Abstract

Aiming at the requirement of passive terahertz imaging, we report a high-sensitivity terahertz detector based on an antenna-coupled AlGaN/GaN high-electron-mobility transistor (HEMT) at 77 K without using low-noise terahertz amplifier. The measured optical noise-equivalent power and the noise-equivalent temperature difference of the detector were about $0.3 \,\mathrm{pW/\sqrt {Hz}}$ and 370 mK in a 200 ms integration time over a bandwidth of 0.7 − 0.9 THz, respectively. By using this detector, we demonstrated passive terahertz imaging of room-temperature objects with signal-to-noise ratio up to 13 dB. Further improvement in the sensitivity may allow passive terahertz imaging using AlGaN/GaN-HEMT at room temperature.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband terahertz imaging with highly sensitive silicon CMOS detectors

Franz Schuster, Dominique Coquillat, Hadley Videlier, Maciej Sakowicz, Frédéric Teppe, Laurent Dussopt, Benoît Giffard, Thomas Skotnicki, and Wojciech Knap
Opt. Express 19(8) 7827-7832 (2011)

Visible- and solar-blind photodetectors using AlGaN high electron mobility transistors with a nanodot-based floating gate

Andrew M. Armstrong, Brianna A. Klein, Andrew A. Allerman, Albert G. Baca, Mary H. Crawford, Jacob Podkaminer, Carlos R. Perez, Michael P. Siegal, Erica A. Douglas, Vincent M. Abate, and Francois Leonard
Photon. Res. 7(6) B24-B31 (2019)

Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz

M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos
Opt. Express 22(16) 19235-19241 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716 (1995).
    [Crossref]
  3. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
    [Crossref]
  4. Mann Chris, “First demonstration of a vehicle mounted 250 GHz real time passive imager,” Proc. SPIE 7311, 73110Q1–73110Q7 (2009).
    [Crossref]
  5. R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
    [Crossref]
  6. R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362(1815), 379–393 (2004).
    [Crossref]
  7. M. Kato, S. R. Tripathi, K. Murate, K. Imayama, and K. Kawase, “Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection,” Opt. Express 24(6), 6425 (2016).
    [Crossref]
  8. E. Grossman, C. Dietlein, J. Ala-Laurinaho, M. Leivo, L. Gronberg, M. Gronholm, P. Lappalainen, A. Rautiainen, A. Tamminen, and A. Luukanen, “Passive terahertz camera for standoff security screening,” Appl. Opt. 49(19), E106 (2010).
    [Crossref]
  9. J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
    [Crossref]
  10. S. Moghadami and S. Ardalan, “A 205 GHz amplifier with 10.5 dB gain and −1.6 dBm saturated power using 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett. 26(3), 207–209 (2016).
    [Crossref]
  11. C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
    [Crossref]
  12. D. X. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microwave Theory Tech. 63(2), 683–690 (2015).
    [Crossref]
  13. B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
    [Crossref]
  14. L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
    [Crossref]
  15. L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011).
    [Crossref]
  16. S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
    [Crossref]
  17. E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
    [Crossref]
  18. R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
    [Crossref]
  19. M. I. Dyakonov and M. S. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Devices 43(3), 380–387 (1996).
    [Crossref]
  20. H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
    [Crossref]
  21. J. W. May and G. M. Rebeiz, “Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging,” IEEE Trans. Microwave Theory Tech. 58(5), 1420–1430 (2010).
    [Crossref]
  22. A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010).
    [Crossref]
  23. J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
    [Crossref]
  24. J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
    [Crossref]
  25. A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
    [Crossref]

2017 (1)

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

2016 (3)

M. Kato, S. R. Tripathi, K. Murate, K. Imayama, and K. Kawase, “Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection,” Opt. Express 24(6), 6425 (2016).
[Crossref]

S. Moghadami and S. Ardalan, “A 205 GHz amplifier with 10.5 dB gain and −1.6 dBm saturated power using 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett. 26(3), 207–209 (2016).
[Crossref]

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

2015 (2)

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

D. X. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microwave Theory Tech. 63(2), 683–690 (2015).
[Crossref]

2013 (1)

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

2012 (3)

B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
[Crossref]

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

2011 (2)

L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
[Crossref]

L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011).
[Crossref]

2010 (3)

