Abstract

An iterative local Fourier transform (ILFT)-based high-accuracy wavelength calibration for Fourier transform imaging spectrometer (FTIS) is proposed. The wavelength calibration for FTIS is to determine the relation between the wavelength and the wavenumber position. However, the wavenumber position solved by conventional method is only accurate up to integers restricted by the picket-fence effect of discrete Fourier transform. While the proposed ILFT can increase the accuracy of calculating the wavenumber position by combining the local Fourier transform and a few iterations. In this paper, the method is investigated in theory and then by simulations and experiments. The simulations show that the accuracy of the wavenumber position calculated by the ILFT is increased by 100 times than conventional method with noise, phase error, and non-uniform sampling of optical path difference. And the experimental results indicate that the ILFT decreases the absolute error of wavelength calibration from about 2.03 nm to 0.16 nm. Therefore, the method provides theoretical and technical support for FTIS and promotes the development of superior resolutions therein.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact birefringent interferometer for Fourier transform hyperspectral imaging

Caixun Bai, Jianxin Li, Yixuan Xu, Heng Yuan, and Jie Liu
Opt. Express 26(2) 1703-1725 (2018)

Neural network calibration of a snapshot birefringent Fourier transform spectrometer with periodic phase errors

David Luo and Michael W. Kudenov
Opt. Express 24(10) 11266-11281 (2016)

Data processing and performance evaluation of a tempo-spatially mixed modulation imaging Fourier transform spectrometer based on stepped micro-mirror

