Abstract

We present a numerical study of optical torque between two twisted metal nanorods due to the angular momentum of the electromagnetic field emerging from their plasmonic coupling. Our results indicate that the interaction optical torque on the nanorods can be strongly enhanced by their plasmon coupling, which highly depends on not only the gap size but also the twisted angle between the nanorods. The behaviors of the optical torque are different between two plasmon coupling modes: hybridized bonding and anti-bonding modes with different resonances. The rotations of the twisted nanorods with the bonding and anti-bonding mode excitations lead to mutually parallel and perpendicular alignments, respectively. At an incident intensity of 10 mW/μm2, the rotational potential depths are more than 30 times as large as the Brownian motion energy, enabling the optical alignments with angle fluctuations less than ∼±10°. Thus, this optical alignment of the nanoparticles with the plasmon coupling allows dynamic control of the plasmonic characteristics and functions.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity

Wen-Hao Huang, Shun-Feng Li, Hai-Tao Xu, Zheng-Xun Xiang, Yong-Bing Long, and Hai-Dong Deng
Opt. Express 26(5) 6202-6213 (2018)

Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques

Jiunn-Woei Liaw, Wei-Jiun Lo, and Mao-Kuen Kuo
Opt. Express 22(9) 10858-10867 (2014)

Reversible optical binding force in a plasmonic heterodimer under radially polarized beam illumination

Fajun Xiao, Jiachen Zhang, Weixing Yu, Weiren Zhu, Ting Mei, Malin Premaratne, and Jianlin Zhao
Opt. Express 28(3) 3000-3008 (2020)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
    [Crossref]
  3. T. W. Odom and G. C. Schatz, “Introduction to plasmonics,” Chem. Rev. 111(6), 3667–3668 (2011).
    [Crossref]
  4. S. R. Pocock, X. Xiao, P. A. Huidobro, and V. Giannini, “Topological plasmonic chain with retardation and radiative effects,” ACS Photonics 5(6), 2271–2279 (2018).
    [Crossref]
  5. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmon in nanofabricated single silver particle pairs: Experimental observation of strong interparticle interaction,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
    [Crossref]
  6. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
    [Crossref]
  7. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
    [Crossref]
  8. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref]
  9. K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
    [Crossref]
  10. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [Crossref]
  11. H. M. Abdulla, R. Thomas, and R. S. Swathi, “Overwhelming analogies between plasmon hybridization theory and molecular orbital theory revealed: The story of plasmonic heterodimers,” J. Phys. Chem. C 122(13), 7382–7388 (2018).
    [Crossref]
  12. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
    [Crossref]
  13. Z. Zhu, P. Yuan, S. Li, M. Garai, M. Hong, and Q.-H. Xu, “Plasmon-enhanced fluorescence in coupled nanostructures and applications in DNA detection,” ACS Appl. Bio Mater. 1(1), 118–124 (2018).
    [Crossref]
  14. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
    [Crossref]
  15. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
    [Crossref]
  16. B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
    [Crossref]
  17. P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8(12), 4347–4352 (2008).
    [Crossref]
  18. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
    [Crossref]
  19. J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
    [Crossref]
  20. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref]
  21. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
    [Crossref]
  22. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
    [Crossref]
  23. Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
    [Crossref]
  24. Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express 17(21), 18760–18767 (2009).
    [Crossref]
  25. A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U. S. A. 102(5), 1280–1284 (2005).
    [Crossref]
  26. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of s single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref]
  27. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref]
  28. M. Hoshina, N. Yokoshi, H. Okamoto, and H. Ishihara, “Super-Resolution Trapping: A Nanoparticle Manipulation Using Nonlinear Optical Response,” ACS Photonics 5(2), 318–323 (2018).
    [Crossref]
  29. H. J. Chen, Q. Ye, Y. W. Zhang, L. Shi, S. Y. Liu, J. Zi, and Z. F. Lin, “Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance,” Phys. Rev. A 96(2), 023809 (2017).
    [Crossref]
  30. H. J. Chen, S. Y. Liu, J. Zi, and Z. F. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9(2), 1926–1935 (2015).
    [Crossref]
  31. J. Chen, J. Ng, Z. F. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
    [Crossref]
  32. S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5(1), 3307 (2014).
    [Crossref]
  33. Y. E. Lee, K. H. Fung, D. Jin, and N. X. Fang, “Optical torque from enhanced scattering by multipolar plasmonic resonance,” Nanophotonics 3(6), 343–440 (2014).
    [Crossref]
  34. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
    [Crossref]
  35. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  36. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5(1), 3300 (2014).
    [Crossref]
  37. A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
    [Crossref]
  38. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
    [Crossref]
  39. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
    [Crossref]
  40. M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
    [Crossref]
  41. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
    [Crossref]
  42. R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
    [Crossref]
  43. W. D. Phillips, “Nobel Lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70(3), 721–741 (1998).
    [Crossref]
  44. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2(4), 299–313 (2008).
    [Crossref]
  45. P. H. Jones, O. M. Maragò, and G. Volpe, Optical tweezers: Principles and applications (Cambridge University, 2015).
  46. H. J. Chen, W. L. Lu, X. N. Yu, C. H. Xue, S. Y. Liu, and Z. F. Lin, “Optical torque on small chiral particles in generic optical fields,” Opt. Express 25(26), 32867–32878 (2017).
    [Crossref]
  47. J.-W. Liaw, W.-J. Lo, and M.-K. Kuo, “Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques,” Opt. Express 22(9), 10858–10867 (2014).
    [Crossref]
  48. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
    [Crossref]
  49. Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
    [Crossref]

