Y. Deng, and C. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56(2), 673–676 (2007).
[Crossref]

Cao, Y.

Y. Cao, X. Zhao, W. Xie, Q. Wei, L. Yang, H. Chen, and S. Zhang, “A merchandized optically pumped cesium atomic clock,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 618–621.

Cerez, P.

B. Bousset, G. L. Leclin, F. Hamouda, P. Cerez, and G. Theobald, “Frequency performances of a miniature optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(2), 366–371 (1999).
[Crossref]

G. L. Leclin, P. Cerez, and N. Dimarcq, “Laser-induced noise contribution due to imperfect atomic state preparation in an optically pumped caesium beam resonator,” J. Phys. B: At., Mol. Opt. Phys. 32(2), 327–340 (1999).
[Crossref]

N. Dimarcq, V. Giordano, P. Cerez, and G. Theobald, “Analysis of the noise sources in an optically pumped cesium beam resonator,” IEEE Trans. Instrum. Meas. 42(2), 115–120 (1993).
[Crossref]

Chang, P.

P. Chang, S. Zhang, H. Shang, and J. Chen, “Stabilizing diode laser to 1 Hz-level Allan deviation with atomic spectroscopy for Rb four-level active optical frequency standard,” Appl. Phys. B 125(11), 196 (2019).
[Crossref]

S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
[Crossref]

Chastellain, F.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Chen, H.

H. Shang, X. Zhang, S. Zhang, D. Pan, H. Chen, and J. Chen, “Miniaturized calcium beam optical frequency standard using fully sealed vacuum tube with 10−15 instability,” Opt. Express 25(24), 30459–30467 (2017).
[Crossref]

Y. Cao, X. Zhao, W. Xie, Q. Wei, L. Yang, H. Chen, and S. Zhang, “A merchandized optically pumped cesium atomic clock,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 618–621.

Chen, J.

P. Chang, S. Zhang, H. Shang, and J. Chen, “Stabilizing diode laser to 1 Hz-level Allan deviation with atomic spectroscopy for Rb four-level active optical frequency standard,” Appl. Phys. B 125(11), 196 (2019).
[Crossref]

H. Shang, X. Zhang, S. Zhang, D. Pan, H. Chen, and J. Chen, “Miniaturized calcium beam optical frequency standard using fully sealed vacuum tube with 10−15 instability,” Opt. Express 25(24), 30459–30467 (2017).
[Crossref]

S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
[Crossref]

Z. Jiang, Q. Zhou, Z. Tao, X. Zhang, S. Zhang, C. Zhu, P. Lin, and J. Chen, “Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter,” Chin. Phys. B 25(8), 083201 (2016).
[Crossref]

J. Zhang, J. Chen, F. Wang, D. Yang, and Y. Wang, “Influence of a static magnetic field on the detected atomic velocity distribution in an optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(9), 1210–1213 (2003).
[Crossref]

J. Chen, F. Wang, Y. Wang, and D. Yang, “A new design of a diffused laser light optically pumped small cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 47(2), 457–460 (2000).
[Crossref]

Chen, L.

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83(4), 043111 (2012).
[Crossref]

Cheng, B.

Chernov, R. V.

O. V. Zhuravleva, A. V. Ivanov, A. I. Leonovich, V. D. Kurnosov, K. V. Kurnosov, R. V. Chernov, V. V. Shishkov, and S. A. Pleshanov, “Single-frequency tunable laser for pumping cesium frequency standards,” Quantum Electron. 36(8), 741–744 (2006).
[Crossref]

Clairon, A.

G. D. Roverae, G. Santarell, and A. Clairon, “A laser diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65(5), 1502–1505 (1994).
[Crossref]

Clercq, E. D.

A. Makdissi and E. D. Clercq, “Evaluation of the accuracy of the optically pumped cesium beam primary frequency standard of BNM-LPTF,” Metrologia 38(5), 409–425 (2001).
[Crossref]

Clivati, C.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Cocquelin, B.

B. Cocquelin, D. Holleville, G. L. Leclin, I. Sagnes, A. Garnache, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95(2), 315–321 (2009).
[Crossref]

Coddington, I.

K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
[Crossref]

Cole, G. D.

Coppoolse, W. W.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Cordiale, P.

F. Bertinetto, P. Cordiale, G. Galzerano, and B. Elio, “Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method,” IEEE Trans. Instrum. Meas. 50(2), 490–492 (2001).
[Crossref]

Costanzo, G. A.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Cui, J.

S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
[Crossref]

Danet, J. M.

Darkwah Oppong, N.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

Deng, Y.

E. Zang, J. Cao, Y. Li, C. Li, Y. Deng, and C. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56(2), 673–676 (2007).
[Crossref]

Denker, H.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Diddam, S. A.

Dimarcq, N.

G. L. Leclin, P. Cerez, and N. Dimarcq, “Laser-induced noise contribution due to imperfect atomic state preparation in an optically pumped caesium beam resonator,” J. Phys. B: At., Mol. Opt. Phys. 32(2), 327–340 (1999).
[Crossref]

N. Dimarcq, V. Giordano, P. Cerez, and G. Theobald, “Analysis of the noise sources in an optically pumped cesium beam resonator,” IEEE Trans. Instrum. Meas. 42(2), 115–120 (1993).
[Crossref]

Dolfi, D.

Döringshoff, K.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Dörscher, S.

S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7 × 10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

Douahi, A.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Drake, T.

Drullinger, R. E.