Baixuan Zhao, Jinguang Lv, Jun Ren, Yuxin Qin, Jin Tao, Jingqiu Liang, and Weibiao Wang
Opt. Express 28(5) 6320-6335 (2020)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
    [Crossref]
  2. B. Harnisch, W. Posselt, K. Holota, H. O. Tittel, and M. Rost, “Compact Fourier-transform imaging spectrometer for small satellite massions,” Acta Astronaut. 52(9-12), 803–811 (2003).
    [Crossref]
  3. R. D. Alcock and J. M. Coupland, “A compact, high numerical aperture imaging Fourier transform spectrometer and its application,” Meas. Sci. Technol. 17(11), 2861–2868 (2006).
    [Crossref]
  4. Y. Ferrec, J. Taboury, H. Sauer, P. Chavel, P. Fournet, C. Coudrain, J. Deschamps, and J. Primot, “Experimental results from an airborne static Fourier transform imaging spectrometer,” Appl. Opt. 50(30), 5894–5904 (2011).
    [Crossref]
  5. E. Puckrin, C. S. Turcotte, M. A. Gagnon, J. Bastedo, V. Farley, and M. Chamberland, “Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications,” Proc. SPIE 8360, 836004 (2012).
    [Crossref]
  6. W. Wang, J. Liang, Z. Liang, J. Lü, Y. Qin, C. Tian, and W. Wang, “Design of spatio-temporally modulated static infrared imaging Fourier transform spectrometer,” Opt. Lett. 39(16), 4911–4914 (2014).
    [Crossref]
  7. C. Coudrain, S. Bernhardt, M. Caes, R. Domel, Y. Ferrec, R. Gouyon, D. Henry, M. Jacquart, A. Kattnig, P. Perrault, L. Poutier, L. Rousset-Rouvière, M. Tauvy, S. Thétas, and J. Primot, “SIELETERS, an airborne infrared dual-band spectro-imaging system for measurement of scene spectral signatures,” Opt. Express 23(12), 16164–16176 (2015).
    [Crossref]
  8. M. Pisani and M. Zucco, “Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer,” Opt. Express 17(10), 8319–8331 (2009).
    [Crossref]
  9. P. G. Lucey and J. Akagi, “A Fabry-Perot interferometer with a spatially variable resonance gap employed as a Fourier transform spectrometer,” Proc. SPIE 8048, 80480K (2011).
    [Crossref]
  10. E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
    [Crossref]
  11. D. Cabib, R. A. Buckwald, Y. Garini, and D. G. Soenksen, “Spatially resolved Fourier transform spectroscopy (spectral imaging): a powerful tool for quantitative analytical microscopy,” Proc. SPIE 2678, 278–291 (1996).
    [Crossref]
  12. W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207–216 (1998).
    [Crossref]
  13. A. Barducci, F. Castagnoli, G. Castellini, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Developing a new hyperspectral imaging interferometer for earth observation,” Opt. Eng. 51(11), 111706 (2012).
    [Crossref]
  14. S. T. Crites, P. G. Lucey, R. Wright, H. Garbeil, K. A. Horton, and M. Wood, “A low cost thermal infrared hyperspectral imager for small satellites,” Proc. SPIE 8385, 838509 (2012).
    [Crossref]
  15. J. Li, C. Bai, Y. Shen, and D. Xu, “Optical path squeezing interferometry: boosting the resolution for Fourier transform imaging spectrometers,” Opt. Lett. 41(22), 5329–5332 (2016).
    [Crossref]
  16. M. Lindner, Z. Shotan, and Y. Garini, “Rapid microscopy measurement of very large spectral images,” Opt. Express 24(9), 9511–9527 (2016).
    [Crossref]
  17. C. I. Honniball, R. Wright, and P. G. Lucey, “MWIR hyperspectral imaging with the MIDAS instrument,” Proc. SPIE 10177, 101770J (2017).
    [Crossref]
  18. R. F. Horton, “Optical design for a high-etendue imaging Fourier transform spectrometer,” Proc. SPIE 2819, 300–315 (1996).
    [Crossref]
  19. C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer base on Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
    [Crossref]
  20. T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt. 48(12), 2333–2339 (2009).
    [Crossref]
  21. A. P. Fossi, Y. Ferrec, N. Roux, O. D’almeida, N. Guerineau, and H. Sauer, “Miniature and cooled hyperspectral camera for outdoor surveillance applications in the mid-infrared,” Opt. Lett. 41(9), 1901–1904 (2016).
    [Crossref]
  22. C. Bai, J. Li, Y. Xu, H. Yuan, and J. Liu, “Compact birefringent interferometer for Fourier transform hyperspectral imaging,” Opt. Express 26(2), 1703–1725 (2018).
    [Crossref]
  23. A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12(22), 5368–5374 (2004).
    [Crossref]
  24. M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20(16), 17973–17986 (2012).
    [Crossref]
  25. J. Li, J. Zhu, C. Qi, C. Zheng, B. Gao, Y. Zhang, and X. Hou, “Compact static imaging spectrometer combining spectral zooming capability with a birefringent interferometer,” Opt. Express 21(8), 10182–10187 (2013).
    [Crossref]
  26. C. Bai, J. Li, Y. Shen, and J. Zhou, “Birefringent Fourier transform imaging spectrometer with a rotating retroreflector,” Opt. Lett. 41(15), 3647–3650 (2016).
    [Crossref]
  27. Q. Liu, C. Bai, J. Liu, J. He, and J. Li, “Fourier transform imaging spectropolarimeter using ferroelectric liquid crystals and Wollaston interferometer,” Opt. Express 25(17), 19904–19922 (2017).
    [Crossref]
  28. Y. Xu, J. Li, C. Bai, H. Yuan, and J. Liu, “Ultra-compact Fourier transform imaging spectrometer using a focal plane birefringent interferometer,” Opt. Lett. 43(17), 4081–4084 (2018).
    [Crossref]
  29. J. C. Brasunas and G. M. Cushman, “Uniform time-sampling Fourier transform spectroscopy,” Appl. Opt. 36(10), 2206–2210 (1997).
    [Crossref]
  30. M. B. Comisarow and J. D. Melka, “Error estimates for finite zero-filling in Fourier transform spectrometry,” Anal. Chem. 51(13), 2198–2203 (1979).
    [Crossref]
  31. J. Lin, J. Shao, C. Song, Y. Li, and Y. Lei, “High Precision Spectral Calibration Method of Fourier Interferometric Spectrometer,” Spectrosc. Spect. Anal. 35(12), 3534–3537 (2015).
    [Crossref]
  32. W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
    [Crossref]
  33. Q. Li, C. Zhang, T. Yan, N. Quan, Y. Wei, and C. Tong, “Wavelength calibration of an imaging spectrometer based on Savart interferometer,” Opt. Commun. 398, 24–30 (2017).
    [Crossref]
  34. J. Cho, S. Lee, and W. Jang, “Improvement of spectral resolution by signal padding method in the spatially modulated Fourier transform spectrometer based on a Sagnac interferometer,” Appl. Opt. 58(25), 6755–6761 (2019).
    [Crossref]

2019 (1)

2018 (3)

2017 (3)

Q. Liu, C. Bai, J. Liu, J. He, and J. Li, “Fourier transform imaging spectropolarimeter using ferroelectric liquid crystals and Wollaston interferometer,” Opt. Express 25(17), 19904–19922 (2017).
[Crossref]

Q. Li, C. Zhang, T. Yan, N. Quan, Y. Wei, and C. Tong, “Wavelength calibration of an imaging spectrometer based on Savart interferometer,” Opt. Commun. 398, 24–30 (2017).
[Crossref]

C. I. Honniball, R. Wright, and P. G. Lucey, “MWIR hyperspectral imaging with the MIDAS instrument,” Proc. SPIE 10177, 101770J (2017).
[Crossref]

