Abstract

Nonlinear processes of laser beams carrying orbital angular momentum (OAM) offer a means to generate new wavelengths and to manipulate OAM charge numbers. We demonstrate the second-harmonic generation (SHG) of asymmetric Bessel-Gaussian (BG) beams carrying OAM of both integer and fractional charge numbers. Experimental results show a good one-to-one correspondence of the charge numbers and compliance with the OAM conservation law. The SHG conversion process and efficiency with different combined charge numbers are also discussed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Orbital angular momentum in noncollinear second-harmonic generation by off-axis vortex beams

Fabio Antonio Bovino, Matteo Braccini, Maurizio Giardina, and Concita Sibilia
J. Opt. Soc. Am. B 28(11) 2806-2811 (2011)

Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal

Dan Wei, Jiale Guo, Xinyuan Fang, Dunzhao Wei, Rui Ni, Peng Chen, Xiaopeng Hu, Yong Zhang, Wei Hu, Y. Q. Lu, S. N. Zhu, and Min Xiao
Opt. Express 25(10) 11556-11563 (2017)

Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity

Zhi-Yuan Zhou, Yan Li, Dong-Sheng Ding, Wei Zhang, Shuai Shi, Bao-Sen Shi, and Guang-Can Guo
Opt. Express 22(19) 23673-23678 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. Beijersbergen, R. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  2. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  3. J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, and E. G. Johnson, “Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing,” Opt. Express 24(9), 9794–9805 (2016).
    [Crossref]
  4. R. Paez-Lopez, U. Ruiz, V. Arrizon, and R. Ramos-Garcia, “Optical manipulation using optimal annular vortices,” Opt. Lett. 41(17), 4138–4141 (2016).
    [Crossref]
  5. S. H. Tao, X.-C. Yuan, J. Lin, X. Peng, and H. B. Niu, “Fractional optical vortex beam induced rotation of particles,” Opt. Express 13(20), 7726–7731 (2005).
    [Crossref]
  6. M. P. J. Lavery, S. M. Barnett, F. C. Speirits, and M. J. Padgett, “Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body,” Optica 1(1), 1–4 (2014).
    [Crossref]
  7. R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
    [Crossref]
  8. J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Light beams with fractional orbital angular momentum and their vortex structure,” Opt. Express 16(2), 993–1006 (2008).
    [Crossref]
  9. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A: Pure Appl. Opt. 6(2), 259–268 (2004).
    [Crossref]
  10. J. Wang, J. Liu, S. Li, L. Zhu, C. Li, M. Luo, Q. Yang, and S. Yu, “Experimental Demonstration of Free-Space Optical Communications Using OFDM-QPSK/16QAM-Carrying Fractional Orbital Angular Momentum (OAM) Multiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2F.5.
  11. J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997).
    [Crossref]
  12. K. Dholakia, N. B. Simpson, and M. J. Padgett, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
    [Crossref]
  13. F. A. Bovino, M. Braccini, M. Giardina, and C. Sibilia, “Orbital angular momentum in noncollinear second-harmonic generation by off-axis vortex beams,” J. Opt. Soc. Am. B 28(11), 2806–2811 (2011).
    [Crossref]
  14. S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
    [Crossref]
  15. R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).
    [Crossref]
  16. P. Stanislovaitis, A. Matijosius, M. Ivanov, and V. Smilgevicius, “Topological charge transformation of beams with embedded fractional phase step in the process of second harmonic generation,” J. Opt. 19(10), 105603 (2017).
    [Crossref]
  17. S. U. Alam, A. S. Rao, A. Ghosh, P. Vaity, and G. K. Samanta, “Nonlinear frequency doubling characteristics of asymmetric vortices of tunable, broad orbital angular momentum spectrum,” Appl. Phys. Lett. 112(17), 171102 (2018).
    [Crossref]
  18. Y. Li, Z. Zhou, D. Ding, and B. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32(3), 407–411 (2015).
    [Crossref]
  19. K. Miyamoto, K. Sano, T. Miyakawa, H. Niinomi, K. Toyoda, A. Vallés, and T. Omatsu, “Generation of high-quality terahertz OAM mode based on soft-aperture difference frequency generation,” Opt. Express 27(22), 31840–31849 (2019).
    [Crossref]
  20. F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
    [Crossref]
  21. G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
    [Crossref]
  22. L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
    [Crossref]
  23. A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapor,” Phys. Rev. A 97(6), 063806 (2018).
    [Crossref]
  24. A. M. Akulshin, I. Novikova, E. E. Mikhailov, S. A. Suslov, and R. J. McLean, “Arithmetic with optical topological charges in stepwise-excited Rb vapor,” Opt. Lett. 41(6), 1146–1149 (2016).
    [Crossref]
  25. R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
    [Crossref]
  26. R. Mamuti, S. Goto, K. Miyamoto, and T. Omatsu, “Generation of coupled orbital angular momentum modes from an optical vortex parametric laser source,” Opt. Express 27(25), 37025–37033 (2019).
    [Crossref]
  27. S. N. Alperin, R. D. Niederriter, J. T. Gopinath, and M. E. Siemens, “Quantitative measurement of the orbital angular momentum of light with a single, stationary lens,” Opt. Lett. 41(21), 5019–5022 (2016).
    [Crossref]
  28. V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, “Calculation of fractional orbital angular momentum of superpositions of optical vortices by intensity moments,” Opt. Express 27(8), 11236–11251 (2019).
    [Crossref]
  29. W. Li, K. S. Morgan, Y. Li, J. K. Miller, G. White, R. J. Watkins, and E. G. Johnson, “Rapidly tunable orbital angular momentum (OAM) system for higher order BG beams integrated in time (HOBBIT),” Opt. Express 27(4), 3920–3934 (2019).
    [Crossref]
  30. G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
    [Crossref]
  31. Z. Zhou, D. Ding, Y. Jiang, Y. Li, S. Shi, X. Wang, and B. Shi, “Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals,” Opt. Express 22(17), 20298–20310 (2014).
    [Crossref]
  32. R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
    [Crossref]
  33. J. C. Gutiérrez-Vega and M. A. Bandres, “Helmholtz–Gauss waves,” J. Opt. Soc. Am. A 22(2), 289–298 (2005).
    [Crossref]
  34. J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” J. Opt. A: Pure Appl. Opt. 10(1), 015009 (2008).
    [Crossref]