J. H. Shirley, W. D. Lee, and R. E. Drullinger, “Accuracy evaluation of the primary frequency standard NIST-7,” Metrologia 38(5), 427–458 (2001).
[Crossref]

Ducloy, M.

N. Papageorgiou, M. Fichet, V. Sautenkov, D. Bloch, and M. Ducloy, “Doppler-free reflection spectroscopy of self-induced and krypton-induced collisional shift and broadening of cesium D2 line components in optically dense vapor,” Laser Phys. 4(2), 392–395 (1994).

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44(19), 1251–1254 (1980).
[Crossref]

Dumont, P.

Elio, B.

F. Bertinetto, P. Cordiale, G. Galzerano, and B. Elio, “Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method,” IEEE Trans. Instrum. Meas. 50(2), 490–492 (2001).
[Crossref]

Fasano, R. J.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Favard, P.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Fichet, M.

N. Papageorgiou, M. Fichet, V. Sautenkov, D. Bloch, and M. Ducloy, “Doppler-free reflection spectroscopy of self-induced and krypton-induced collisional shift and broadening of cesium D2 line components in optically dense vapor,” Laser Phys. 4(2), 392–395 (1994).

Folco, Y.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Fredrick, C.

Fu, Z.

Galzerano, G.

F. Bertinetto, P. Cordiale, G. Galzerano, and B. Elio, “Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method,” IEEE Trans. Instrum. Meas. 50(2), 490–492 (2001).
[Crossref]

Gao, C.

E. Zang, J. Cao, Y. Li, C. Li, Y. Deng, and C. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56(2), 673–676 (2007).
[Crossref]

Garcia, M.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Garnache, A.

B. Cocquelin, D. Holleville, G. L. Leclin, I. Sagnes, A. Garnache, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95(2), 315–321 (2009).
[Crossref]

Gehrtz, M.

Georges, P.

P. Dumont, F. Camargo, J. M. Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. L. Leclin, “Low-noise dual frequency laser for compact Cs atomic clocks,” J. Lightwave Technol. 32(20), 3817–3823 (2014).
[Crossref]

B. Cocquelin, D. Holleville, G. L. Leclin, I. Sagnes, A. Garnache, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95(2), 315–321 (2009).
[Crossref]

Gin, D.

C. Sallot, M. Baldy, D. Gin, and R. Petit, “3 · 10 −12 · τ−1/2 on industrial prototype optically pumped cesium beam frequency standard,” in Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition Jointly with 17th European Frequency and Time Forum (IEEE, 2003), pp. 100–104.

Giordano, V.

N. Dimarcq, V. Giordano, P. Cerez, and G. Theobald, “Analysis of the noise sources in an optically pumped cesium beam resonator,” IEEE Trans. Instrum. Meas. 42(2), 115–120 (1993).
[Crossref]

Goban, A.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

Gozhyk, I.

Grotti, J.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7 × 10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

Guerandel, S.

P. Dumont, F. Camargo, J. M. Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. L. Leclin, “Low-noise dual frequency laser for compact Cs atomic clocks,” J. Lightwave Technol. 32(20), 3817–3823 (2014).
[Crossref]

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Guo, W.

Gutsch, F. B.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Häfner, S.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7 × 10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

Hagemann, C.

Hagimoto, K.

K. Hagimoto, Y. Koga, and T. Ikegami, “Reevaluation of the optically pumped cesium frequency standard NRLM-4 with an H-Bend ring cavity,” IEEE Trans. Instrum. Meas. 57(10), 2212–2217 (2008).
[Crossref]

Haldimann, M.

S. Lecomte, M. Haldimann, R. Ruffieux, P. Berthoud, and P. Thomann, “Performance demonstration of a compact, single optical frequency cesium beam clock for space applications,” in Proceedings of IEEE International Frequency Control Symposium-Jointly with the 21st European Frequency and Time Forum (IEEE, 2007), pp. 1127–1131.

Hall, J. L.

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10−6 for frequency modulation and laser stabilization,” Opt. Lett. 39(7), 1980–1983 (2014).
[Crossref]

J. Ye, L. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87(27), 270801 (2001).
[Crossref]

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
[Crossref]

Hamouda, F.

B. Bousset, G. L. Leclin, F. Hamouda, P. Cerez, and G. Theobald, “Frequency performances of a miniature optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(2), 366–371 (1999).
[Crossref]

Hinkley, N.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Hollberg, L.

Holleville, D.

P. Dumont, F. Camargo, J. M. Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. L. Leclin, “Low-noise dual frequency laser for compact Cs atomic clocks,” J. Lightwave Technol. 32(20), 3817–3823 (2014).
[Crossref]

B. Cocquelin, D. Holleville, G. L. Leclin, I. Sagnes, A. Garnache, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95(2), 315–321 (2009).
[Crossref]

Holt, M.

K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
[Crossref]

Holzwarth, R.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Hori, T.

T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed bragg reflector laser diode to the Cs-D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78(2), 026105 (2007).
[Crossref]

Hummon, M. T.

Hutson, R. B.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

Ikegami, T.

K. Hagimoto, Y. Koga, and T. Ikegami, “Reevaluation of the optically pumped cesium frequency standard NRLM-4 with an H-Bend ring cavity,” IEEE Trans. Instrum. Meas. 57(10), 2212–2217 (2008).
[Crossref]

Ilic, B. R.

Ivanov, A. V.