E. Grossman, C. Dietlein, J. Ala-Laurinaho, M. Leivo, L. Gronberg, M. Gronholm, P. Lappalainen, A. Rautiainen, A. Tamminen, and A. Luukanen, “Passive terahertz camera for standoff security screening,” Appl. Opt. 49(19), E106 (2010).
[Crossref]

J. W. May and G. M. Rebeiz, “Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging,” IEEE Trans. Microwave Theory Tech. 58(5), 1420–1430 (2010).
[Crossref]

A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010).
[Crossref]

2009 (1)

Mann Chris, “First demonstration of a vehicle mounted 250 GHz real time passive imager,” Proc. SPIE 7311, 73110Q1–73110Q7 (2009).
[Crossref]

2008 (1)

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

2007 (3)

R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
[Crossref]

2006 (1)

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

2004 (1)

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362(1815), 379–393 (2004).
[Crossref]

2003 (1)

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

1996 (1)

M. I. Dyakonov and M. S. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Devices 43(3), 380–387 (1996).
[Crossref]

1995 (1)

Ade, P. A. R.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Ala-Laurinaho, J.

Anders, S.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Anderton, R. N.

R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
[Crossref]

Appleby, R.

R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
[Crossref]

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
[Crossref]

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362(1815), 379–393 (2004).
[Crossref]

Ardalan, S.

S. Moghadami and S. Ardalan, “A 205 GHz amplifier with 10.5 dB gain and −1.6 dBm saturated power using 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett. 26(3), 207–209 (2016).
[Crossref]

Atesal, Y. A.

B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
[Crossref]

Barry, P.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Bideaud, A.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Born, D.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Brien, T.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Cai, Y.

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

Cetinoneri, B.

B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
[Crossref]

Chang, D. C.

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

Chen, Z. M.

L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
[Crossref]

Chris, Mann

Mann Chris, “First demonstration of a vehicle mounted 250 GHz real time passive imager,” Proc. SPIE 7311, 73110Q1–73110Q7 (2009).
[Crossref]

Dietlein, C.

Dodd, C.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Doyle, S.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Dunscombe, C.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Dyakonov, M. I.

M. I. Dyakonov and M. S. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Devices 43(3), 380–387 (1996).
[Crossref]

Fung, A.

B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
[Crossref]

Garcia, P.

A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010).
[Crossref]

Gilreath, L.

L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011).
[Crossref]

Grainger, W.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Gronberg, L.

Gronholm, M.

Grossman, E.

Grossman, E. N.

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Hargrave, P.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Heinz, E.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Helistö, P.

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Heydari, P.

L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011).
[Crossref]

L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
[Crossref]

House, J.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Hu, B. B.

Hughes, B.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Imayama, K.

Jain, V.

L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011).
[Crossref]

Kato, M.

Kawase, K.

Ko, C. L.

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

Kuo, M. C.

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

Lappalainen, P.

Leivo, M.

Lewis, R. A.

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

Li, C. H.

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

Li, X.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

Li, X. X.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

Luo, M. C.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

Luukanen, A.

E. Grossman, C. Dietlein, J. Ala-Laurinaho, M. Leivo, L. Gronberg, M. Gronholm, P. Lappalainen, A. Rautiainen, A. Tamminen, and A. Luukanen, “Passive terahertz camera for standoff security screening,” Appl. Opt. 49(19), E106 (2010).
[Crossref]

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Lynch, J. J.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Mauskopf, P.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

May, J. W.

J. W. May and G. M. Rebeiz, “Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging,” IEEE Trans. Microwave Theory Tech. 58(5), 1420–1430 (2010).
[Crossref]

May, T.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Meyer, H. G.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Miller, A. J.

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Moffa, P.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

Moghadami, S.

S. Moghadami and S. Ardalan, “A 205 GHz amplifier with 10.5 dB gain and −1.6 dBm saturated power using 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett. 26(3), 207–209 (2016).
[Crossref]

Moseley, P.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Moyer, H. P.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Murate, K.

NanKuo, C.

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

Nuss, M. C.

Papageorgio, A.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Pascale, E.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Penttilä, J. S.

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Qin, H.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

Rautiainen, A.

Rebeiz, G. M.

B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
[Crossref]

J. W. May and G. M. Rebeiz, “Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging,” IEEE Trans. Microwave Theory Tech. 58(5), 1420–1430 (2010).
[Crossref]

Reynaert, P.