2018 (4)

S. R. Pocock, X. Xiao, P. A. Huidobro, and V. Giannini, “Topological plasmonic chain with retardation and radiative effects,” ACS Photonics 5(6), 2271–2279 (2018).
[Crossref]

Z. Zhu, P. Yuan, S. Li, M. Garai, M. Hong, and Q.-H. Xu, “Plasmon-enhanced fluorescence in coupled nanostructures and applications in DNA detection,” ACS Appl. Bio Mater. 1(1), 118–124 (2018).
[Crossref]

H. M. Abdulla, R. Thomas, and R. S. Swathi, “Overwhelming analogies between plasmon hybridization theory and molecular orbital theory revealed: The story of plasmonic heterodimers,” J. Phys. Chem. C 122(13), 7382–7388 (2018).
[Crossref]

M. Hoshina, N. Yokoshi, H. Okamoto, and H. Ishihara, “Super-Resolution Trapping: A Nanoparticle Manipulation Using Nonlinear Optical Response,” ACS Photonics 5(2), 318–323 (2018).
[Crossref]

2017 (4)

H. J. Chen, Q. Ye, Y. W. Zhang, L. Shi, S. Y. Liu, J. Zi, and Z. F. Lin, “Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance,” Phys. Rev. A 96(2), 023809 (2017).
[Crossref]

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

H. J. Chen, W. L. Lu, X. N. Yu, C. H. Xue, S. Y. Liu, and Z. F. Lin, “Optical torque on small chiral particles in generic optical fields,” Opt. Express 25(26), 32867–32878 (2017).
[Crossref]

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

2015 (2)

J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref]

H. J. Chen, S. Y. Liu, J. Zi, and Z. F. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9(2), 1926–1935 (2015).
[Crossref]

2014 (5)

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5(1), 3307 (2014).
[Crossref]

Y. E. Lee, K. H. Fung, D. Jin, and N. X. Fang, “Optical torque from enhanced scattering by multipolar plasmonic resonance,” Nanophotonics 3(6), 343–440 (2014).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5(1), 3300 (2014).
[Crossref]

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref]

J.-W. Liaw, W.-J. Lo, and M.-K. Kuo, “Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques,” Opt. Express 22(9), 10858–10867 (2014).
[Crossref]

2013 (2)

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref]

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref]

2012 (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref]