O. V. Zhuravleva, A. V. Ivanov, A. I. Leonovich, V. D. Kurnosov, K. V. Kurnosov, R. V. Chernov, V. V. Shishkov, and S. A. Pleshanov, “Single-frequency tunable laser for pumping cesium frequency standards,” Quantum Electron. 36(8), 741–744 (2006).
[Crossref]

Jaatinen, E.

E. Jaatinen, “Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy,” Opt. Commun. 120(1-2), 91–97 (1995).
[Crossref]

Jiang, H.

Jiang, Z.

S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
[Crossref]

Z. Jiang, Q. Zhou, Z. Tao, X. Zhang, S. Zhang, C. Zhu, P. Lin, and J. Chen, “Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter,” Chin. Phys. B 25(8), 083201 (2016).
[Crossref]

Johnson, C.

Johnson, D. M. S.

Kitching, J.

Koga, Y.

K. Hagimoto, Y. Koga, and T. Ikegami, “Reevaluation of the optically pumped cesium frequency standard NRLM-4 with an H-Bend ring cavity,” IEEE Trans. Instrum. Meas. 57(10), 2212–2217 (2008).
[Crossref]

Kolkowitz, S.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

Koller, S.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Koller, S. B.

S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7 × 10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

Konrad, W.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Kovalchuk, E. V.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Krakowski, M.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Krutzik, M.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Kürbis, C.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Kurnosov, K. V.

O. V. Zhuravleva, A. V. Ivanov, A. I. Leonovich, V. D. Kurnosov, K. V. Kurnosov, R. V. Chernov, V. V. Shishkov, and S. A. Pleshanov, “Single-frequency tunable laser for pumping cesium frequency standards,” Quantum Electron. 36(8), 741–744 (2006).
[Crossref]

Kurnosov, V. D.

O. V. Zhuravleva, A. V. Ivanov, A. I. Leonovich, V. D. Kurnosov, K. V. Kurnosov, R. V. Chernov, V. V. Shishkov, and S. A. Pleshanov, “Single-frequency tunable laser for pumping cesium frequency standards,” Quantum Electron. 36(8), 741–744 (2006).
[Crossref]

Kwon, T. Y.

S. H. Lee, Y. H. Park, S. E. Park, H. S. Lee, S. H. Yang, D. H. Yu, and T. Y. Kwon, “Accuracy evaluation of an optically pumped caesium beam frequency standard KRISS-1,” Metrologia 46(3), 227–236 (2009).
[Crossref]

Langellier, N.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

Leclin, G. L.

P. Dumont, F. Camargo, J. M. Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. L. Leclin, “Low-noise dual frequency laser for compact Cs atomic clocks,” J. Lightwave Technol. 32(20), 3817–3823 (2014).
[Crossref]

B. Cocquelin, D. Holleville, G. L. Leclin, I. Sagnes, A. Garnache, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95(2), 315–321 (2009).
[Crossref]

B. Bousset, G. L. Leclin, F. Hamouda, P. Cerez, and G. Theobald, “Frequency performances of a miniature optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(2), 366–371 (1999).
[Crossref]

G. L. Leclin, P. Cerez, and N. Dimarcq, “Laser-induced noise contribution due to imperfect atomic state preparation in an optically pumped caesium beam resonator,” J. Phys. B: At., Mol. Opt. Phys. 32(2), 327–340 (1999).
[Crossref]

Lecomte, S.

S. Lecomte, M. Haldimann, R. Ruffieux, P. Berthoud, and P. Thomann, “Performance demonstration of a compact, single optical frequency cesium beam clock for space applications,” in Proceedings of IEEE International Frequency Control Symposium-Jointly with the 21st European Frequency and Time Forum (IEEE, 2007), pp. 1127–1131.

Lee, H. S.

S. H. Lee, Y. H. Park, S. E. Park, H. S. Lee, S. H. Yang, D. H. Yu, and T. Y. Kwon, “Accuracy evaluation of an optically pumped caesium beam frequency standard KRISS-1,” Metrologia 46(3), 227–236 (2009).
[Crossref]

Lee, S. H.

S. H. Lee, Y. H. Park, S. E. Park, H. S. Lee, S. H. Yang, D. H. Yu, and T. Y. Kwon, “Accuracy evaluation of an optically pumped caesium beam frequency standard KRISS-1,” Metrologia 46(3), 227–236 (2009).
[Crossref]

Lee, W. D.

J. H. Shirley, W. D. Lee, and R. E. Drullinger, “Accuracy evaluation of the primary frequency standard NIST-7,” Metrologia 38(5), 427–458 (2001).
[Crossref]

Legero, T.

Lemke, N. D.

K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
[Crossref]

Leonovich, A. I.

O. V. Zhuravleva, A. V. Ivanov, A. I. Leonovich, V. D. Kurnosov, K. V. Kurnosov, R. V. Chernov, V. V. Shishkov, and S. A. Pleshanov, “Single-frequency tunable laser for pumping cesium frequency standards,” Quantum Electron. 36(8), 741–744 (2006).
[Crossref]

Levi, F.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Levine, J.

J. Levine, “Timing in telecommunications networks,” Metrologia 48(4), S203–S212 (2011).
[Crossref]

Lezius, M.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Li, C.

E. Zang, J. Cao, Y. Li, C. Li, Y. Deng, and C. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56(2), 673–676 (2007).
[Crossref]

Li, L.

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83(4), 043111 (2012).
[Crossref]

Li, Q.

Li, Y.

E. Zang, J. Cao, Y. Li, C. Li, Y. Deng, and C. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56(2), 673–676 (2007).
[Crossref]

Lin, P.