2019 (4)

2018 (3)

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapor,” Phys. Rev. A 97(6), 063806 (2018).
[Crossref]

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

S. U. Alam, A. S. Rao, A. Ghosh, P. Vaity, and G. K. Samanta, “Nonlinear frequency doubling characteristics of asymmetric vortices of tunable, broad orbital angular momentum spectrum,” Appl. Phys. Lett. 112(17), 171102 (2018).
[Crossref]

2017 (4)

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

P. Stanislovaitis, A. Matijosius, M. Ivanov, and V. Smilgevicius, “Topological charge transformation of beams with embedded fractional phase step in the process of second harmonic generation,” J. Opt. 19(10), 105603 (2017).
[Crossref]

L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
[Crossref]

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

2016 (5)

2015 (1)

2014 (3)

2013 (1)

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

2012 (3)

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

2011 (1)

2008 (2)

J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Light beams with fractional orbital angular momentum and their vortex structure,” Opt. Express 16(2), 993–1006 (2008).
[Crossref]

J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” J. Opt. A: Pure Appl. Opt. 10(1), 015009 (2008).
[Crossref]

2005 (2)

2004 (1)

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A: Pure Appl. Opt. 6(2), 259–268 (2004).
[Crossref]

1997 (1)

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997).
[Crossref]

1996 (1)

K. Dholakia, N. B. Simpson, and M. J. Padgett, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

1992 (1)

L. Allen, M. Beijersbergen, R. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Akulshin, A. M.

Alam, S. U.

S. U. Alam, A. S. Rao, A. Ghosh, P. Vaity, and G. K. Samanta, “Nonlinear frequency doubling characteristics of asymmetric vortices of tunable, broad orbital angular momentum spectrum,” Appl. Phys. Lett. 112(17), 171102 (2018).
[Crossref]

Allen, L.

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997).
[Crossref]

L. Allen, M. Beijersbergen, R. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Alperin, S. N.

Arissian, L.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Arnold, A. S.

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

Arrizon, V.

Baghdady, J.

Bandres, M. A.

Barnett, S. M.

Beijersbergen, M.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Beltran, L.

L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
[Crossref]

Berry, M. V.

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A: Pure Appl. Opt. 6(2), 259–268 (2004).
[Crossref]

Bouchard, F.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Bovino, F. A.