2011 (4)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

J. Chen, J. Ng, Z. F. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref]

T. W. Odom and G. C. Schatz, “Introduction to plasmonics,” Chem. Rev. 111(6), 3667–3668 (2011).
[Crossref]

2010 (1)

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref]

2009 (4)

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[Crossref]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[Crossref]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express 17(21), 18760–18767 (2009).
[Crossref]

2008 (4)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref]

P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8(12), 4347–4352 (2008).
[Crossref]

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[Crossref]

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2(4), 299–313 (2008).
[Crossref]

2007 (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref]

2006 (1)

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref]

2005 (2)

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmon in nanofabricated single silver particle pairs: Experimental observation of strong interparticle interaction,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[Crossref]

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U. S. A. 102(5), 1280–1284 (2005).
[Crossref]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

2003 (5)

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
[Crossref]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

2002 (1)

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref]

2000 (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[Crossref]

1998 (2)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

W. D. Phillips, “Nobel Lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70(3), 721–741 (1998).
[Crossref]

1986 (1)

1936 (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Abdulla, H. M.

H. M. Abdulla, R. Thomas, and R. S. Swathi, “Overwhelming analogies between plasmon hybridization theory and molecular orbital theory revealed: The story of plasmonic heterodimers,” J. Phys. Chem. C 122(13), 7382–7388 (2018).
[Crossref]

Acimovic, S. S.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[Crossref]

Allen, L.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2(4), 299–313 (2008).
[Crossref]

Alù, A.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref]

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of s single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref]

Askarpour, A. N.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

Aussenegg, F.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Bartal, G.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref]

Bekshaev, A. Y.

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5(1), 3300 (2014).
[Crossref]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref]

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Bjorkholm, J. E.

Bliokh, K. Y.

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5(1), 3300 (2014).
[Crossref]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Bowman, R. W.

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref]

Brevet, P. F.

J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref]

Brus, L. E.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U. S. A. 102(5), 1280–1284 (2005).
[Crossref]

Butet, J.

J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref]

Chan, C. T.

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5(1), 3307 (2014).
[Crossref]

J. Chen, J. Ng, Z. F. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

Chen, H. J.

H. J. Chen, Q. Ye, Y. W. Zhang, L. Shi, S. Y. Liu, J. Zi, and Z. F. Lin, “Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance,” Phys. Rev. A 96(2), 023809 (2017).
[Crossref]

H. J. Chen, W. L. Lu, X. N. Yu, C. H. Xue, S. Y. Liu, and Z. F. Lin, “Optical torque on small chiral particles in generic optical fields,” Opt. Express 25(26), 32867–32878 (2017).
[Crossref]

H. J. Chen, S. Y. Liu, J. Zi, and Z. F. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9(2), 1926–1935 (2015).
[Crossref]

Chen, J.

J. Chen, J. Ng, Z. F. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

Chowdhury, M.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[Crossref]

Chu, S.

Crozier, K. B.

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref]

Ding, W.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Ding, X.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Dziedzic, J. M.

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8(12), 4347–4352 (2008).
[Crossref]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref]

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
[Crossref]

Eustis, S.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref]

Fang, N. X.

Y. E. Lee, K. H. Fung, D. Jin, and N. X. Fang, “Optical torque from enhanced scattering by multipolar plasmonic resonance,” Nanophotonics 3(6), 343–440 (2014).
[Crossref]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref]

Franke-Arnold, S.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2(4), 299–313 (2008).
[Crossref]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Fu, Y.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[Crossref]

Fung, K. H.

Y. E. Lee, K. H. Fung, D. Jin, and N. X. Fang, “Optical torque from enhanced scattering by multipolar plasmonic resonance,” Nanophotonics 3(6), 343–440 (2014).
[Crossref]

Gao, D.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Garai, M.