Z. Jiang, Q. Zhou, Z. Tao, X. Zhang, S. Zhang, C. Zhu, P. Lin, and J. Chen, “Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter,” Chin. Phys. B 25(8), 083201 (2016).
[Crossref]

Lin, Q.

Lisdat, C.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7 × 10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

Liu, F.

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83(4), 043111 (2012).
[Crossref]

Lu, X.

Ludlow, A. D.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Lukin, M. D.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

Ma, L.

J. Ye, L. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87(27), 270801 (2001).
[Crossref]

Makdissi, A.

A. Makdissi and E. D. Clercq, “Evaluation of the accuracy of the optically pumped cesium beam primary frequency standard of BNM-LPTF,” Metrologia 38(5), 409–425 (2001).
[Crossref]

Maleki, L.

L. Maleki and J. Prestage, “Applications of clocks and frequency standards: from the routine to tests of fundamental models,” Metrologia 42(3), S145–S153 (2005).
[Crossref]

Margolis, H. S.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Marti, G. E.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

Martin, K. W.

K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
[Crossref]

Martin, M. J.

Maurice, V.

McGrew, W. F.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

McNally, R. L.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

Mestre, N.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Milani, G.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Mio, N.

T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed bragg reflector laser diode to the Cs-D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78(2), 026105 (2007).
[Crossref]

Moriwaki, S.

T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed bragg reflector laser diode to the Cs-D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78(2), 026105 (2007).
[Crossref]

Morvan, L.

Müller, H.

Newman, Z. L.

Nicolodi, D.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Noh, H.

Oswald, M.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Pan, D.

Papageorgiou, N.

N. Papageorgiou, M. Fichet, V. Sautenkov, D. Bloch, and M. Ducloy, “Doppler-free reflection spectroscopy of self-induced and krypton-induced collisional shift and broadening of cesium D2 line components in optically dense vapor,” Laser Phys. 4(2), 392–395 (1994).

Papp, S. B.

Park, S. E.

S. H. Lee, Y. H. Park, S. E. Park, H. S. Lee, S. H. Yang, D. H. Yu, and T. Y. Kwon, “Accuracy evaluation of an optically pumped caesium beam frequency standard KRISS-1,” Metrologia 46(3), 227–236 (2009).
[Crossref]

Park, Y. H.

S. H. Lee, Y. H. Park, S. E. Park, H. S. Lee, S. H. Yang, D. H. Yu, and T. Y. Kwon, “Accuracy evaluation of an optically pumped caesium beam frequency standard KRISS-1,” Metrologia 46(3), 227–236 (2009).
[Crossref]

Parker, R.

Peng, J.

Perez, P.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Peters, A.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Petit, R.

C. Sallot, M. Baldy, D. Gin, and R. Petit, “3 · 10 −12 · τ−1/2 on industrial prototype optically pumped cesium beam frequency standard,” in Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition Jointly with 17th European Frequency and Time Forum (IEEE, 2003), pp. 100–104.

Phelps, G.

K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
[Crossref]

Picqué, J. L.

J. L. Picqué, “Hyperfine optical pumping of a cesium atomic beam, and applications,” Metrologia 13(3), 115–119 (1977).
[Crossref]

Pikovski, I.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

Pillet, G.

Pizzocaro, M.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Pleshanov, S. A.

O. V. Zhuravleva, A. V. Ivanov, A. I. Leonovich, V. D. Kurnosov, K. V. Kurnosov, R. V. Chernov, V. V. Shishkov, and S. A. Pleshanov, “Single-frequency tunable laser for pumping cesium frequency standards,” Quantum Electron. 36(8), 741–744 (2006).
[Crossref]

Prestage, J.

L. Maleki and J. Prestage, “Applications of clocks and frequency standards: from the routine to tests of fundamental models,” Metrologia 42(3), S145–S153 (2005).
[Crossref]

Pröbster, B.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Raj, R. K.

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44(19), 1251–1254 (1980).
[Crossref]

Rauf, B.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Riehle, F.

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
[Crossref]

Robinson, J. M.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

Rolland, A.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Romer, A.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Roverae, G. D.

G. D. Roverae, G. Santarell, and A. Clairon, “A laser diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65(5), 1502–1505 (1994).
[Crossref]

Ruffieux, R.

S. Lecomte, M. Haldimann, R. Ruffieux, P. Berthoud, and P. Thomann, “Performance demonstration of a compact, single optical frequency cesium beam clock for space applications,” in Proceedings of IEEE International Frequency Control Symposium-Jointly with the 21st European Frequency and Time Forum (IEEE, 2007), pp. 1127–1131.

Sagnes, I.

P. Dumont, F. Camargo, J. M. Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. L. Leclin, “Low-noise dual frequency laser for compact Cs atomic clocks,” J. Lightwave Technol. 32(20), 3817–3823 (2014).
[Crossref]

B. Cocquelin, D. Holleville, G. L. Leclin, I. Sagnes, A. Garnache, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95(2), 315–321 (2009).
[Crossref]

Sallot, C.

C. Sallot, M. Baldy, D. Gin, and R. Petit, “3 · 10 −12 · τ−1/2 on industrial prototype optically pumped cesium beam frequency standard,” in Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition Jointly with 17th European Frequency and Time Forum (IEEE, 2003), pp. 100–104.

Santarell, G.

G. D. Roverae, G. Santarell, and A. Clairon, “A laser diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65(5), 1502–1505 (1994).
[Crossref]

Sautenkov, V.