2016 (4)

2015 (2)

2014 (1)

2013 (1)

2012 (4)

M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20(16), 17973–17986 (2012).
[Crossref]

E. Puckrin, C. S. Turcotte, M. A. Gagnon, J. Bastedo, V. Farley, and M. Chamberland, “Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications,” Proc. SPIE 8360, 836004 (2012).
[Crossref]

A. Barducci, F. Castagnoli, G. Castellini, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Developing a new hyperspectral imaging interferometer for earth observation,” Opt. Eng. 51(11), 111706 (2012).
[Crossref]

S. T. Crites, P. G. Lucey, R. Wright, H. Garbeil, K. A. Horton, and M. Wood, “A low cost thermal infrared hyperspectral imager for small satellites,” Proc. SPIE 8385, 838509 (2012).
[Crossref]

2011 (2)

P. G. Lucey and J. Akagi, “A Fabry-Perot interferometer with a spatially variable resonance gap employed as a Fourier transform spectrometer,” Proc. SPIE 8048, 80480K (2011).
[Crossref]

Y. Ferrec, J. Taboury, H. Sauer, P. Chavel, P. Fournet, C. Coudrain, J. Deschamps, and J. Primot, “Experimental results from an airborne static Fourier transform imaging spectrometer,” Appl. Opt. 50(30), 5894–5904 (2011).
[Crossref]

2009 (2)

2006 (1)

R. D. Alcock and J. M. Coupland, “A compact, high numerical aperture imaging Fourier transform spectrometer and its application,” Meas. Sci. Technol. 17(11), 2861–2868 (2006).
[Crossref]

2004 (1)

2003 (1)

B. Harnisch, W. Posselt, K. Holota, H. O. Tittel, and M. Rost, “Compact Fourier-transform imaging spectrometer for small satellite massions,” Acta Astronaut. 52(9-12), 803–811 (2003).
[Crossref]

2002 (1)

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer base on Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
[Crossref]

1998 (1)

W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207–216 (1998).
[Crossref]

1997 (1)

1996 (3)

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

D. Cabib, R. A. Buckwald, Y. Garini, and D. G. Soenksen, “Spatially resolved Fourier transform spectroscopy (spectral imaging): a powerful tool for quantitative analytical microscopy,” Proc. SPIE 2678, 278–291 (1996).
[Crossref]

R. F. Horton, “Optical design for a high-etendue imaging Fourier transform spectrometer,” Proc. SPIE 2819, 300–315 (1996).
[Crossref]

1993 (1)

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

1979 (1)

M. B. Comisarow and J. D. Melka, “Error estimates for finite zero-filling in Fourier transform spectrometry,” Anal. Chem. 51(13), 2198–2203 (1979).
[Crossref]

Akagi, J.

P. G. Lucey and J. Akagi, “A Fabry-Perot interferometer with a spatially variable resonance gap employed as a Fourier transform spectrometer,” Proc. SPIE 8048, 80480K (2011).
[Crossref]

Alcock, R. D.

R. D. Alcock and J. M. Coupland, “A compact, high numerical aperture imaging Fourier transform spectrometer and its application,” Meas. Sci. Technol. 17(11), 2861–2868 (2006).
[Crossref]

Bai, C.

Bai, X.

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

Bar-Am, I.

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Barducci, A.

A. Barducci, F. Castagnoli, G. Castellini, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Developing a new hyperspectral imaging interferometer for earth observation,” Opt. Eng. 51(11), 111706 (2012).
[Crossref]

Bastedo, J.

E. Puckrin, C. S. Turcotte, M. A. Gagnon, J. Bastedo, V. Farley, and M. Chamberland, “Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications,” Proc. SPIE 8360, 836004 (2012).
[Crossref]

Bennett, C. L.

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Bernhardt, S.

Brasunas, J. C.

Buckwald, R. A.

D. Cabib, R. A. Buckwald, Y. Garini, and D. G. Soenksen, “Spatially resolved Fourier transform spectroscopy (spectral imaging): a powerful tool for quantitative analytical microscopy,” Proc. SPIE 2678, 278–291 (1996).
[Crossref]

Cabib, D.

D. Cabib, R. A. Buckwald, Y. Garini, and D. G. Soenksen, “Spatially resolved Fourier transform spectroscopy (spectral imaging): a powerful tool for quantitative analytical microscopy,” Proc. SPIE 2678, 278–291 (1996).
[Crossref]

Caes, M.

Carter, M. R.

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Castagnoli, F.

A. Barducci, F. Castagnoli, G. Castellini, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Developing a new hyperspectral imaging interferometer for earth observation,” Opt. Eng. 51(11), 111706 (2012).
[Crossref]

Castellini, G.