Z. Zhu, P. Yuan, S. Li, M. Garai, M. Hong, and Q.-H. Xu, “Plasmon-enhanced fluorescence in coupled nanostructures and applications in DNA detection,” ACS Appl. Bio Mater. 1(1), 118–124 (2018).
[Crossref]

Giannini, V.

S. R. Pocock, X. Xiao, P. A. Huidobro, and V. Giannini, “Topological plasmonic chain with retardation and radiative effects,” ACS Photonics 5(6), 2271–2279 (2018).
[Crossref]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref]

González, M. U.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

Gschneidtner, T.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref]

Gunnarsson, L.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmon in nanofabricated single silver particle pairs: Experimental observation of strong interparticle interaction,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[Crossref]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Hallock, A. J.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U. S. A. 102(5), 1280–1284 (2005).
[Crossref]

Harris, N.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Hong, M.

Z. Zhu, P. Yuan, S. Li, M. Garai, M. Hong, and Q.-H. Xu, “Plasmon-enhanced fluorescence in coupled nanostructures and applications in DNA detection,” ACS Appl. Bio Mater. 1(1), 118–124 (2018).
[Crossref]

Hoshina, M.

M. Hoshina, N. Yokoshi, H. Okamoto, and H. Ishihara, “Super-Resolution Trapping: A Nanoparticle Manipulation Using Nonlinear Optical Response,” ACS Photonics 5(2), 318–323 (2018).
[Crossref]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref]

Huidobro, P. A.

S. R. Pocock, X. Xiao, P. A. Huidobro, and V. Giannini, “Topological plasmonic chain with retardation and radiative effects,” ACS Photonics 5(6), 2271–2279 (2018).
[Crossref]

Ishihara, H.

M. Hoshina, N. Yokoshi, H. Okamoto, and H. Ishihara, “Super-Resolution Trapping: A Nanoparticle Manipulation Using Nonlinear Optical Response,” ACS Photonics 5(2), 318–323 (2018).
[Crossref]

Ishikawa, M.

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express 17(21), 18760–18767 (2009).
[Crossref]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[Crossref]

Itoh, T.

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[Crossref]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express 17(21), 18760–18767 (2009).
[Crossref]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8(12), 4347–4352 (2008).
[Crossref]

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref]

Jin, D.

Y. E. Lee, K. H. Fung, D. Jin, and N. X. Fang, “Optical torque from enhanced scattering by multipolar plasmonic resonance,” Nanophotonics 3(6), 343–440 (2014).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref]

Johansson, P.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref]

Jones, P. H.

P. H. Jones, O. M. Maragò, and G. Volpe, Optical tweezers: Principles and applications (Cambridge University, 2015).

Käll, M.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmon in nanofabricated single silver particle pairs: Experimental observation of strong interparticle interaction,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[Crossref]

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref]

Kasemo, B.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmon in nanofabricated single silver particle pairs: Experimental observation of strong interparticle interaction,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[Crossref]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref]

Krenn, J.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Kreuzer, M. P.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[Crossref]

Ku, J. C.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref]

Kuo, M.-K.

Lakowicz, J. R.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[Crossref]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Lee, Y. E.

Y. E. Lee, K. H. Fung, D. Jin, and N. X. Fang, “Optical torque from enhanced scattering by multipolar plasmonic resonance,” Nanophotonics 3(6), 343–440 (2014).
[Crossref]

Lehmuskero, A.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Li, S.

Z. Zhu, P. Yuan, S. Li, M. Garai, M. Hong, and Q.-H. Xu, “Plasmon-enhanced fluorescence in coupled nanostructures and applications in DNA detection,” ACS Appl. Bio Mater. 1(1), 118–124 (2018).
[Crossref]

Li, X.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

Liaw, J.-W.

Lim, C.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Lin, Z. F.