N. Papageorgiou, M. Fichet, V. Sautenkov, D. Bloch, and M. Ducloy, “Doppler-free reflection spectroscopy of self-induced and krypton-induced collisional shift and broadening of cesium D2 line components in optically dense vapor,” Laser Phys. 4(2), 392–395 (1994).

Schäffer, S. A.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Schioppo, M.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Schkolnik, V.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Schmeissner, R.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Schuldt, T.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Shang, H.

P. Chang, S. Zhang, H. Shang, and J. Chen, “Stabilizing diode laser to 1 Hz-level Allan deviation with atomic spectroscopy for Rb four-level active optical frequency standard,” Appl. Phys. B 125(11), 196 (2019).
[Crossref]

H. Shang, X. Zhang, S. Zhang, D. Pan, H. Chen, and J. Chen, “Miniaturized calcium beam optical frequency standard using fully sealed vacuum tube with 10−15 instability,” Opt. Express 25(24), 30459–30467 (2017).
[Crossref]

S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
[Crossref]

Shen, B.

Shirley, J. H.

J. H. Shirley, W. D. Lee, and R. E. Drullinger, “Accuracy evaluation of the primary frequency standard NIST-7,” Metrologia 38(5), 427–458 (2001).
[Crossref]

Shishkov, V. V.

O. V. Zhuravleva, A. V. Ivanov, A. I. Leonovich, V. D. Kurnosov, K. V. Kurnosov, R. V. Chernov, V. V. Shishkov, and S. A. Pleshanov, “Single-frequency tunable laser for pumping cesium frequency standards,” Quantum Electron. 36(8), 741–744 (2006).
[Crossref]

Smol, R.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Snyder, J. J.

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44(19), 1251–1254 (1980).
[Crossref]

Sonderhouse, L.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

Spencer, D. T.

Srinivasan, K.

Steck, D. A.

D. A. Steck, “Cesium D line data (revision 2.1.4),” http://steck.us/alkalidata (2010).

Sterr, U.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7 × 10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10−6 for frequency modulation and laser stabilization,” Opt. Lett. 39(7), 1980–1983 (2014).
[Crossref]

Stone, J. R.

Stuhl, B.

K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
[Crossref]

Suh, M.

Tai, Z.

Tampellini, A.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Tao, Z.

Z. Jiang, Q. Zhou, Z. Tao, X. Zhang, S. Zhang, C. Zhu, P. Lin, and J. Chen, “Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter,” Chin. Phys. B 25(8), 083201 (2016).
[Crossref]

Theobald, G.

B. Bousset, G. L. Leclin, F. Hamouda, P. Cerez, and G. Theobald, “Frequency performances of a miniature optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(2), 366–371 (1999).
[Crossref]

N. Dimarcq, V. Giordano, P. Cerez, and G. Theobald, “Analysis of the noise sources in an optically pumped cesium beam resonator,” IEEE Trans. Instrum. Meas. 42(2), 115–120 (1993).
[Crossref]

Thomann, P.

S. Lecomte, M. Haldimann, R. Ruffieux, P. Berthoud, and P. Thomann, “Performance demonstration of a compact, single optical frequency cesium beam clock for space applications,” in Proceedings of IEEE International Frequency Control Symposium-Jointly with the 21st European Frequency and Time Forum (IEEE, 2007), pp. 1127–1131.

Thoumany, P.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Timmen, L.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Tu, J.

S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
[Crossref]

Vahala, K. J.

Vogt, S.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7 × 10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

Voigt, C.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

von Bandel, N.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

Walsworth, L.

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

Wang, C.

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83(4), 043111 (2012).
[Crossref]

Wang, F.

J. Zhang, J. Chen, F. Wang, D. Yang, and Y. Wang, “Influence of a static magnetic field on the detected atomic velocity distribution in an optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(9), 1210–1213 (2003).
[Crossref]

J. Chen, F. Wang, Y. Wang, and D. Yang, “A new design of a diffused laser light optically pumped small cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 47(2), 457–460 (2000).
[Crossref]

Wang, X.

Wang, Y.

J. Zhang, J. Chen, F. Wang, D. Yang, and Y. Wang, “Influence of a static magnetic field on the detected atomic velocity distribution in an optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(9), 1210–1213 (2003).
[Crossref]

J. Chen, F. Wang, Y. Wang, and D. Yang, “A new design of a diffused laser light optically pumped small cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 47(2), 457–460 (2000).
[Crossref]

Wei, Q.

Y. Cao, X. Zhao, W. Xie, Q. Wei, L. Yang, H. Chen, and S. Zhang, “A merchandized optically pumped cesium atomic clock,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 618–621.

Weng, K.

Westly, D.

Whittker, E. A.

Wicht, A.

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Wojcik, M.

K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
[Crossref]

Wu, B.

Wu, X.

Xie, W.

Y. Cao, X. Zhao, W. Xie, Q. Wei, L. Yang, H. Chen, and S. Zhang, “A merchandized optically pumped cesium atomic clock,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 618–621.

Yan, L.

Yang, D.

J. Zhang, J. Chen, F. Wang, D. Yang, and Y. Wang, “Influence of a static magnetic field on the detected atomic velocity distribution in an optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(9), 1210–1213 (2003).
[Crossref]

J. Chen, F. Wang, Y. Wang, and D. Yang, “A new design of a diffused laser light optically pumped small cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 47(2), 457–460 (2000).
[Crossref]

Yang, K.

Yang, L.

