Abstract

We demonstrate a visible light communication (VLC) system using light emitting diode (LED) backlight display panel and mobile-phone complementary-metal–oxide–semiconductor (CMOS) camera. The panel is primarily used for displaying advertisements. By modulating its backlight, dynamic contents (i.e. secondary information) can be transmitted wirelessly to users based on rolling shutter effect (RSE) of the CMOS camera. As different display content will be displayed on the panel, the VLC performance is significantly limited if the noise-ratio (NR) is too high. Here, we propose and demonstrate a CMOS RSE pattern demodulation scheme using grayscale value distribution (GVD) and machine learning algorithm (MLA) to significantly enhance the demodulation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications

Yu-Cheng Chuang, Chi-Wai Chow, Yang Liu, Chien-Hung Yeh, Xin-Lan Liao, Kun-Hsien Lin, and Yi-Yuan Chen
Opt. Express 27(21) 29924-29929 (2019)

Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication

Chi-Wai Chow, Ruei-Jie Shiu, Yen-Chun Liu, Xin-Lan Liao, Kun-Hsien Lin, Yi-Chang Wang, and Yi-Yuan Chen
Opt. Express 26(10) 12530-12535 (2018)

Visible light communication using mobile-phone camera with data rate higher than frame rate

Chi-Wai Chow, Chung-Yen Chen, and Shih-Hao Chen
Opt. Express 23(20) 26080-26085 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, C. Yu, W. D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
    [Crossref]
  2. H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
    [Crossref]
  3. H. H. Lu, Y. P. Lin, P. Y. Wu, C. Y. Chen, M. C. Chen, and T. W. Jhang, “A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators,” Opt. Express 22(3), 3468–3474 (2014).
    [Crossref]
  4. B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
    [Crossref]
  5. C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “Cheng “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
    [Crossref]
  6. Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in In-door visible light communication system,” Proc. OFC2011, paper JWA083.
  7. P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 1–12 (2015).
    [Crossref]
  8. I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
    [Crossref]
  9. C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC 12, 1244–1248 (2012).
    [Crossref]
  10. C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
    [Crossref]
  11. C. W. Chow, C. Chen, and S. Chen, “Enhancement of signal performance in LED visible light communications using mobile phone camera,” IEEE Photonics J. 7(5), 1–7 (2015).
    [Crossref]
  12. Y. C. Chuang, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, and Y. Y. Chen, “Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications,” Opt. Express 27(21), 29924–29929 (2019).
    [Crossref]
  13. C. W. Chen, C. W. Chow, Y. Liu, and C. H. Yeh, “Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications,” Opt. Express 25(20), 24362–24367 (2017).
    [Crossref]
  14. C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 1–6 (2018).
    [Crossref]
  15. L. Liu, R. Deng, and L. Chen, “Spatial and time dispersions compensation with double-equalization for optical camera communications,” IEEE Photonics Technol. Lett. 31(21), 1753–1756 (2019).
    [Crossref]
  16. L. Liu, R. Deng, and L. Chen, “47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation,” Opt. Express 27(23), 33840–33846 (2019).
    [Crossref]
  17. Y. Yang and J. Luo, “Composite amplitude-shift keying for effective LED-Camera VLC,” IEEE Trans. Mobile Comput. doi: 10.1109/TMC.2019.2897101.
  18. C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).

2019 (3)

2018 (1)

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 1–6 (2018).
[Crossref]

2017 (1)

2015 (4)

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref]

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 1–12 (2015).
[Crossref]

C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
[Crossref]

C. W. Chow, C. Chen, and S. Chen, “Enhancement of signal performance in LED visible light communications using mobile phone camera,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

2014 (2)

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “Cheng “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

H. H. Lu, Y. P. Lin, P. Y. Wu, C. Y. Chen, M. C. Chen, and T. W. Jhang, “A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators,” Opt. Express 22(3), 3468–3474 (2014).
[Crossref]

2013 (1)

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

2012 (2)

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC 12, 1244–1248 (2012).
[Crossref]

Z. Wang, C. Yu, W. D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
[Crossref]

2009 (1)

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Afgani, M.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC 12, 1244–1248 (2012).
[Crossref]

Andoh, M.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Bishop, C. M.

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).

Chang, C. H.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “Cheng “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Chang, Y. C.

Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in In-door visible light communication system,” Proc. OFC2011, paper JWA083.

Chen, C.

C. W. Chow, C. Chen, and S. Chen, “Enhancement of signal performance in LED visible light communications using mobile phone camera,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Chen, C. W.

Chen, C. Y.

Chen, J.

Chen, J. H.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “Cheng “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Chen, L.