H. J. Chen, Q. Ye, Y. W. Zhang, L. Shi, S. Y. Liu, J. Zi, and Z. F. Lin, “Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance,” Phys. Rev. A 96(2), 023809 (2017).
[Crossref]

H. J. Chen, W. L. Lu, X. N. Yu, C. H. Xue, S. Y. Liu, and Z. F. Lin, “Optical torque on small chiral particles in generic optical fields,” Opt. Express 25(26), 32867–32878 (2017).
[Crossref]

H. J. Chen, S. Y. Liu, J. Zi, and Z. F. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9(2), 1926–1935 (2015).
[Crossref]

J. Chen, J. Ng, Z. F. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

Liu, M.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref]

Liu, S. Y.

H. J. Chen, W. L. Lu, X. N. Yu, C. H. Xue, S. Y. Liu, and Z. F. Lin, “Optical torque on small chiral particles in generic optical fields,” Opt. Express 25(26), 32867–32878 (2017).
[Crossref]

H. J. Chen, Q. Ye, Y. W. Zhang, L. Shi, S. Y. Liu, J. Zi, and Z. F. Lin, “Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance,” Phys. Rev. A 96(2), 023809 (2017).
[Crossref]

H. J. Chen, S. Y. Liu, J. Zi, and Z. F. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9(2), 1926–1935 (2015).
[Crossref]

Liu, Y.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref]

Lo, W.-J.

Lu, W. L.

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maragò, O. M.

P. H. Jones, O. M. Maragò, and G. Volpe, Optical tweezers: Principles and applications (Cambridge University, 2015).

Martin, O. J. F.

J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref]

Mirkin, C. A.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref]

Mock, J. J.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

Ng, J.

J. Chen, J. Ng, Z. F. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Nieto-Vesperinas, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
[Crossref]

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Nori, F.

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5(1), 3300 (2014).
[Crossref]

Nowaczyk, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[Crossref]

Odom, T. W.

T. W. Odom and G. C. Schatz, “Introduction to plasmonics,” Chem. Rev. 111(6), 3667–3668 (2011).
[Crossref]

Ogier, R.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref]

Okamoto, H.

M. Hoshina, N. Yokoshi, H. Okamoto, and H. Ishihara, “Super-Resolution Trapping: A Nanoparticle Manipulation Using Nonlinear Optical Response,” ACS Photonics 5(2), 318–323 (2018).
[Crossref]

Osberg, K. D.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Ozel, T.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2(4), 299–313 (2008).
[Crossref]

Padgett, M. J.

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref]

Phillips, W. D.

W. D. Phillips, “Nobel Lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70(3), 721–741 (1998).
[Crossref]

Pocock, S. R.

S. R. Pocock, X. Xiao, P. A. Huidobro, and V. Giannini, “Topological plasmonic chain with retardation and radiative effects,” ACS Photonics 5(6), 2271–2279 (2018).
[Crossref]

Prikulis, J.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmon in nanofabricated single silver particle pairs: Experimental observation of strong interparticle interaction,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[Crossref]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref]

Qiu, C.-W.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Quidant, R.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Rahman, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Ray, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[Crossref]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Redmond, P. L.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U. S. A. 102(5), 1280–1284 (2005).
[Crossref]

Rindzevicius, T.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmon in nanofabricated single silver particle pairs: Experimental observation of strong interparticle interaction,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[Crossref]

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Schatz, G. C.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref]

T. W. Odom and G. C. Schatz, “Introduction to plasmonics,” Chem. Rev. 111(6), 3667–3668 (2011).
[Crossref]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmon in nanofabricated single silver particle pairs: Experimental observation of strong interparticle interaction,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[Crossref]

Schonbrun, E.

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref]

Schultz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

Shi, J.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

Shi, L.

H. J. Chen, Q. Ye, Y. W. Zhang, L. Shi, S. Y. Liu, J. Zi, and Z. F. Lin, “Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance,” Phys. Rev. A 96(2), 023809 (2017).
[Crossref]

Smith, D. R.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

Stockman, M.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

Sun, L.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

Swathi, R. S.

