Abstract

Sampling frequency offset (SFO) is an important issue in the orthogonal frequency-division multiplexing (OFDM)-based visible light communication (VLC) systems with low-cost analog-to-digital or digital-to-analog converters (ADCs/DACs). A digital interpolation or resampling filter can be used to effectively compensate the SFO. In such case, oversampling at the receiver ADC is required to mitigate the aliasing effect due to imperfect DACs and nonlinearity of visible light sources that cause extra frequency components inside/outside the OFDM signal spectrum. The oversampling factor (rate) is mainly determined by the order of the digital interpolation filter and nonlinear VLC links. The design of the OFDM-VLC receiver incorporating the digital interpolation filter is vital as it affects not only the transmission performance but also the complexity of digital signal processing (DSP). To evaluate the feasibility of the digital interpolation-based SFO compensation schemes for cost-sensitive VLC applications, in this paper, a real-time OFDM-VLC receiver incorporating the 2nd/3rd/4th order interpolation filters is experimentally demonstrated. An OFDM frame structure is designed for the synchronization including SFO estimation and compensation, in which the precision and latency of DSP are considered. On the basis of the real-time OFDM-VLC receiver, the comparison in the VLC transmission performance and DSP complexity between different interpolation-based SFO compensation schemes is discussed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
OLT-centralized sampling frequency offset compensation scheme for OFDM-PON

Ming Chen, Hui Zhou, Zhiwei Zheng, Rui Deng, Qinghui Chen, Miao Peng, Cuiwei Liu, Jing He, Lin Chen, and Xionggui Tang
Opt. Express 25(16) 19508-19516 (2017)

Estimation and compensation of sample frequency offset in coherent optical OFDM systems

Xingwen Yi and Kun Qiu
Opt. Express 19(14) 13503-13508 (2011)

Decision-aided sampling frequency offset compensation for reduced-guard-interval coherent optical OFDM systems