L. Liu, R. Deng, and L. Chen, “47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation,” Opt. Express 27(23), 33840–33846 (2019).
[Crossref]

L. Liu, R. Deng, and L. Chen, “Spatial and time dispersions compensation with double-equalization for optical camera communications,” IEEE Photonics Technol. Lett. 31(21), 1753–1756 (2019).
[Crossref]

Chen, M. C.

Chen, S.

C. W. Chow, C. Chen, and S. Chen, “Enhancement of signal performance in LED visible light communications using mobile phone camera,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Chen, S. H.

Chen, W.

Chen, Y. Y.

Y. C. Chuang, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, and Y. Y. Chen, “Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications,” Opt. Express 27(21), 29924–29929 (2019).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 1–6 (2018).
[Crossref]

Cheng, C. J.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “Cheng “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Chi, Y. C.

Chow, C. W.

Y. C. Chuang, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, and Y. Y. Chen, “Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications,” Opt. Express 27(21), 29924–29929 (2019).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 1–6 (2018).
[Crossref]

C. W. Chen, C. W. Chow, Y. Liu, and C. H. Yeh, “Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications,” Opt. Express 25(20), 24362–24367 (2017).
[Crossref]

C. W. Chow, C. Chen, and S. Chen, “Enhancement of signal performance in LED visible light communications using mobile phone camera,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
[Crossref]

Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in In-door visible light communication system,” Proc. OFC2011, paper JWA083.

Chuang, Y. C.

Danakis, C.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC 12, 1244–1248 (2012).
[Crossref]

Deng, R.

L. Liu, R. Deng, and L. Chen, “Spatial and time dispersions compensation with double-equalization for optical camera communications,” IEEE Photonics Technol. Lett. 31(21), 1753–1756 (2019).
[Crossref]

L. Liu, R. Deng, and L. Chen, “47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation,” Opt. Express 27(23), 33840–33846 (2019).
[Crossref]

Durán Retamal, J. R.

Faulkner, G.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Ghassemlooy, Z.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 1–12 (2015).
[Crossref]

Haas, H.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC 12, 1244–1248 (2012).
[Crossref]

Han, D.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 1–12 (2015).
[Crossref]

He, J. H.

Ito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Janjua, B.

Jhang, T. W.

Jung, D.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Kagawa, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Kawahito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Kuo, H. C.

Lee, K.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Li, C. Y.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “Cheng “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Liao, X. L.

Y. C. Chuang, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, and Y. Y. Chen, “Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications,” Opt. Express 27(21), 29924–29929 (2019).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 1–6 (2018).
[Crossref]

Lin, C. Y.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “Cheng “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Lin, G. R.

Lin, K. H.

Y. C. Chuang, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, and Y. Y. Chen, “Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications,” Opt. Express 27(21), 29924–29929 (2019).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 1–6 (2018).
[Crossref]

Lin, Y. P.

Liu, L.

L. Liu, R. Deng, and L. Chen, “47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation,” Opt. Express 27(23), 33840–33846 (2019).
[Crossref]

L. Liu, R. Deng, and L. Chen, “Spatial and time dispersions compensation with double-equalization for optical camera communications,” IEEE Photonics Technol. Lett. 31(21), 1753–1756 (2019).
[Crossref]

Liu, Y.

Liu, Y. C.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 1–6 (2018).
[Crossref]

Liu, Y. F.

Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in In-door visible light communication system,” Proc. OFC2011, paper JWA083.

Lu, H. H.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “Cheng “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

H. H. Lu, Y. P. Lin, P. Y. Wu, C. Y. Chen, M. C. Chen, and T. W. Jhang, “A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators,” Opt. Express 22(3), 3468–3474 (2014).
[Crossref]

Luo, J.

Y. Yang and J. Luo, “Composite amplitude-shift keying for effective LED-Camera VLC,” IEEE Trans. Mobile Comput. doi: 10.1109/TMC.2019.2897101.

Luo, P.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 1–12 (2015).
[Crossref]

Minh, H. L.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 1–12 (2015).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Ng, T. K.

O’Brien, D.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Oh, Y. J.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Ooi, B. S.

Oubei, H. M.

Png, L. C.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 1–12 (2015).
[Crossref]

Povey, G.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC 12, 1244–1248 (2012).
[Crossref]

Shiu, R. J.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 1–6 (2018).
[Crossref]

Takai, I.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Tang, X.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 1–12 (2015).
[Crossref]

Tsai, C. T.

Tsai, H. M.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 1–12 (2015).
[Crossref]

Underwood, I.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC 12, 1244–1248 (2012).
[Crossref]

Wan, Z. W.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “Cheng “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Wang, H. Y.