H. M. Abdulla, R. Thomas, and R. S. Swathi, “Overwhelming analogies between plasmon hybridization theory and molecular orbital theory revealed: The story of plasmonic heterodimers,” J. Phys. Chem. C 122(13), 7382–7388 (2018).
[Crossref]

Szmacinski, H.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[Crossref]

Tanaka, Y.

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express 17(21), 18760–18767 (2009).
[Crossref]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[Crossref]

Thomas, R.

H. M. Abdulla, R. Thomas, and R. S. Swathi, “Overwhelming analogies between plasmon hybridization theory and molecular orbital theory revealed: The story of plasmonic heterodimers,” J. Phys. Chem. C 122(13), 7382–7388 (2018).
[Crossref]

Volpe, G.

P. H. Jones, O. M. Maragò, and G. Volpe, Optical tweezers: Principles and applications (Cambridge University, 2015).

Wang, K.

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref]

Wang, S. B.

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5(1), 3307 (2014).
[Crossref]

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

Xiao, X.

S. R. Pocock, X. Xiao, P. A. Huidobro, and V. Giannini, “Topological plasmonic chain with retardation and radiative effects,” ACS Photonics 5(6), 2271–2279 (2018).
[Crossref]

Xu, H.

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref]

Xu, Q.-H.

Z. Zhu, P. Yuan, S. Li, M. Garai, M. Hong, and Q.-H. Xu, “Plasmon-enhanced fluorescence in coupled nanostructures and applications in DNA detection,” ACS Appl. Bio Mater. 1(1), 118–124 (2018).
[Crossref]

Xue, C. H.

Ye, Q.

H. J. Chen, Q. Ye, Y. W. Zhang, L. Shi, S. Y. Liu, J. Zi, and Z. F. Lin, “Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance,” Phys. Rev. A 96(2), 023809 (2017).
[Crossref]

Yokoshi, N.

M. Hoshina, N. Yokoshi, H. Okamoto, and H. Ishihara, “Super-Resolution Trapping: A Nanoparticle Manipulation Using Nonlinear Optical Response,” ACS Photonics 5(2), 318–323 (2018).
[Crossref]

Yoshikawa, H.

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[Crossref]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express 17(21), 18760–18767 (2009).
[Crossref]

Yu, X. N.

Yuan, P.

Z. Zhu, P. Yuan, S. Li, M. Garai, M. Hong, and Q.-H. Xu, “Plasmon-enhanced fluorescence in coupled nanostructures and applications in DNA detection,” ACS Appl. Bio Mater. 1(1), 118–124 (2018).
[Crossref]

Zentgraf, T.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref]

Zhang, J.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[Crossref]

Zhang, T.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Zhang, X.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

Zhang, Y. W.

H. J. Chen, Q. Ye, Y. W. Zhang, L. Shi, S. Y. Liu, J. Zi, and Z. F. Lin, “Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance,” Phys. Rev. A 96(2), 023809 (2017).
[Crossref]

Zhao, Y.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref]

Zhu, Z.

Z. Zhu, P. Yuan, S. Li, M. Garai, M. Hong, and Q.-H. Xu, “Plasmon-enhanced fluorescence in coupled nanostructures and applications in DNA detection,” ACS Appl. Bio Mater. 1(1), 118–124 (2018).
[Crossref]

Zi, J.

H. J. Chen, Q. Ye, Y. W. Zhang, L. Shi, S. Y. Liu, J. Zi, and Z. F. Lin, “Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance,” Phys. Rev. A 96(2), 023809 (2017).
[Crossref]

H. J. Chen, S. Y. Liu, J. Zi, and Z. F. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9(2), 1926–1935 (2015).
[Crossref]

Zou, S.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmon in nanofabricated single silver particle pairs: Experimental observation of strong interparticle interaction,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[Crossref]

ACS Appl. Bio Mater. (1)

Z. Zhu, P. Yuan, S. Li, M. Garai, M. Hong, and Q.-H. Xu, “Plasmon-enhanced fluorescence in coupled nanostructures and applications in DNA detection,” ACS Appl. Bio Mater. 1(1), 118–124 (2018).
[Crossref]