Boyd, R. W.

L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
[Crossref]

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[Crossref]

Braccini, M.

Brown, G. G.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Byrd, M.

Chekhova, M. V.

L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
[Crossref]

Chopinaud, A.

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapor,” Phys. Rev. A 97(6), 063806 (2018).
[Crossref]

Cochenour, B. M.

Corkum, P. B.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[Crossref]

Courtial, J.

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997).
[Crossref]

de Lesegno, B. V.

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapor,” Phys. Rev. A 97(6), 063806 (2018).
[Crossref]

Dholakia, K.

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997).
[Crossref]

K. Dholakia, N. B. Simpson, and M. J. Padgett, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

Ding, D.

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dowling, J. P.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

Du, L.

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).
[Crossref]

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Fickler, R.

L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
[Crossref]

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Flossmann, F.

Franke-Arnold, S.

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Light beams with fractional orbital angular momentum and their vortex structure,” Opt. Express 16(2), 993–1006 (2008).
[Crossref]

Frascella, G.

L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
[Crossref]

Frumker, E.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[Crossref]

Gariepy, G.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[Crossref]

Ghosh, A.

S. U. Alam, A. S. Rao, A. Ghosh, P. Vaity, and G. K. Samanta, “Nonlinear frequency doubling characteristics of asymmetric vortices of tunable, broad orbital angular momentum spectrum,” Appl. Phys. Lett. 112(17), 171102 (2018).
[Crossref]

Giardina, M.

Gopinath, J. T.

Goto, S.

Götte, J. B.

Gutiérrez-Vega, J. C.

J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” J. Opt. A: Pure Appl. Opt. 10(1), 015009 (2008).
[Crossref]

J. C. Gutiérrez-Vega and M. A. Bandres, “Helmholtz–Gauss waves,” J. Opt. Soc. Am. A 22(2), 289–298 (2005).
[Crossref]

Hammond, T. J.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[Crossref]

Hu, X. P.

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).
[Crossref]

Huang, H.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ivanov, M.

P. Stanislovaitis, A. Matijosius, M. Ivanov, and V. Smilgevicius, “Topological charge transformation of beams with embedded fractional phase step in the process of second harmonic generation,” J. Opt. 19(10), 105603 (2017).
[Crossref]

Jacquey, M.

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapor,” Phys. Rev. A 97(6), 063806 (2018).
[Crossref]

Jiang, Y.

Johnson, E. G.

Karimi, E.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Kim, K. T.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[Crossref]

Ko, D. H.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Kong, F.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Kong, L.-J.

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

Kotlyar, V. V.

Kovalev, A. A.

Krenn, M.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Lanning, R. N.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

Lapkiewicz, R.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Lavery, M. P. J.

Leach, J.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[Crossref]

Leuchs, G.

L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
[Crossref]

Li, C.

J. Wang, J. Liu, S. Li, L. Zhu, C. Li, M. Luo, Q. Yang, and S. Yu, “Experimental Demonstration of Free-Space Optical Communications Using OFDM-QPSK/16QAM-Carrying Fractional Orbital Angular Momentum (OAM) Multiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2F.5.

Li, S.

J. Wang, J. Liu, S. Li, L. Zhu, C. Li, M. Luo, Q. Yang, and S. Yu, “Experimental Demonstration of Free-Space Optical Communications Using OFDM-QPSK/16QAM-Carrying Fractional Orbital Angular Momentum (OAM) Multiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2F.5.

Li, S.-M.

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

Li, W.

Li, Y.

Li, Z.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Lin, J.

Liu, J.

J. Wang, J. Liu, S. Li, L. Zhu, C. Li, M. Luo, Q. Yang, and S. Yu, “Experimental Demonstration of Free-Space Optical Communications Using OFDM-QPSK/16QAM-Carrying Fractional Orbital Angular Momentum (OAM) Multiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2F.5.

López-Mariscal, C.

J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” J. Opt. A: Pure Appl. Opt. 10(1), 015009 (2008).
[Crossref]

Luo, M.

J. Wang, J. Liu, S. Li, L. Zhu, C. Li, M. Luo, Q. Yang, and S. Yu, “Experimental Demonstration of Free-Space Optical Communications Using OFDM-QPSK/16QAM-Carrying Fractional Orbital Angular Momentum (OAM) Multiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2F.5.

Mamuti, R.

Manceau, M.