Y. Cao, X. Zhao, W. Xie, Q. Wei, L. Yang, H. Chen, and S. Zhang, “A merchandized optically pumped cesium atomic clock,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 618–621.

Yang, S. H.

S. H. Lee, Y. H. Park, S. E. Park, H. S. Lee, S. H. Yang, D. H. Yu, and T. Y. Kwon, “Accuracy evaluation of an optically pumped caesium beam frequency standard KRISS-1,” Metrologia 46(3), 227–236 (2009).
[Crossref]

Ye, J.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10−6 for frequency modulation and laser stabilization,” Opt. Lett. 39(7), 1980–1983 (2014).
[Crossref]

J. Ye, L. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87(27), 270801 (2001).
[Crossref]

Yoon, T. H.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Yu, C.

Yu, D. H.

S. H. Lee, Y. H. Park, S. E. Park, H. S. Lee, S. H. Yang, D. H. Yu, and T. Y. Kwon, “Accuracy evaluation of an optically pumped caesium beam frequency standard KRISS-1,” Metrologia 46(3), 227–236 (2009).
[Crossref]

Zampaolo, M.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Zang, E.

E. Zang, J. Cao, Y. Li, C. Li, Y. Deng, and C. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56(2), 673–676 (2007).
[Crossref]

Zhang, J.

J. Zhang, J. Chen, F. Wang, D. Yang, and Y. Wang, “Influence of a static magnetic field on the detected atomic velocity distribution in an optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(9), 1210–1213 (2003).
[Crossref]

Zhang, L.

S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
[Crossref]

Zhang, S.

P. Chang, S. Zhang, H. Shang, and J. Chen, “Stabilizing diode laser to 1 Hz-level Allan deviation with atomic spectroscopy for Rb four-level active optical frequency standard,” Appl. Phys. B 125(11), 196 (2019).
[Crossref]

H. Shang, X. Zhang, S. Zhang, D. Pan, H. Chen, and J. Chen, “Miniaturized calcium beam optical frequency standard using fully sealed vacuum tube with 10−15 instability,” Opt. Express 25(24), 30459–30467 (2017).
[Crossref]

S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
[Crossref]

Z. Jiang, Q. Zhou, Z. Tao, X. Zhang, S. Zhang, C. Zhu, P. Lin, and J. Chen, “Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter,” Chin. Phys. B 25(8), 083201 (2016).
[Crossref]

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41(23), 5584–5587 (2016).
[Crossref]

Y. Cao, X. Zhao, W. Xie, Q. Wei, L. Yang, H. Chen, and S. Zhang, “A merchandized optically pumped cesium atomic clock,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 618–621.

Zhang, W.

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10−6 for frequency modulation and laser stabilization,” Opt. Lett. 39(7), 1980–1983 (2014).
[Crossref]

Zhang, X.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

H. Shang, X. Zhang, S. Zhang, D. Pan, H. Chen, and J. Chen, “Miniaturized calcium beam optical frequency standard using fully sealed vacuum tube with 10−15 instability,” Opt. Express 25(24), 30459–30467 (2017).
[Crossref]

S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
[Crossref]

Z. Jiang, Q. Zhou, Z. Tao, X. Zhang, S. Zhang, C. Zhu, P. Lin, and J. Chen, “Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter,” Chin. Phys. B 25(8), 083201 (2016).
[Crossref]

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41(23), 5584–5587 (2016).
[Crossref]

Zhang, Y.

Zhao, X.

Y. Cao, X. Zhao, W. Xie, Q. Wei, L. Yang, H. Chen, and S. Zhang, “A merchandized optically pumped cesium atomic clock,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 618–621.

Zhong, W.

Zhou, Q.

Z. Jiang, Q. Zhou, Z. Tao, X. Zhang, S. Zhang, C. Zhu, P. Lin, and J. Chen, “Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter,” Chin. Phys. B 25(8), 083201 (2016).
[Crossref]

Zhou, Y.

Zhu, C.

S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
[Crossref]

Z. Jiang, Q. Zhou, Z. Tao, X. Zhang, S. Zhang, C. Zhu, P. Lin, and J. Chen, “Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter,” Chin. Phys. B 25(8), 083201 (2016).
[Crossref]

Zhu, D.

Zhuravleva, O. V.

O. V. Zhuravleva, A. V. Ivanov, A. I. Leonovich, V. D. Kurnosov, K. V. Kurnosov, R. V. Chernov, V. V. Shishkov, and S. A. Pleshanov, “Single-frequency tunable laser for pumping cesium frequency standards,” Quantum Electron. 36(8), 741–744 (2006).
[Crossref]

Zi, F.

Zucco, M.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (2)

B. Cocquelin, D. Holleville, G. L. Leclin, I. Sagnes, A. Garnache, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95(2), 315–321 (2009).
[Crossref]

P. Chang, S. Zhang, H. Shang, and J. Chen, “Stabilizing diode laser to 1 Hz-level Allan deviation with atomic spectroscopy for Rb four-level active optical frequency standard,” Appl. Phys. B 125(11), 196 (2019).
[Crossref]

Appl. Phys. Lett. (1)

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981).
[Crossref]

Chin. Phys. B (1)

Z. Jiang, Q. Zhou, Z. Tao, X. Zhang, S. Zhang, C. Zhu, P. Lin, and J. Chen, “Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter,” Chin. Phys. B 25(8), 083201 (2016).
[Crossref]

IEEE Trans. Instrum. Meas. (4)