A. Barducci, F. Castagnoli, G. Castellini, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Developing a new hyperspectral imaging interferometer for earth observation,” Opt. Eng. 51(11), 111706 (2012).
[Crossref]

Chamberland, M.

E. Puckrin, C. S. Turcotte, M. A. Gagnon, J. Bastedo, V. Farley, and M. Chamberland, “Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications,” Proc. SPIE 8360, 836004 (2012).
[Crossref]

Chavel, P.

Cheng, H.

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

Cho, J.

Comisarow, M. B.

M. B. Comisarow and J. D. Melka, “Error estimates for finite zero-filling in Fourier transform spectrometry,” Anal. Chem. 51(13), 2198–2203 (1979).
[Crossref]

Coudrain, C.

Coupland, J. M.

R. D. Alcock and J. M. Coupland, “A compact, high numerical aperture imaging Fourier transform spectrometer and its application,” Meas. Sci. Technol. 17(11), 2861–2868 (2006).
[Crossref]

Crites, S. T.

S. T. Crites, P. G. Lucey, R. Wright, H. Garbeil, K. A. Horton, and M. Wood, “A low cost thermal infrared hyperspectral imager for small satellites,” Proc. SPIE 8385, 838509 (2012).
[Crossref]

Cushman, G. M.

D’almeida, O.

Deng, C.

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

Dereniak, E. L.

Deschamps, J.

Domel, R.

Farley, V.

E. Puckrin, C. S. Turcotte, M. A. Gagnon, J. Bastedo, V. Farley, and M. Chamberland, “Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications,” Proc. SPIE 8360, 836004 (2012).
[Crossref]

Ferguson-Smith, M. A.

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Ferrec, Y.

Fields, D. J.

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Fletcher-Holmes, D. W.

Fossi, A. P.

Fournet, P.

Gagnon, M. A.

E. Puckrin, C. S. Turcotte, M. A. Gagnon, J. Bastedo, V. Farley, and M. Chamberland, “Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications,” Proc. SPIE 8360, 836004 (2012).
[Crossref]

Gao, B.

Garbeil, H.

S. T. Crites, P. G. Lucey, R. Wright, H. Garbeil, K. A. Horton, and M. Wood, “A low cost thermal infrared hyperspectral imager for small satellites,” Proc. SPIE 8385, 838509 (2012).
[Crossref]

Garini, Y.

M. Lindner, Z. Shotan, and Y. Garini, “Rapid microscopy measurement of very large spectral images,” Opt. Express 24(9), 9511–9527 (2016).
[Crossref]

D. Cabib, R. A. Buckwald, Y. Garini, and D. G. Soenksen, “Spatially resolved Fourier transform spectroscopy (spectral imaging): a powerful tool for quantitative analytical microscopy,” Proc. SPIE 2678, 278–291 (1996).
[Crossref]

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Gouyon, R.

Guerineau, N.

Guzzi, D.

A. Barducci, F. Castagnoli, G. Castellini, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Developing a new hyperspectral imaging interferometer for earth observation,” Opt. Eng. 51(11), 111706 (2012).
[Crossref]

Harnisch, B.

B. Harnisch, W. Posselt, K. Holota, H. O. Tittel, and M. Rost, “Compact Fourier-transform imaging spectrometer for small satellite massions,” Acta Astronaut. 52(9-12), 803–811 (2003).
[Crossref]

Hart, C. L.

W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207–216 (1998).
[Crossref]

Harvey, A. R.

He, J.

Henry, D.

Hernandez, J. A. M.

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Holota, K.

B. Harnisch, W. Posselt, K. Holota, H. O. Tittel, and M. Rost, “Compact Fourier-transform imaging spectrometer for small satellite massions,” Acta Astronaut. 52(9-12), 803–811 (2003).
[Crossref]

Honniball, C. I.

C. I. Honniball, R. Wright, and P. G. Lucey, “MWIR hyperspectral imaging with the MIDAS instrument,” Proc. SPIE 10177, 101770J (2017).
[Crossref]

Horton, K. A.

S. T. Crites, P. G. Lucey, R. Wright, H. Garbeil, K. A. Horton, and M. Wood, “A low cost thermal infrared hyperspectral imager for small satellites,” Proc. SPIE 8385, 838509 (2012).
[Crossref]

Horton, R. F.

R. F. Horton, “Optical design for a high-etendue imaging Fourier transform spectrometer,” Proc. SPIE 2819, 300–315 (1996).
[Crossref]

Hou, X.

Jacquart, M.

Jang, W.

Kattnig, A.

Kudenov, M. W.

Lastri, C.