L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
[Crossref]

Matijosius, A.

P. Stanislovaitis, A. Matijosius, M. Ivanov, and V. Smilgevicius, “Topological charge transformation of beams with embedded fractional phase step in the process of second harmonic generation,” J. Opt. 19(10), 105603 (2017).
[Crossref]

McLean, R. J.

Mikhailov, E. E.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

A. M. Akulshin, I. Novikova, E. E. Mikhailov, S. A. Suslov, and R. J. McLean, “Arithmetic with optical topological charges in stepwise-excited Rb vapor,” Opt. Lett. 41(6), 1146–1149 (2016).
[Crossref]

Miller, J. K.

Miller, K.

Miyakawa, T.

Miyamoto, K.

Morgan, K.

Morgan, K. S.

Ni, R.

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).
[Crossref]

Niederriter, R. D.

Niinomi, H.

Niu, H. B.

Niu, Y. F.

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).
[Crossref]

Novikova, I.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

A. M. Akulshin, I. Novikova, E. E. Mikhailov, S. A. Suslov, and R. J. McLean, “Arithmetic with optical topological charges in stepwise-excited Rb vapor,” Opt. Lett. 41(6), 1146–1149 (2016).
[Crossref]

O’Holleran, K.

Offer, R. F.

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

Omatsu, T.

Osler, S.

Padgett, M. J.

M. P. J. Lavery, S. M. Barnett, F. C. Speirits, and M. J. Padgett, “Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body,” Optica 1(1), 1–4 (2014).
[Crossref]

J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Light beams with fractional orbital angular momentum and their vortex structure,” Opt. Express 16(2), 993–1006 (2008).
[Crossref]

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997).
[Crossref]

K. Dholakia, N. B. Simpson, and M. J. Padgett, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

Paez-Lopez, R.

Peng, X.

Perez, A. M.

L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
[Crossref]

Plick, W. N.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Porfirev, A. P.

Preece, D.

Pruvost, L.

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapor,” Phys. Rev. A 97(6), 063806 (2018).
[Crossref]

Ragusa, R.

Ramelow, S.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Ramos-Garcia, R.

Rao, A. S.

S. U. Alam, A. S. Rao, A. Ghosh, P. Vaity, and G. K. Samanta, “Nonlinear frequency doubling characteristics of asymmetric vortices of tunable, broad orbital angular momentum spectrum,” Appl. Phys. Lett. 112(17), 171102 (2018).
[Crossref]

Ren, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ren, Z.-C.

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

Riis, E.

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

Ruiz, U.

Samanta, G. K.

S. U. Alam, A. S. Rao, A. Ghosh, P. Vaity, and G. K. Samanta, “Nonlinear frequency doubling characteristics of asymmetric vortices of tunable, broad orbital angular momentum spectrum,” Appl. Phys. Lett. 112(17), 171102 (2018).
[Crossref]

Sano, K.

Schaeff, C.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Sharapova, P. R.

L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
[Crossref]

Shi, B.

Shi, S.

Sibilia, C.

Siemens, M. E.

Simpson, N. B.

K. Dholakia, N. B. Simpson, and M. J. Padgett, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

Smilgevicius, V.

P. Stanislovaitis, A. Matijosius, M. Ivanov, and V. Smilgevicius, “Topological charge transformation of beams with embedded fractional phase step in the process of second harmonic generation,” J. Opt. 19(10), 105603 (2017).
[Crossref]

Speirits, F. C.

Spreeuw, R.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Stanislovaitis, P.

P. Stanislovaitis, A. Matijosius, M. Ivanov, and V. Smilgevicius, “Topological charge transformation of beams with embedded fractional phase step in the process of second harmonic generation,” J. Opt. 19(10), 105603 (2017).
[Crossref]

Stulga, D.

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

Suslov, S. A.

Tao, S. H.

Tikhonova, O. V.

L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
[Crossref]

Toyoda, K.

Tu, C.

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

Tur, M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Vaity, P.

S. U. Alam, A. S. Rao, A. Ghosh, P. Vaity, and G. K. Samanta, “Nonlinear frequency doubling characteristics of asymmetric vortices of tunable, broad orbital angular momentum spectrum,” Appl. Phys. Lett. 112(17), 171102 (2018).
[Crossref]

Vallés, A.

Walker, G.

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

Wang, H.-T.