ACS Nano (3)

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[Crossref]

J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref]

H. J. Chen, S. Y. Liu, J. Zi, and Z. F. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9(2), 1926–1935 (2015).
[Crossref]

ACS Photonics (2)

M. Hoshina, N. Yokoshi, H. Okamoto, and H. Ishihara, “Super-Resolution Trapping: A Nanoparticle Manipulation Using Nonlinear Optical Response,” ACS Photonics 5(2), 318–323 (2018).
[Crossref]

S. R. Pocock, X. Xiao, P. A. Huidobro, and V. Giannini, “Topological plasmonic chain with retardation and radiative effects,” ACS Photonics 5(6), 2271–2279 (2018).
[Crossref]

Analyst (1)

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[Crossref]

Chem. Rev. (2)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref]

T. W. Odom and G. C. Schatz, “Introduction to plasmonics,” Chem. Rev. 111(6), 3667–3668 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[Crossref]

J. Phys. Chem. A (1)

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
[Crossref]

J. Phys. Chem. B (2)

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmon in nanofabricated single silver particle pairs: Experimental observation of strong interparticle interaction,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[Crossref]

J. Phys. Chem. C (2)

H. M. Abdulla, R. Thomas, and R. S. Swathi, “Overwhelming analogies between plasmon hybridization theory and molecular orbital theory revealed: The story of plasmonic heterodimers,” J. Phys. Chem. C 122(13), 7382–7388 (2018).
[Crossref]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[Crossref]

Laser Photonics Rev. (1)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2(4), 299–313 (2008).
[Crossref]

Light: Sci. Appl. (1)

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Nano Lett. (7)

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref]

P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8(12), 4347–4352 (2008).
[Crossref]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[Crossref]

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref]

Nanophotonics (1)

Y. E. Lee, K. H. Fung, D. Jin, and N. X. Fang, “Optical torque from enhanced scattering by multipolar plasmonic resonance,” Nanophotonics 3(6), 343–440 (2014).
[Crossref]

Nat. Commun. (4)

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5(1), 3307 (2014).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref]

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5(1), 3300 (2014).
[Crossref]

Nat. Nanotechnol. (1)

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref]

Nat. Photonics (2)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

J. Chen, J. Ng, Z. F. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

Nature (3)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Phys. Rev. A (1)

H. J. Chen, Q. Ye, Y. W. Zhang, L. Shi, S. Y. Liu, J. Zi, and Z. F. Lin, “Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance,” Phys. Rev. A 96(2), 023809 (2017).
[Crossref]

Phys. Rev. Lett. (1)

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U. S. A. 102(5), 1280–1284 (2005).
[Crossref]

Rep. Prog. Phys. (1)

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref]

Rev. Mod. Phys. (1)

W. D. Phillips, “Nobel Lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70(3), 721–741 (1998).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