D. X. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microwave Theory Tech. 63(2), 683–690 (2015).
[Crossref]

Rowe, S.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Royter, Y.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Schäffel, C.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Schaffner, J. H.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Schulman, J. N.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Seppä, H.

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Shoucri, M.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

Shur, M. S.

M. I. Dyakonov and M. S. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Devices 43(3), 380–387 (1996).
[Crossref]

Sipola, H.

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Sokolich, M.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Spencer, L.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Sudiwala, R.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Sun, J. D.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

Sun, Y. F.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

Tamminen, A.

Tomkins, A.

A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tripathi, S. R.

Tucker, C.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Voinigescu, S. P.

A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010).
[Crossref]

Walker, I.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Wallace, H. B.

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
[Crossref]

Wang, C. C.

L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
[Crossref]

Wood, K.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Wu, D. M.

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

Yoon, Y. J.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Yu, Y.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

Yujiri, L.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

Zakosarenko, V.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Zhang, B. S.

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

Zhang, X. Y.

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

Zhang, Z. P.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

Zhao, D. X.

D. X. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microwave Theory Tech. 63(2), 683–690 (2015).
[Crossref]

Zhou, L.

L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
[Crossref]

Zieger, G.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

IEEE J. Solid-State Circuits (3)

L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
[Crossref]

L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011).
[Crossref]

A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010).
[Crossref]

IEEE Microw. Mag. (1)

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

IEEE Microw. Wireless Compon. Lett. (2)

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

S. Moghadami and S. Ardalan, “A 205 GHz amplifier with 10.5 dB gain and −1.6 dBm saturated power using 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett. 26(3), 207–209 (2016).
[Crossref]

IEEE Trans. Antennas Propag. (1)

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
[Crossref]

IEEE Trans. Electron Devices (1)

M. I. Dyakonov and M. S. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Devices 43(3), 380–387 (1996).
[Crossref]

IEEE Trans. Microwave Theory Tech. (5)

J. W. May and G. M. Rebeiz, “Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging,” IEEE Trans. Microwave Theory Tech. 58(5), 1420–1430 (2010).
[Crossref]

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

D. X. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microwave Theory Tech. 63(2), 683–690 (2015).
[Crossref]

B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
[Crossref]

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phil. Trans. R. Soc. A (1)

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362(1815), 379–393 (2004).
[Crossref]

Proc. IEEE (1)

R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
[Crossref]

Proc. SPIE (1)

Mann Chris, “First demonstration of a vehicle mounted 250 GHz real time passive imager,” Proc. SPIE 7311, 73110Q1–73110Q7 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Scanning-electron micrograph of the detector with schematic measurement circuitry. (b) Zoom-in view of the central active region including the gate and the field-effect channel. (c, d) Backside and front-side views of the silicon hyperhemispherical lens with a detector chip assembled on the planar surface in a liquid nitrogen dewar with a TPX window.
Fig. 2.
Fig. 2. Measured conductance and field-effect factor at (a) 298 K and (b) 77 K as a function of the gate voltage. Terahertz photocurrent at (c) 298 K and (d) 77 K as a function of the gate voltage under continuous-wave coherent irradiation power of 854 nW at 939.6 GHz. Terahertz photocurrent at (e) 298 K and (f) 77 K as a function of the gate voltage induced by incoherent broadband radiation from a blackbody at 773 K.
Fig. 3.
Fig. 3. (a) Measured optical current responsivity and (b) NEP at 298 K and 77 K as a function of the gate voltage at 939.6 GHz. The current responsivity at 298 K is multiplied by a factor of 28 in (a). The solid fitting curves in (a) were calculated based on the field-effect factors.
Fig. 4.
Fig. 4. (a) Measured current responsivity and (b) NEP of DET-850GHz as a function of the terahertz frequency at 298 K and 77 K. The ratio of the responsivity and the NEP at 77K to that at 298K is plotted to the corresponding right axis.
Fig. 5.
Fig. 5. Terahertz photocurrent as a function of the blackbody temperature. The inset shows the polarization characteristics of DET-850GHz.
Fig. 6.
Fig. 6. Setup for the raster-scan passive imaging.
Fig. 7.
Fig. 7. Passive imaging of (a) a toy car and (b) a surgical knife by using DET-850GHz at 77 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N E T D = i n R T = 2 × NEP k B 2 τ ,  
i = P 0 Z 0 z ¯ d G d V g 0 L ξ ˙ x ξ ˙ z cos ϕ   d x ,  

Metrics