Wei Wang, Qunbi Zhuge, Mohamed Morsy-Osman, Yuliang Gao, Xian Xu, Mathieu Chagnon, Meng Qiu, Minh Thang Hoang, Fangyuan Zhang, Rui Li, and David V. Plant
Opt. Express 22(22) 27553-27564 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
    [Crossref]
  2. Y. Wang, X. Huang, J. Zhang, Y. Wang, and N. Chi, “Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS,” Opt. Express 22(13), 15328–15334 (2014).
    [Crossref]
  3. P. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17(4), 2047–2077 (2015).
    [Crossref]
  4. Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, “Emerging optical wireless communications-advances and challenges,” IEEE J. Select. Areas Commun. 33(9), 1738–1749 (2015).
    [Crossref]
  5. S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
    [Crossref]
  6. L. Feng, R. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
    [Crossref]
  7. M. Mohammed, C. He, and J. Armstrong, “Mitigation of side-effect modulation in optical OFDM VLC systems,” IEEE Access 6, 58161–58170 (2018).
    [Crossref]
  8. T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-lighting communication with a Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ glass covered 450-nm InGaN laser diode,” J. Lightwave Technol. 36(9), 1634–1643 (2018).
    [Crossref]
  9. X. Wang, T. Tjhung, Y. Wu, and B. Caron, “SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization,” IEEE Trans. Broadcast. 49(2), 170–177 (2003).
    [Crossref]
  10. Q. Hu, X. Jin, and Z. Xu, “Compensation of sampling frequency offset with digital interpolation for OFDM-based visible light communication systems,” J. Lightwave Technol. 36(23), 5488–5497 (2018).
    [Crossref]
  11. I. Neokosmidis, T. Kamalakis, J. Walewski, B. Inan, and T. Sphicopoulos, “Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach,” J. Lightwave Technol. 27(22), 4970–4978 (2009).
    [Crossref]
  12. G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
    [Crossref]
  13. Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
    [Crossref]
  14. P. Thai, “Real-time 138-kb/s transmission using OLED with 7-kHz modulation bandwidth,” IEEE Photonics Technol. Lett. 27(24), 2571–2574 (2015).
    [Crossref]
  15. W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
    [Crossref]
  16. Y. Xue, Y. Hou, S. Xiao, Y. Zhang, and L. Zhang, “Real-time visible light communication system based on 2ASK-OFDM coding,” in Proc. of Opto-Electronics and Commun. Conf., 1–3 (2016).
  17. Y.-L. Gao, Z.-Y. Wu, Z.-K. Wang, and J. Wang, “A 1.34-Gb/s real-time Li-Fi transceiver with DFT-spread-based PAPR mitigation,” IEEE Photonics Technol. Lett. 30(16), 1447–1450 (2018).
    [Crossref]
  18. R. Deng, J. He, M. Chen, Y. Wei, J. Shi, and L. Chen, “Real-time VLLC-OFDM HD-SDI video transmission system with TS-based SFO estimation,” in Proc. of Opt. Fiber Commun. Conf., W1 K.6 (2017).
  19. R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 1–8 (2017).
    [Crossref]
  20. M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
    [Crossref]
  21. J. Vesma and T. Saramäki, “Polynomial-based interpolation filters-part I: Filter synthesis,” Circuits Syst. Signal Process 26(2), 115–146 (2007).
    [Crossref]
  22. Q. Hu, X. Jin, W. Liu, M. Jin, and Z. Xu, “Real-time OFDM receiver with robust frequency synchronization for visible Light communication,” in Proc. of Asia Commun. and Photonics Conf., T2B.3 (2019).
  23. J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
    [Crossref]
  24. Y. Mao, X. Jin, W. Pan, W. Liu, M. Jin, C. Gong, and Z. Xu, “Real-time investigation of CAP transceivers with hybrid digital equalization for visible light communication,” Opt. Express 27(7), 9382–9393 (2019).
    [Crossref]
  25. A. Cailean, B. Cagneau, L. Chassagne, V. Popa, and M. Dimian, “Evaluation of the noise effects on visible light communications using Manchester and Miller coding,” in Proc. of International Conf. on Develop. & App. Systems, 85–89 (2014).
  26. L. Erup, F. Gardner, and R. Harris, “Interpolation in digital modems-part II: Implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
    [Crossref]
  27. S. Kawai, T. Yamagishi, Y. Hagiwara, S. Saigusa, I. Seto, S. Otaka, and S. Ito, “A 2018-QAM capable WLAN receiver with -56.3 dB image rejection ratio using self-calibration technique,” IEICE Trans. Electron. E101C(7), 457–463 (2018).
    [Crossref]
  28. M. Xu, Z. Jia, J. Wang, L. Campos, and G.-K. Chang, “A novel data-compression technology for digital mobile fronthaul with Lloyd algorithm and differential coding,” in Proc. of Opt. Fiber Commun. Conf., Tu2K-2 (2018).
  29. R. Yang, X. Jin, M. Jin, and Z. Xu, “Experimental investigation of optical OFDMA for vehicular visible light communication,” in Proc. of European Conf. on Opt. Commun., 1–3 (2017).

2019 (1)

2018 (6)

S. Kawai, T. Yamagishi, Y. Hagiwara, S. Saigusa, I. Seto, S. Otaka, and S. Ito, “A 2018-QAM capable WLAN receiver with -56.3 dB image rejection ratio using self-calibration technique,” IEICE Trans. Electron. E101C(7), 457–463 (2018).
[Crossref]

M. Mohammed, C. He, and J. Armstrong, “Mitigation of side-effect modulation in optical OFDM VLC systems,” IEEE Access 6, 58161–58170 (2018).
[Crossref]

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, J.-K. Chang, L.-Y. Chen, W.-H. Cheng, and G.-R. Lin, “White-lighting communication with a Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ glass covered 450-nm InGaN laser diode,” J. Lightwave Technol. 36(9), 1634–1643 (2018).
[Crossref]

Q. Hu, X. Jin, and Z. Xu, “Compensation of sampling frequency offset with digital interpolation for OFDM-based visible light communication systems,” J. Lightwave Technol. 36(23), 5488–5497 (2018).
[Crossref]