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

Wang, J.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. Wang, J. Liu, S. Li, L. Zhu, C. Li, M. Luo, Q. Yang, and S. Yu, “Experimental Demonstration of Free-Space Optical Communications Using OFDM-QPSK/16QAM-Carrying Fractional Orbital Angular Momentum (OAM) Multiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2F.5.

Wang, X.

Watkins, R. J.

White, G.

Willner, A. E.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Xiao, Z.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, Q.

J. Wang, J. Liu, S. Li, L. Zhu, C. Li, M. Luo, Q. Yang, and S. Yu, “Experimental Demonstration of Free-Space Optical Communications Using OFDM-QPSK/16QAM-Carrying Fractional Orbital Angular Momentum (OAM) Multiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2F.5.

Yu, S.

J. Wang, J. Liu, S. Li, L. Zhu, C. Li, M. Luo, Q. Yang, and S. Yu, “Experimental Demonstration of Free-Space Optical Communications Using OFDM-QPSK/16QAM-Carrying Fractional Orbital Angular Momentum (OAM) Multiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2F.5.

Yuan, X.-C.

Yue, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeilinger, A.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Zhang, C.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Zhang, M.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

Zhang, Y.

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).
[Crossref]

Zhou, Z.

Zhu, L.

J. Wang, J. Liu, S. Li, L. Zhu, C. Li, M. Luo, Q. Yang, and S. Yu, “Experimental Demonstration of Free-Space Optical Communications Using OFDM-QPSK/16QAM-Carrying Fractional Orbital Angular Momentum (OAM) Multiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2F.5.

Zhu, S. N.

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).
[Crossref]

Appl. Phys. Lett. (2)

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).
[Crossref]

S. U. Alam, A. S. Rao, A. Ghosh, P. Vaity, and G. K. Samanta, “Nonlinear frequency doubling characteristics of asymmetric vortices of tunable, broad orbital angular momentum spectrum,” Appl. Phys. Lett. 112(17), 171102 (2018).
[Crossref]

Commun. Phys. (1)

R. F. Offer, D. Stulga, E. Riis, S. Franke-Arnold, and A. S. Arnold, “Spiral bandwidth of four-wave mixing in Rb vapour,” Commun. Phys. 1(1), 84 (2018).
[Crossref]

J. Opt. (2)

L. Beltran, G. Frascella, A. M. Perez, R. Fickler, P. R. Sharapova, M. Manceau, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, “Orbital angular momentum modes of high-gain parametric down-conversion,” J. Opt. 19(4), 044005 (2017).
[Crossref]

P. Stanislovaitis, A. Matijosius, M. Ivanov, and V. Smilgevicius, “Topological charge transformation of beams with embedded fractional phase step in the process of second harmonic generation,” J. Opt. 19(10), 105603 (2017).
[Crossref]

J. Opt. A: Pure Appl. Opt. (2)

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A: Pure Appl. Opt. 6(2), 259–268 (2004).
[Crossref]

J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” J. Opt. A: Pure Appl. Opt. 10(1), 015009 (2008).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref]

Nat. Photonics (1)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Opt. Express (8)

S. H. Tao, X.-C. Yuan, J. Lin, X. Peng, and H. B. Niu, “Fractional optical vortex beam induced rotation of particles,” Opt. Express 13(20), 7726–7731 (2005).
[Crossref]

J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Light beams with fractional orbital angular momentum and their vortex structure,” Opt. Express 16(2), 993–1006 (2008).
[Crossref]

W. Li, K. S. Morgan, Y. Li, J. K. Miller, G. White, R. J. Watkins, and E. G. Johnson, “Rapidly tunable orbital angular momentum (OAM) system for higher order BG beams integrated in time (HOBBIT),” Opt. Express 27(4), 3920–3934 (2019).
[Crossref]

V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, “Calculation of fractional orbital angular momentum of superpositions of optical vortices by intensity moments,” Opt. Express 27(8), 11236–11251 (2019).
[Crossref]

K. Miyamoto, K. Sano, T. Miyakawa, H. Niinomi, K. Toyoda, A. Vallés, and T. Omatsu, “Generation of high-quality terahertz OAM mode based on soft-aperture difference frequency generation,” Opt. Express 27(22), 31840–31849 (2019).
[Crossref]