A. Barducci, F. Castagnoli, G. Castellini, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Developing a new hyperspectral imaging interferometer for earth observation,” Opt. Eng. 51(11), 111706 (2012).
[Crossref]

Ledbetter, D. H.

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Lee, S.

Lei, Y.

J. Lin, J. Shao, C. Song, Y. Li, and Y. Lei, “High Precision Spectral Calibration Method of Fourier Interferometric Spectrometer,” Spectrosc. Spect. Anal. 35(12), 3534–3537 (2015).
[Crossref]

Li, J.

Li, Q.

Q. Li, C. Zhang, T. Yan, N. Quan, Y. Wei, and C. Tong, “Wavelength calibration of an imaging spectrometer based on Savart interferometer,” Opt. Commun. 398, 24–30 (2017).
[Crossref]

Li, Y.

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

J. Lin, J. Shao, C. Song, Y. Li, and Y. Lei, “High Precision Spectral Calibration Method of Fourier Interferometric Spectrometer,” Spectrosc. Spect. Anal. 35(12), 3534–3537 (2015).
[Crossref]

Liang, J.

Liang, Z.

Liao, N.

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

Lin, J.

J. Lin, J. Shao, C. Song, Y. Li, and Y. Lei, “High Precision Spectral Calibration Method of Fourier Interferometric Spectrometer,” Spectrosc. Spect. Anal. 35(12), 3534–3537 (2015).
[Crossref]

Lindner, M.

Liu, J.

Liu, Q.

Lü, J.

Lucey, P. G.

C. I. Honniball, R. Wright, and P. G. Lucey, “MWIR hyperspectral imaging with the MIDAS instrument,” Proc. SPIE 10177, 101770J (2017).
[Crossref]

S. T. Crites, P. G. Lucey, R. Wright, H. Garbeil, K. A. Horton, and M. Wood, “A low cost thermal infrared hyperspectral imager for small satellites,” Proc. SPIE 8385, 838509 (2012).
[Crossref]

P. G. Lucey and J. Akagi, “A Fabry-Perot interferometer with a spatially variable resonance gap employed as a Fourier transform spectrometer,” Proc. SPIE 8048, 80480K (2011).
[Crossref]

Manoir, S.

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Marcoionni, P.

A. Barducci, F. Castagnoli, G. Castellini, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Developing a new hyperspectral imaging interferometer for earth observation,” Opt. Eng. 51(11), 111706 (2012).
[Crossref]

Melka, J. D.

M. B. Comisarow and J. D. Melka, “Error estimates for finite zero-filling in Fourier transform spectrometry,” Anal. Chem. 51(13), 2198–2203 (1979).
[Crossref]

Mu, T.

Nardino, V.

A. Barducci, F. Castagnoli, G. Castellini, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Developing a new hyperspectral imaging interferometer for earth observation,” Opt. Eng. 51(11), 111706 (2012).
[Crossref]

Ning, Y.

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Perrault, P.

Pippi, I.

A. Barducci, F. Castagnoli, G. Castellini, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Developing a new hyperspectral imaging interferometer for earth observation,” Opt. Eng. 51(11), 111706 (2012).
[Crossref]

Pisani, M.

Posselt, W.

B. Harnisch, W. Posselt, K. Holota, H. O. Tittel, and M. Rost, “Compact Fourier-transform imaging spectrometer for small satellite massions,” Acta Astronaut. 52(9-12), 803–811 (2003).
[Crossref]

Poutier, L.

Primot, J.

Puckrin, E.

E. Puckrin, C. S. Turcotte, M. A. Gagnon, J. Bastedo, V. Farley, and M. Chamberland, “Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications,” Proc. SPIE 8360, 836004 (2012).
[Crossref]

Qi, C.

Qin, Y.

Quan, N.

Q. Li, C. Zhang, T. Yan, N. Quan, Y. Wei, and C. Tong, “Wavelength calibration of an imaging spectrometer based on Savart interferometer,” Opt. Commun. 398, 24–30 (2017).
[Crossref]

Rafert, J. B.

W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207–216 (1998).
[Crossref]

Ried, T.

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Rohde, C. A.

W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207–216 (1998).
[Crossref]

Rost, M.

B. Harnisch, W. Posselt, K. Holota, H. O. Tittel, and M. Rost, “Compact Fourier-transform imaging spectrometer for small satellite massions,” Acta Astronaut. 52(9-12), 803–811 (2003).
[Crossref]

Rousset-Rouvière, L.

Roux, N.

Sauer, H.

Schoell, B.

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Schröck, E.

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Shao, J.