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Y.-L. Gao, Z.-Y. Wu, Z.-K. Wang, and J. Wang, “A 1.34-Gb/s real-time Li-Fi transceiver with DFT-spread-based PAPR mitigation,” IEEE Photonics Technol. Lett. 30(16), 1447–1450 (2018).
[Crossref]

2017 (1)

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

2016 (1)

L. Feng, R. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

2015 (6)

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

P. Thai, “Real-time 138-kb/s transmission using OLED with 7-kHz modulation bandwidth,” IEEE Photonics Technol. Lett. 27(24), 2571–2574 (2015).
[Crossref]

P. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17(4), 2047–2077 (2015).
[Crossref]

Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, “Emerging optical wireless communications-advances and challenges,” IEEE J. Select. Areas Commun. 33(9), 1738–1749 (2015).
[Crossref]

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
[Crossref]

2014 (2)

Y. Wang, X. Huang, J. Zhang, Y. Wang, and N. Chi, “Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS,” Opt. Express 22(13), 15328–15334 (2014).
[Crossref]

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

2013 (1)

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

2011 (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

2009 (1)

2007 (1)

J. Vesma and T. Saramäki, “Polynomial-based interpolation filters-part I: Filter synthesis,” Circuits Syst. Signal Process 26(2), 115–146 (2007).
[Crossref]

2003 (1)

X. Wang, T. Tjhung, Y. Wu, and B. Caron, “SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization,” IEEE Trans. Broadcast. 49(2), 170–177 (2003).
[Crossref]

1993 (1)

L. Erup, F. Gardner, and R. Harris, “Interpolation in digital modems-part II: Implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[Crossref]

Armstrong, J.

M. Mohammed, C. He, and J. Armstrong, “Mitigation of side-effect modulation in optical OFDM VLC systems,” IEEE Access 6, 58161–58170 (2018).
[Crossref]

Arnon, S.

Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, “Emerging optical wireless communications-advances and challenges,” IEEE J. Select. Areas Commun. 33(9), 1738–1749 (2015).
[Crossref]

Cagneau, B.

A. Cailean, B. Cagneau, L. Chassagne, V. Popa, and M. Dimian, “Evaluation of the noise effects on visible light communications using Manchester and Miller coding,” in Proc. of International Conf. on Develop. & App. Systems, 85–89 (2014).

Cailean, A.

A. Cailean, B. Cagneau, L. Chassagne, V. Popa, and M. Dimian, “Evaluation of the noise effects on visible light communications using Manchester and Miller coding,” in Proc. of International Conf. on Develop. & App. Systems, 85–89 (2014).

Cameron, K.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Campos, L.

M. Xu, Z. Jia, J. Wang, L. Campos, and G.-K. Chang, “A novel data-compression technology for digital mobile fronthaul with Lloyd algorithm and differential coding,” in Proc. of Opt. Fiber Commun. Conf., Tu2K-2 (2018).

Cao, Z.

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

Caron, B.

X. Wang, T. Tjhung, Y. Wu, and B. Caron, “SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization,” IEEE Trans. Broadcast. 49(2), 170–177 (2003).
[Crossref]

Chang, G.-K.

M. Xu, Z. Jia, J. Wang, L. Campos, and G.-K. Chang, “A novel data-compression technology for digital mobile fronthaul with Lloyd algorithm and differential coding,” in Proc. of Opt. Fiber Commun. Conf., Tu2K-2 (2018).

Chang, J.-K.

Chassagne, L.

A. Cailean, B. Cagneau, L. Chassagne, V. Popa, and M. Dimian, “Evaluation of the noise effects on visible light communications using Manchester and Miller coding,” in Proc. of International Conf. on Develop. & App. Systems, 85–89 (2014).

Chen, L.

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

R. Deng, J. He, M. Chen, Y. Wei, J. Shi, and L. Chen, “Real-time VLLC-OFDM HD-SDI video transmission system with TS-based SFO estimation,” in Proc. of Opt. Fiber Commun. Conf., W1 K.6 (2017).