E. Zang, J. Cao, Y. Li, C. Li, Y. Deng, and C. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56(2), 673–676 (2007).
[Crossref]

K. Hagimoto, Y. Koga, and T. Ikegami, “Reevaluation of the optically pumped cesium frequency standard NRLM-4 with an H-Bend ring cavity,” IEEE Trans. Instrum. Meas. 57(10), 2212–2217 (2008).
[Crossref]

N. Dimarcq, V. Giordano, P. Cerez, and G. Theobald, “Analysis of the noise sources in an optically pumped cesium beam resonator,” IEEE Trans. Instrum. Meas. 42(2), 115–120 (1993).
[Crossref]

F. Bertinetto, P. Cordiale, G. Galzerano, and B. Elio, “Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method,” IEEE Trans. Instrum. Meas. 50(2), 490–492 (2001).
[Crossref]

IEEE Trans. Ultrason., Ferroelect., Freq. Contr. (3)

B. Bousset, G. L. Leclin, F. Hamouda, P. Cerez, and G. Theobald, “Frequency performances of a miniature optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(2), 366–371 (1999).
[Crossref]

J. Chen, F. Wang, Y. Wang, and D. Yang, “A new design of a diffused laser light optically pumped small cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 47(2), 457–460 (2000).
[Crossref]

J. Zhang, J. Chen, F. Wang, D. Yang, and Y. Wang, “Influence of a static magnetic field on the detected atomic velocity distribution in an optically pumped cesium beam frequency standard,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(9), 1210–1213 (2003).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

J. Phys. B: At., Mol. Opt. Phys. (1)

G. L. Leclin, P. Cerez, and N. Dimarcq, “Laser-induced noise contribution due to imperfect atomic state preparation in an optically pumped caesium beam resonator,” J. Phys. B: At., Mol. Opt. Phys. 32(2), 327–340 (1999).
[Crossref]

Laser Phys. (1)

N. Papageorgiou, M. Fichet, V. Sautenkov, D. Bloch, and M. Ducloy, “Doppler-free reflection spectroscopy of self-induced and krypton-induced collisional shift and broadening of cesium D2 line components in optically dense vapor,” Laser Phys. 4(2), 392–395 (1994).

Metrologia (6)

S. H. Lee, Y. H. Park, S. E. Park, H. S. Lee, S. H. Yang, D. H. Yu, and T. Y. Kwon, “Accuracy evaluation of an optically pumped caesium beam frequency standard KRISS-1,” Metrologia 46(3), 227–236 (2009).
[Crossref]

J. L. Picqué, “Hyperfine optical pumping of a cesium atomic beam, and applications,” Metrologia 13(3), 115–119 (1977).
[Crossref]

A. Makdissi and E. D. Clercq, “Evaluation of the accuracy of the optically pumped cesium beam primary frequency standard of BNM-LPTF,” Metrologia 38(5), 409–425 (2001).
[Crossref]

J. H. Shirley, W. D. Lee, and R. E. Drullinger, “Accuracy evaluation of the primary frequency standard NIST-7,” Metrologia 38(5), 427–458 (2001).
[Crossref]

L. Maleki and J. Prestage, “Applications of clocks and frequency standards: from the routine to tests of fundamental models,” Metrologia 42(3), S145–S153 (2005).
[Crossref]

J. Levine, “Timing in telecommunications networks,” Metrologia 48(4), S203–S212 (2011).
[Crossref]

Nat. Phys. (1)

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Nature (1)

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Opt. Commun. (1)

E. Jaatinen, “Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy,” Opt. Commun. 120(1-2), 91–97 (1995).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Phys. Rev. Appl. (2)

K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based on a two-photon transition in rubidium,” Phys. Rev. Appl. 9(1), 014019 (2018).
[Crossref]

K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters, “Iodine frequency reference on a sounding rocket,” Phys. Rev. Appl. 11(5), 054068 (2019).
[Crossref]

Phys. Rev. D (1)

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94(12), 124043 (2016).
[Crossref]

Phys. Rev. Lett. (3)

J. Ye, L. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87(27), 270801 (2001).
[Crossref]

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44(19), 1251–1254 (1980).
[Crossref]

S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with 7 × 10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

Quantum Electron. (1)

O. V. Zhuravleva, A. V. Ivanov, A. I. Leonovich, V. D. Kurnosov, K. V. Kurnosov, R. V. Chernov, V. V. Shishkov, and S. A. Pleshanov, “Single-frequency tunable laser for pumping cesium frequency standards,” Quantum Electron. 36(8), 741–744 (2006).
[Crossref]

Rev. Sci. Instrum. (4)

T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed bragg reflector laser diode to the Cs-D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78(2), 026105 (2007).
[Crossref]

G. D. Roverae, G. Santarell, and A. Clairon, “A laser diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65(5), 1502–1505 (1994).
[Crossref]

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83(4), 043111 (2012).
[Crossref]

S. Zhang, X. Zhang, J. Cui, Z. Jiang, H. Shang, C. Zhu, P. Chang, L. Zhang, J. Tu, and J. Chen, “Compact Rb optical frequency standard with 10−15 stability,” Rev. Sci. Instrum. 88(10), 103106 (2017).
[Crossref]

Science (1)

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, “A Fermi-degenerate three-dimensional optical lattice clock,” Science 358(6359), 90–94 (2017).
[Crossref]

Other (5)

S. Lecomte, M. Haldimann, R. Ruffieux, P. Berthoud, and P. Thomann, “Performance demonstration of a compact, single optical frequency cesium beam clock for space applications,” in Proceedings of IEEE International Frequency Control Symposium-Jointly with the 21st European Frequency and Time Forum (IEEE, 2007), pp. 1127–1131.