R. Mamuti, S. Goto, K. Miyamoto, and T. Omatsu, “Generation of coupled orbital angular momentum modes from an optical vortex parametric laser source,” Opt. Express 27(25), 37025–37033 (2019).
[Crossref]

J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, and E. G. Johnson, “Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing,” Opt. Express 24(9), 9794–9805 (2016).
[Crossref]

Z. Zhou, D. Ding, Y. Jiang, Y. Li, S. Shi, X. Wang, and B. Shi, “Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals,” Opt. Express 22(17), 20298–20310 (2014).
[Crossref]

Opt. Lett. (3)

Optica (1)

Phys. Rev. A (6)

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997).
[Crossref]

K. Dholakia, N. B. Simpson, and M. J. Padgett, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

A. Chopinaud, M. Jacquey, B. V. de Lesegno, and L. Pruvost, “High helicity vortex conversion in a rubidium vapor,” Phys. Rev. A 97(6), 063806 (2018).
[Crossref]

L. Allen, M. Beijersbergen, R. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

Phys. Rev. Lett. (2)

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating High-Harmonic Beams with Controlled Orbital Angular Momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[Crossref]

Science (1)

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Other (1)

J. Wang, J. Liu, S. Li, L. Zhu, C. Li, M. Luo, Q. Yang, and S. Yu, “Experimental Demonstration of Free-Space Optical Communications Using OFDM-QPSK/16QAM-Carrying Fractional Orbital Angular Momentum (OAM) Multiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2F.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Generation of asymmetric BG beams and main parameters. (a) Elliptical Gaussian beam with a linear phase. (b) The intensity distribution immediately after the log-polar elements. (c) The far-field beam profile of (b).
Fig. 2.
Fig. 2. Simulation results of asymmetric BG beams. (a) The charge number measurement curves of different modes and $\beta$’s. (b) The charge number measurement curves of 1064 nm and 532 nm. (c) The far-field asymmetric BG beam profiles of both 1064 nm and second harmonic generated 532 nm based on Eq. (3).
Fig. 3.
Fig. 3. Illustration of the experimental setup.
Fig. 4.
Fig. 4. Experimental far-field profiles of asymmetric BG beams. Row (a) and (c) are the 1064 nm pump with the corresponding charge numbers marked on each profile. Row (b) and (d) are SHG 532 nm asymmetric BG beams. The marked charge numbers for 532 nm are based on the OAM conservation law.
Fig. 5.
Fig. 5. Experimental results of 1064 nm and 532 nm charge numbers measurement.
Fig. 6.
Fig. 6. Coherent OAM charge combinations for (a) the 1064 nm pump and (b) the SHG 532 nm. The nonlinear conversion efficiency is also listed for each combination.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

U ( r , θ , z , t ) = y exp ( i 2 π ( f c + f ) t ) exp ( ( r ρ 0 ) 2 w r i n g 2 θ 2 β 2 π 2 ) exp ( i θ ) exp ( i k z z )
U ( ω ) = U exp ( i θ )
U ( 2 ω ) [ U ( ω ) ] 2 = [ U exp ( i θ ) ] 2 = U 2 exp ( i 2 θ )
U ( 2 ω ) [ U ( ω ) ] 2 = [ U 1 exp ( i 1 θ ) + U 2 exp ( i 2 θ ) ] 2 = U 1 2 exp ( i 2 1 θ ) + U 2 2 exp ( i 2 2 θ ) + 2 U 1 U 2 exp [ i ( 1 + 2 ) θ ]
U ( 2 ω ) [ U ( ω ) ] 2 = [ U 1 exp ( i 1 θ ) + U 2 exp ( i 2 θ ) ] 2 = C 1 U 1 2 exp ( i 2 1 θ ) + C 2 U 2 2 exp ( i 2 2 θ ) + C 12 U 1 U 2 exp [ i ( 1 + 2 ) θ ]
U F F ( ) ( ω ) = m = + C m J m ( k t m r μ m ) exp ( i m θ )
U F F ( 2 ) ( 2 ω ) = p , q = + C p q J p J q exp [ i ( p + q ) θ ]
a v e = J z W = Im U ( x , y , z ) ( x y y x ) U ( x , y , z ) d x d y U ( x , y , z ) U ( x , y , z ) d x d y
a v e = 2 π f λ ( I ( x , y ) x y d x d y I ( x , y ) d x d y I ( x , y ) x y d x d y I ( x , y ) d x d y )

Metrics