P. H. Jones, O. M. Maragò, and G. Volpe, Optical tweezers: Principles and applications (Cambridge University, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic illustration of twisted gold nanorods with gap size d and twisted angle θ. The diameter (D) and length (L) of both nanorods are 40 nm and 120 nm, respectively.
Fig. 2.
Fig. 2. Plasmon resonance spectra of an isolated nanorod and its dimer: (a) gap size dependence (θ = π/12) and (b) twisted angle dependence (d = 1 nm). The solid lines, dashed lines, and dotted lines show the extinction, absorption and scattering cross sections, respectively. The vertical dashed lines show the resonance peak wavelength of the isolated nanorod.
Fig. 3.
Fig. 3. Plasmon hybridization diagram in nanorod dimer with twisted angle θ. The polarization direction of the incident light is along the longitudinal axis of the bottom nanorod.
Fig. 4.
Fig. 4. Optical torque acting on (a, c) the whole dimer and (b, d) on each nanorod: (a, b) gap size dependence (θ = π/12) and (c, d) twisted angle dependence (d = 1 nm). The dashed and dotdashed lines show the peak wavelengths at the redshifted resonance. The left- and right- side insets in Fig. 4(d) show the rotation directions of Rod 2 at the blueshifted and redshifted resonances, respectively.
Fig. 5.
Fig. 5. (a) Twisted angle dependence of electric field intensity enhancement at the gap center (d = 1 nm). The dot-dashed lines show the peak wavelengths at the redshifted resonance. (b, c) Distributions of the intensity enhancement at the resonance wavelength of 610 nm and 885 nm, respectively, with the twisted angle of π/12 at the gap center plane.
Fig. 6.
Fig. 6. Rotational potentials in units of kBT (T = 300K) for Rod 2 in the dimer (d = 1 nm) as a function of the twisted angle at different incident light wavelengths. Supercontinuum white lights with a uniform power over the spectrum from 500 nm to 645 nm (blueshifted resonance) and 645 nm to 1000 nm (redshifted resonance) are assumed to be the incident lights.
Fig. 7.
Fig. 7. Schematic illustration of an isolated nanorod and twisted gold nanorods with gap size d and twisted angle θ illuminated by a y-polarized light. L = 120 nm, D = 40 nm.
Fig. 8.
Fig. 8. (a) Plasmon resonance spectra of an isolated Au nanorod at longitudinal mode and transverse mode. (b) Longitudinal polarizability of the Au nanorod calculated by the finite element method. The length and diameter of the Au nanorods were 120 nm and 40 nm, respectively.
Fig. 9.
Fig. 9. Optical torques on Rod 1(a) and Rod 2 (b) calculated by the DA method as a function of wavelength in the dimer with 10 nm gap size.
Fig. 10.
Fig. 10. Comparison of the optical torques acting on the whole structure (a), Rod 1(b) and Rod2 (c) calculated by MST and DA method as a function of gap size in the dimer with 710 nm wavelength and π/12 twisted angle.
Fig. 11.
Fig. 11. Optical torque on an isolated nanorod with different rotation angles θ. The solid line and triangle with different colors represent the torques calculated by the DA method and MST method, respectively.
Fig. 12.
Fig. 12. Optical force acting on (a) Rod 1 and (b) Rod 2 with different gap sizes. The black line shows the optical force on an isolated Au nanorod. The twisted angle was fixed as π/12.
Fig. 13.
Fig. 13. Optical force acting on (a) Rod1 and (b) Rod 2 with different twisted angles. The gap size was fixed as 1 nm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d d t ( J mech  +  J field ) = S r ( T M × r ) n r d S r ,
T M = ε E E + 1 μ B B 1 2 ( ε E × E + 1 μ B × B ) I ,
N =   S r ( T ¯ M × r ) n r d S r ,
N i = 1 2 Re[ p × E ],
U p ( θ ) = θ 0 θ N d θ ,
p  =  α E ,
N isolated  =  1 2 Re[ p × E ] =  1 4 Re[ α l ] sin2 θ | E | 2 e z ,
E 1  =  ( A  +  A 2 exp[ i k ( d  +  D ) ] 1 A 2 co s 2 θ sin θ cos θ E y   exp[ i k ( d  +  D ) ] +  A co s 2 θ 1 A 2 co s 2 θ E y      0 )  ,
E 2  =  (  0 1 + A exp[ i k ( d  +  D ) ] 1 A 2 co s 2 θ E y  0 ) ,
A  =  α l exp[ i k ( d  +  D ) ] 4 π ε ( d + D )  [ k 2  +  i k ( d + D ) 1 ( d + D ) 2 ],
N 1  =  1 4 Re[ α l ( A  +  A 2 exp[ i k ( d + D )]) (exp[ i k ( d + D )] +  A co s 2 θ ) | 1 A 2 co s 2 θ | 2 ] sin2 θ | E | 2   e z ,
N 2  =  1 4 Re[ α l ] ( | 1 +  A exp[ i k ( d  +  D ) ] | 2 | 1 A 2 co s 2 θ | 2 )sin2 θ | E | 2 e z .

Metrics