J. Lin, J. Shao, C. Song, Y. Li, and Y. Lei, “High Precision Spectral Calibration Method of Fourier Interferometric Spectrometer,” Spectrosc. Spect. Anal. 35(12), 3534–3537 (2015).
[Crossref]

Shen, Y.

Shotan, Z.

Slough, W. J.

W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207–216 (1998).
[Crossref]

Soenksen, D.

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Soenksen, D. G.

D. Cabib, R. A. Buckwald, Y. Garini, and D. G. Soenksen, “Spatially resolved Fourier transform spectroscopy (spectral imaging): a powerful tool for quantitative analytical microscopy,” Proc. SPIE 2678, 278–291 (1996).
[Crossref]

Song, C.

J. Lin, J. Shao, C. Song, Y. Li, and Y. Lei, “High Precision Spectral Calibration Method of Fourier Interferometric Spectrometer,” Spectrosc. Spect. Anal. 35(12), 3534–3537 (2015).
[Crossref]

Taboury, J.

Tauvy, M.

Thétas, S.

Tian, C.

Tittel, H. O.

B. Harnisch, W. Posselt, K. Holota, H. O. Tittel, and M. Rost, “Compact Fourier-transform imaging spectrometer for small satellite massions,” Acta Astronaut. 52(9-12), 803–811 (2003).
[Crossref]

Tong, C.

Q. Li, C. Zhang, T. Yan, N. Quan, Y. Wei, and C. Tong, “Wavelength calibration of an imaging spectrometer based on Savart interferometer,” Opt. Commun. 398, 24–30 (2017).
[Crossref]

Turcotte, C. S.

E. Puckrin, C. S. Turcotte, M. A. Gagnon, J. Bastedo, V. Farley, and M. Chamberland, “Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications,” Proc. SPIE 8360, 836004 (2012).
[Crossref]

Veldman, T.

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Wang, W.

Wei, Y.

Q. Li, C. Zhang, T. Yan, N. Quan, Y. Wei, and C. Tong, “Wavelength calibration of an imaging spectrometer based on Savart interferometer,” Opt. Commun. 398, 24–30 (2017).
[Crossref]

Wienberg, J.

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Wood, M.

S. T. Crites, P. G. Lucey, R. Wright, H. Garbeil, K. A. Horton, and M. Wood, “A low cost thermal infrared hyperspectral imager for small satellites,” Proc. SPIE 8385, 838509 (2012).
[Crossref]

Wright, R.

C. I. Honniball, R. Wright, and P. G. Lucey, “MWIR hyperspectral imaging with the MIDAS instrument,” Proc. SPIE 10177, 101770J (2017).
[Crossref]

S. T. Crites, P. G. Lucey, R. Wright, H. Garbeil, K. A. Horton, and M. Wood, “A low cost thermal infrared hyperspectral imager for small satellites,” Proc. SPIE 8385, 838509 (2012).
[Crossref]

Xiangli, B.

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer base on Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
[Crossref]

Xu, D.

Xu, Y.

Yan, T.

Q. Li, C. Zhang, T. Yan, N. Quan, Y. Wei, and C. Tong, “Wavelength calibration of an imaging spectrometer based on Savart interferometer,” Opt. Commun. 398, 24–30 (2017).
[Crossref]

Yang, W.

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

Yuan, H.

Yuan, X.

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer base on Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
[Crossref]

Zhang, C.

Q. Li, C. Zhang, T. Yan, N. Quan, Y. Wei, and C. Tong, “Wavelength calibration of an imaging spectrometer based on Savart interferometer,” Opt. Commun. 398, 24–30 (2017).
[Crossref]

T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt. 48(12), 2333–2339 (2009).
[Crossref]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer base on Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
[Crossref]

Zhang, Y.

Zhao, B.

T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt. 48(12), 2333–2339 (2009).
[Crossref]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer base on Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
[Crossref]

Zheng, C.

Zhou, J.

Zhu, J.

Zucco, M.

Acta Astronaut. (1)

B. Harnisch, W. Posselt, K. Holota, H. O. Tittel, and M. Rost, “Compact Fourier-transform imaging spectrometer for small satellite massions,” Acta Astronaut. 52(9-12), 803–811 (2003).
[Crossref]

Anal. Chem. (1)

M. B. Comisarow and J. D. Melka, “Error estimates for finite zero-filling in Fourier transform spectrometry,” Anal. Chem. 51(13), 2198–2203 (1979).
[Crossref]

Appl. Opt. (4)

Meas. Sci. Technol. (1)

R. D. Alcock and J. M. Coupland, “A compact, high numerical aperture imaging Fourier transform spectrometer and its application,” Meas. Sci. Technol. 17(11), 2861–2868 (2006).
[Crossref]

Opt. Commun. (2)