Chen, L.-Y.

Chen, M.

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

R. Deng, J. He, M. Chen, Y. Wei, J. Shi, and L. Chen, “Real-time VLLC-OFDM HD-SDI video transmission system with TS-based SFO estimation,” in Proc. of Opt. Fiber Commun. Conf., W1 K.6 (2017).

Chen, Z.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Cheng, C.-H.

Cheng, J.

Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, “Emerging optical wireless communications-advances and challenges,” IEEE J. Select. Areas Commun. 33(9), 1738–1749 (2015).
[Crossref]

Cheng, W.-H.

Chi, N.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Y. Wang, X. Huang, J. Zhang, Y. Wang, and N. Chi, “Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS,” Opt. Express 22(13), 15328–15334 (2014).
[Crossref]

Chi, Y.-C.

Chun, H.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Dawson, M.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Deng, R.

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

R. Deng, J. He, M. Chen, Y. Wei, J. Shi, and L. Chen, “Real-time VLLC-OFDM HD-SDI video transmission system with TS-based SFO estimation,” in Proc. of Opt. Fiber Commun. Conf., W1 K.6 (2017).

Dimian, M.

A. Cailean, B. Cagneau, L. Chassagne, V. Popa, and M. Dimian, “Evaluation of the noise effects on visible light communications using Manchester and Miller coding,” in Proc. of International Conf. on Develop. & App. Systems, 85–89 (2014).

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Erup, L.

L. Erup, F. Gardner, and R. Harris, “Interpolation in digital modems-part II: Implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[Crossref]

Faulkner, G.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Feng, L.

L. Feng, R. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

Feng, X.

P. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17(4), 2047–2077 (2015).
[Crossref]

Gao, Y.-L.

Y.-L. Gao, Z.-Y. Wu, Z.-K. Wang, and J. Wang, “A 1.34-Gb/s real-time Li-Fi transceiver with DFT-spread-based PAPR mitigation,” IEEE Photonics Technol. Lett. 30(16), 1447–1450 (2018).
[Crossref]

Gardner, F.

L. Erup, F. Gardner, and R. Harris, “Interpolation in digital modems-part II: Implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[Crossref]

Ghassemlooy, Z.

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, “Emerging optical wireless communications-advances and challenges,” IEEE J. Select. Areas Commun. 33(9), 1738–1749 (2015).
[Crossref]

Gong, C.

Gu, E.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Haas, H.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Hagiwara, Y.

S. Kawai, T. Yamagishi, Y. Hagiwara, S. Saigusa, I. Seto, S. Otaka, and S. Ito, “A 2018-QAM capable WLAN receiver with -56.3 dB image rejection ratio using self-calibration technique,” IEICE Trans. Electron. E101C(7), 457–463 (2018).
[Crossref]

Han, D.

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Harris, R.

L. Erup, F. Gardner, and R. Harris, “Interpolation in digital modems-part II: Implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[Crossref]

He, C.

M. Mohammed, C. He, and J. Armstrong, “Mitigation of side-effect modulation in optical OFDM VLC systems,” IEEE Access 6, 58161–58170 (2018).
[Crossref]

He, J.

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

R. Deng, J. He, M. Chen, Y. Wei, J. Shi, and L. Chen, “Real-time VLLC-OFDM HD-SDI video transmission system with TS-based SFO estimation,” in Proc. of Opt. Fiber Commun. Conf., W1 K.6 (2017).

Henderson, R.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Herrnsdorf, J.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Hou, M.

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Hou, Y.

Y. Xue, Y. Hou, S. Xiao, Y. Zhang, and L. Zhang, “Real-time visible light communication system based on 2ASK-OFDM coding,” in Proc. of Opto-Electronics and Commun. Conf., 1–3 (2016).

Hu, P.

P. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17(4), 2047–2077 (2015).
[Crossref]

Hu, Q.