R. Schmeissner, P. Favard, A. Douahi, P. Perez, N. Mestre, M. Baldy, S. Guerandel, A. Romer, F. Chastellain, W. W. Coppoolse, Y. Folco, N. von Bandel, M. Garcia, M. Krakowski, and W. Konrad, “Optically pumped Cs space clock development,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 136–137.

C. Sallot, M. Baldy, D. Gin, and R. Petit, “3 · 10 −12 · τ−1/2 on industrial prototype optically pumped cesium beam frequency standard,” in Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition Jointly with 17th European Frequency and Time Forum (IEEE, 2003), pp. 100–104.

Y. Cao, X. Zhao, W. Xie, Q. Wei, L. Yang, H. Chen, and S. Zhang, “A merchandized optically pumped cesium atomic clock,” in Proceedings of Joint European Frequency and Time Forum and International Frequency Control Symposium (IEEE, 2017), pp. 618–621.

D. A. Steck, “Cesium D line data (revision 2.1.4),” http://steck.us/alkalidata (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Overall configuration of the compact optically pumped cesium beam atomic clock based on the high-stability laser. The yellow box is the frequency-stabilized laser source construction, the orange box is the laser source frequency-shifting and power-splitting construction, and the green box is the physical part of the atomic clock. The photograph of the whole laser source construction is shown as above. ECDL, external cavity diode laser. CAVC, cesium atomic vapor cell. ISO, optical isolator. HWP, half-wave plate. PBS, polarization beam splitter. AOM, acousto-optic modulator, whose amplified driver is not shown in this figure. EOM, electro-optic modulator. DWPS, dual-way power splitter. SA, spectrum analyzer. HRM, high-reflectivity mirror. MWC, microwave cavity, the distance between the two arms of MWC is approximately 165 mm. ECM, electronic control module. There is a 5 mm-width aperture along the beam propagation direction to define the height of the atomic beam.
Fig. 2.
Fig. 2. Energy levels and spectroscopy properties of the overall configuration. (a) Relevant energy levels of cesium. Natural linewidth of the $6p$ $^{2}P_{3/2}$ state is 5.2 MHz, and 6$s$ $^{2}S_{1/2}$ $|F=4\rangle - 6p$ $^{2}P_{3/2}$ $|F'=5\rangle$ is cycling transition. (b) Saturation absorption spectroscopy (blue-solid line) and corresponding modulation transfer spectroscopy (black-solid line) of the 6$s$ $^{2}S_{1/2}$ $|F=4\rangle - 6p$ $^{2}P_{3/2}$ transition. (c) Measured peak-to-peak frequency interval and slope of the modulation transfer spectroscopy signal against modulation frequency for the transition 6$s$ $^{2}S_{1/2}$ $|F=4\rangle - 6p$ $^{2}P_{3/2}$ $|F'=5\rangle$. Black-solid circles are the measurements of the peak-to-peak frequency interval, blue-solid squares are the measurements of the slope (ratio between the peak-to-peak intensity and frequency interval). Dash lines are the polynomial fittings based on the experimental results. (d) Ramsey fringes of the microwave clock transition, whose linewidth is $\sim$ 600 Hz. Scanning range is 2 kHz whose central frequency is corresponding to the transition of ground state $|F=3,m_{F}=0\rangle$ - $|F=4, m_{F}=0\rangle$.
Fig. 3.
Fig. 3. The beating signal of two identical laser sources with and without frequency locking. The black-solid squares are the experimental results of the beating signal at both locking, the red-solid line is the Lorentz-fitting based on the experimental results, the fitting linewidth (-3 dB) is 4.5 kHz. The inset figure is the experimental results of the beating signal when one laser is free-running, fitted with Lorentz linewidth of 28.6 kHz. RBW is 750 Hz and sweep time is 85 ms.
Fig. 4.
Fig. 4. Allan deviation of the frequency-stabilized lasers. Black-cross circles are the frequency instabilities based on originally recorded beating data of the two identical frequency-stabilized lasers, navy blue-solid circles are the frequency instabilities based on the original data with medium-term periodic drift removed, the green-solid line represents white-frequency-noise asymptote of the navy blue-solid circles. Half-fulled circles are the frequency instabilities of the frequency-stabilized laser by the self-estimation method. Black dash-dot line is the measured vapor cell cold finger temperature limited Allan deviation. Blue-hollow squares are the results of rubidium two-photon clock in [42]. Error bars indicate 1$\sigma$ confidence intervals.
Fig. 5.
Fig. 5. Recorded heterodyne results of two identical frequency-stabilized lasers and temperature of the vapor cell cold finger. (a) Recorded beating frequency of the two lasers (cyan-solid line) and temperature of the cold finger for nearly one hour (red-solid line). (b) Recorded temperature of the vapor cell cold finger for nearly one day.
Fig. 6.
Fig. 6. Allan deviation of the compact optically pumped cesium beam atomic clock based on high-stability laser. Blue-solid circles are the Allan deviation of the compact optically pumped cesium beam atomic clock, the green-solid line is the white-frequency-noise asymptote fitted with 2$\times 10^{-12}/\sqrt {\tau }$. Blue-hollow squares are the results of compact optically pumped cesium beam atomic clock in [16]. Grey-solid squares are the frequency instability of the reference clock, Hydrogen maser.

Metrics