Wang, Y. C.

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 1–6 (2018).
[Crossref]

Wang, Z.

Won, E. T.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Wu, P. Y.

Yang, Y.

Y. Yang and J. Luo, “Composite amplitude-shift keying for effective LED-Camera VLC,” IEEE Trans. Mobile Comput. doi: 10.1109/TMC.2019.2897101.

Yasutomi, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Yeh, C. H.

Y. C. Chuang, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, and Y. Y. Chen, “Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications,” Opt. Express 27(21), 29924–29929 (2019).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 1–6 (2018).
[Crossref]

C. W. Chen, C. W. Chow, Y. Liu, and C. H. Yeh, “Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications,” Opt. Express 25(20), 24362–24367 (2017).
[Crossref]

Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in In-door visible light communication system,” Proc. OFC2011, paper JWA083.

Yu, C.

Zeng, L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Zhang, M.

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 1–12 (2015).
[Crossref]

Zhong, W. D.

IEEE Photonics J. (4)

P. Luo, M. Zhang, Z. Ghassemlooy, H. L. Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7(5), 1–12 (2015).
[Crossref]

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

C. W. Chow, C. Chen, and S. Chen, “Enhancement of signal performance in LED visible light communications using mobile phone camera,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, “Secure mobile-phone based visible light communications with different noise-ratio light-panel,” IEEE Photonics J. 10(2), 1–6 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Liu, R. Deng, and L. Chen, “Spatial and time dispersions compensation with double-equalization for optical camera communications,” IEEE Photonics Technol. Lett. 31(21), 1753–1756 (2019).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

J. Lightwave Technol. (1)

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “Cheng “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4723–4729 (2014).
[Crossref]

Opt. Express (7)

Z. Wang, C. Yu, W. D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
[Crossref]

H. H. Lu, Y. P. Lin, P. Y. Wu, C. Y. Chen, M. C. Chen, and T. W. Jhang, “A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators,” Opt. Express 22(3), 3468–3474 (2014).
[Crossref]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref]

C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
[Crossref]

C. W. Chen, C. W. Chow, Y. Liu, and C. H. Yeh, “Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications,” Opt. Express 25(20), 24362–24367 (2017).
[Crossref]

Y. C. Chuang, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, and Y. Y. Chen, “Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications,” Opt. Express 27(21), 29924–29929 (2019).
[Crossref]

L. Liu, R. Deng, and L. Chen, “47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation,” Opt. Express 27(23), 33840–33846 (2019).
[Crossref]

Proc. OWC (1)

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” Proc. OWC 12, 1244–1248 (2012).
[Crossref]

Other (3)

Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in In-door visible light communication system,” Proc. OFC2011, paper JWA083.

Y. Yang and J. Luo, “Composite amplitude-shift keying for effective LED-Camera VLC,” IEEE Trans. Mobile Comput. doi: 10.1109/TMC.2019.2897101.

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) VLC system using LED display panel and CMOS image sensor. (b) Flow diagram of the MLA and GVD implementation. (c) VLC packet design.
Fig. 2.
Fig. 2. Example to illustrate the limitation of the traditional thresholding scheme to identify the data logics of the received RSE patterns at (a) NR = 0% and (b) NR = 70%.
Fig. 3.
Fig. 3. (a) R, (b) B and (c) G average grayscale value RSE patterns.
Fig. 4.
Fig. 4. GVDs of the (a) R, (b) G, and (c) B RSE patterns when display content NR = 0%. (d) R, (e) G, and (f) B RSE patterns when display content NR = 40%; (g) R, (h) G, and (i) B RSE patterns when display content NR = 70%; (j) R, (k) G, and (l) B RSE patterns when display content NR = 90%.
Fig. 5.
Fig. 5. Measured BER curves of the demodulated VLC signal based on different conditions when NR = (a) 0%, (b) 40%, (c) 70%, (d) 90%.
Fig. 6.
Fig. 6. (a) Measured BER curves of the demodulated VLC signal based on different conditions at different transmission distances. (b) Received illumination (lux) at free space transmission distances of 50 cm, 100 cm and 150 cm. Iterations to minimize the cross entropy error function for (c) R, (d) B, (e) G, (f) average grayscale patterns.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P n = σ ( z n ) ,  and  z n = ω x n + ω 0 = w x n
p ( t | w ) = n = 1 N P n t n ( 1 P n ) 1 t n
E ( w ) = ln p ( t | w ) = n = 1 N [ t n ln P n + ( 1 t n ) ln ( 1 P n ) ]
w τ  + 1 = w τ  -  η E w ,  and  E w = n = 1 N ( P n t n ) x n

Metrics