Q. Li, C. Zhang, T. Yan, N. Quan, Y. Wei, and C. Tong, “Wavelength calibration of an imaging spectrometer based on Savart interferometer,” Opt. Commun. 398, 24–30 (2017).
[Crossref]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer base on Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
[Crossref]

Opt. Eng. (1)

A. Barducci, F. Castagnoli, G. Castellini, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Developing a new hyperspectral imaging interferometer for earth observation,” Opt. Eng. 51(11), 111706 (2012).
[Crossref]

Opt. Express (8)

Q. Liu, C. Bai, J. Liu, J. He, and J. Li, “Fourier transform imaging spectropolarimeter using ferroelectric liquid crystals and Wollaston interferometer,” Opt. Express 25(17), 19904–19922 (2017).
[Crossref]

C. Bai, J. Li, Y. Xu, H. Yuan, and J. Liu, “Compact birefringent interferometer for Fourier transform hyperspectral imaging,” Opt. Express 26(2), 1703–1725 (2018).
[Crossref]

C. Coudrain, S. Bernhardt, M. Caes, R. Domel, Y. Ferrec, R. Gouyon, D. Henry, M. Jacquart, A. Kattnig, P. Perrault, L. Poutier, L. Rousset-Rouvière, M. Tauvy, S. Thétas, and J. Primot, “SIELETERS, an airborne infrared dual-band spectro-imaging system for measurement of scene spectral signatures,” Opt. Express 23(12), 16164–16176 (2015).
[Crossref]

M. Lindner, Z. Shotan, and Y. Garini, “Rapid microscopy measurement of very large spectral images,” Opt. Express 24(9), 9511–9527 (2016).
[Crossref]

M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20(16), 17973–17986 (2012).
[Crossref]

J. Li, J. Zhu, C. Qi, C. Zheng, B. Gao, Y. Zhang, and X. Hou, “Compact static imaging spectrometer combining spectral zooming capability with a birefringent interferometer,” Opt. Express 21(8), 10182–10187 (2013).
[Crossref]

M. Pisani and M. Zucco, “Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer,” Opt. Express 17(10), 8319–8331 (2009).
[Crossref]

A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12(22), 5368–5374 (2004).
[Crossref]

Opt. Lett. (5)

Proc. SPIE (9)

S. T. Crites, P. G. Lucey, R. Wright, H. Garbeil, K. A. Horton, and M. Wood, “A low cost thermal infrared hyperspectral imager for small satellites,” Proc. SPIE 8385, 838509 (2012).
[Crossref]

E. Puckrin, C. S. Turcotte, M. A. Gagnon, J. Bastedo, V. Farley, and M. Chamberland, “Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications,” Proc. SPIE 8360, 836004 (2012).
[Crossref]

C. I. Honniball, R. Wright, and P. G. Lucey, “MWIR hyperspectral imaging with the MIDAS instrument,” Proc. SPIE 10177, 101770J (2017).
[Crossref]

R. F. Horton, “Optical design for a high-etendue imaging Fourier transform spectrometer,” Proc. SPIE 2819, 300–315 (1996).
[Crossref]

P. G. Lucey and J. Akagi, “A Fabry-Perot interferometer with a spatially variable resonance gap employed as a Fourier transform spectrometer,” Proc. SPIE 8048, 80480K (2011).
[Crossref]

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

D. Cabib, R. A. Buckwald, Y. Garini, and D. G. Soenksen, “Spatially resolved Fourier transform spectroscopy (spectral imaging): a powerful tool for quantitative analytical microscopy,” Proc. SPIE 2678, 278–291 (1996).
[Crossref]

W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207–216 (1998).
[Crossref]

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

Science (1)

E. Schröck, S. Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref]

Spectrosc. Spect. Anal. (1)

J. Lin, J. Shao, C. Song, Y. Li, and Y. Lei, “High Precision Spectral Calibration Method of Fourier Interferometric Spectrometer,” Spectrosc. Spect. Anal. 35(12), 3534–3537 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Schematic of Fourier transform imaging spectrometer based on the Sagnac interferometer.
Fig. 2.
Fig. 2. Flowchart of the wavelength calibration procedure.
Fig. 3.
Fig. 3. Diagram of LFT.
Fig. 4.
Fig. 4. Flowchart of the high-accuracy wavenumber position calculation based on ILFT.
Fig. 5.
Fig. 5. Simulation of monochromatic interferogram. (a) Intensity versus OPD. (b) Intensity versus sampling number. (c) Detailed interference pattern.
Fig. 6.
Fig. 6. The frequency spectra of the simulation interference pattern obtained by three methods: (a) the conventional method, (b) ZPFT, and (c) ILFT.
Fig. 7.
Fig. 7. Simulation monochromatic interferogram with noise. (a) Gaussian noise distribution versus OPD. (b) Interference intensity versus OPD.
Fig. 8.
Fig. 8. Simulated monochromatic interferogram under non-uniform OPD sampling. (a) Sampling interval versus sampling number. (b) Interference intensity versus sampling number.
Fig. 9.
Fig. 9. Simulation monochromatic interferogram with the three device effects. (a) Intensity versus OPD. (b) Intensity versus sampling number. (c) Detailed interference pattern.
Fig. 10.
Fig. 10. The frequency spectra of the simulation interference pattern with the three device effects, obtained by (a) the conventional method, (b) ZPFT, and (c) ILFT.
Fig. 11.
Fig. 11. ILFT performance under different situations. (a) Wavelength position ($k$) for noise with different SDs. (b) Wavelength position ($k$) for different phase errors. (c) Wavelength position ($k$) for different levels of non-uniform OPD sampling.
Fig. 12.
Fig. 12. The computational complexity of the three methods.
Fig. 13.
Fig. 13. Monochromatic interferograms simulated for (a) 450 nm and (b) 910 nm.
Fig. 14.
Fig. 14. Simulated wavelength calibration curves of conventional method and the ILFT. (a) Wavelength versus wavenumber location k. (b) Detailed wavelength calibration curves.
Fig. 15.
Fig. 15. Monochromatic interferograms captured by the FTIS for (a) 452.6 nm and (b) 656.8 nm.
Fig. 16.
Fig. 16. Wavelength calibration curves of conventional method and the ILFT. (a) Wavelength versus wavenumber location k. (b) Detailed wavelength calibration curves.

Tables (5)

Tables Icon

Table 1. Theoretical k under different M.

Tables Icon

Table 2. Parameters of simulation interferogram.

Tables Icon

Table 3. Running time (ms) of two methods. (N = 2048)

Tables Icon

Table 4. The wavenumber position k of simulated interferograms derived by two methods.

Tables Icon

Table 5. The wavenumber position k solved by two methods.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = S ( σ ) exp ( i 2 π σ x ) d σ ,
S ( σ ) = I ( x ) exp ( i 2 π σ x ) d x .
S ( k Δ σ ) = n = 0 N 1 I ( n Δ x ) exp ( i 2 π ( k Δ σ )( n Δ x ) ) ,
S ( k ) = n = 0 N 1 I ( n ) exp ( i 2 π k n / N ) .
S ( K ) = e i 2 π N K X T I ( X ) ,
k FT = arg max ( S ( K ) ) ,
T FT ( N ) = O ( N log 2 ( N ) ) ,
I ( X ¯ ) = [ I ( X ) T 0 ] T ,
S ( K ¯ ) = e i 2 π N M K ¯ X ¯ T I ( X ¯ ) ,
k p e a k = arg max ( S ( K ¯ ) ) .
k ZPFT = k p e a k / M .
T ZPFT ( M , N ) = O ( M N log 2 ( M N ) ) .
S ( K ¯ ) = e i 2 π N M K ¯ [ X 0 ] T [ I ( X ) T 0 ] T = e i 2 π N M K ¯ X T I ( X ) .
S ( K ^ ) = e i 2 π N M K ^ X T I ( X ) .
k LFT = arg max ( S ( K ^ ) ) / M .
T LFT ( M , N ) = O ( M N + N log 2 ( N ) ) .
M = m q .
S ( K 1 ) = e i 2 π N m K 1 X T I ( X ) .
k p e a k 1 = arg max ( S ( K 1 ) ) .
S ( K 2 ) = e i 2 π N m 2 K 2 X T I ( X ) .
k p e a k 2 = arg max ( S ( K 2 ) ) .
S ( K q ) = e i 2 π N m q K q X T I ( X ) = e i 2 π N M K q X T I ( X ) ,
k p e a k q = arg max ( S ( K q ) ) .
k ILFT = k p e a k q / m p = k p e a k q / M .
T ILFT ( M , N ) = O ( m N + N log 2 ( N ) ) = O ( N log 2 ( N ) ) .
I σ ( n ) = S ( σ ) cos ( 2 π σ n Δ x ) ,
I σ ( n ) = S ( σ ) cos ( 2 π σ n Δ x ) + g ( n ) ,
I σ ( n ) = S ( σ ) cos ( 2 π σ n Δ x + ϕ ( σ ) ) ,
I σ ( n ) = S ( σ ) cos ( 2 π σ u ( n ) Δ x ) ,
I σ ( n ) = S ( σ ) cos ( 2 π σ u ( n ) Δ x + ϕ ( σ ) ) + g ( n ) .
Δ max = n max p d / f ,

Metrics