Q. Hu, X. Jin, and Z. Xu, “Compensation of sampling frequency offset with digital interpolation for OFDM-based visible light communication systems,” J. Lightwave Technol. 36(23), 5488–5497 (2018).
[Crossref]

Q. Hu, X. Jin, W. Liu, M. Jin, and Z. Xu, “Real-time OFDM receiver with robust frequency synchronization for visible Light communication,” in Proc. of Asia Commun. and Photonics Conf., T2B.3 (2019).

Hu, R.

L. Feng, R. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

Huang, X.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Y. Wang, X. Huang, J. Zhang, Y. Wang, and N. Chi, “Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS,” Opt. Express 22(13), 15328–15334 (2014).
[Crossref]

Huang, Z.

Ijaz, M.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Inan, B.

Ito, S.

S. Kawai, T. Yamagishi, Y. Hagiwara, S. Saigusa, I. Seto, S. Otaka, and S. Ito, “A 2018-QAM capable WLAN receiver with -56.3 dB image rejection ratio using self-calibration technique,” IEICE Trans. Electron. E101C(7), 457–463 (2018).
[Crossref]

Jalajakumari, A.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Ji, Y.

Jia, Z.

M. Xu, Z. Jia, J. Wang, L. Campos, and G.-K. Chang, “A novel data-compression technology for digital mobile fronthaul with Lloyd algorithm and differential coding,” in Proc. of Opt. Fiber Commun. Conf., Tu2K-2 (2018).

Jin, M.

Y. Mao, X. Jin, W. Pan, W. Liu, M. Jin, C. Gong, and Z. Xu, “Real-time investigation of CAP transceivers with hybrid digital equalization for visible light communication,” Opt. Express 27(7), 9382–9393 (2019).
[Crossref]

Q. Hu, X. Jin, W. Liu, M. Jin, and Z. Xu, “Real-time OFDM receiver with robust frequency synchronization for visible Light communication,” in Proc. of Asia Commun. and Photonics Conf., T2B.3 (2019).

R. Yang, X. Jin, M. Jin, and Z. Xu, “Experimental investigation of optical OFDMA for vehicular visible light communication,” in Proc. of European Conf. on Opt. Commun., 1–3 (2017).

Jin, X.

Y. Mao, X. Jin, W. Pan, W. Liu, M. Jin, C. Gong, and Z. Xu, “Real-time investigation of CAP transceivers with hybrid digital equalization for visible light communication,” Opt. Express 27(7), 9382–9393 (2019).
[Crossref]

Q. Hu, X. Jin, and Z. Xu, “Compensation of sampling frequency offset with digital interpolation for OFDM-based visible light communication systems,” J. Lightwave Technol. 36(23), 5488–5497 (2018).
[Crossref]

Q. Hu, X. Jin, W. Liu, M. Jin, and Z. Xu, “Real-time OFDM receiver with robust frequency synchronization for visible Light communication,” in Proc. of Asia Commun. and Photonics Conf., T2B.3 (2019).

R. Yang, X. Jin, M. Jin, and Z. Xu, “Experimental investigation of optical OFDMA for vehicular visible light communication,” in Proc. of European Conf. on Opt. Commun., 1–3 (2017).

Kamalakis, T.

Kawai, S.

S. Kawai, T. Yamagishi, Y. Hagiwara, S. Saigusa, I. Seto, S. Otaka, and S. Ito, “A 2018-QAM capable WLAN receiver with -56.3 dB image rejection ratio using self-calibration technique,” IEICE Trans. Electron. E101C(7), 457–463 (2018).
[Crossref]

Li, J.

Lin, G.-R.

Liu, W.

Y. Mao, X. Jin, W. Pan, W. Liu, M. Jin, C. Gong, and Z. Xu, “Real-time investigation of CAP transceivers with hybrid digital equalization for visible light communication,” Opt. Express 27(7), 9382–9393 (2019).
[Crossref]

Q. Hu, X. Jin, W. Liu, M. Jin, and Z. Xu, “Real-time OFDM receiver with robust frequency synchronization for visible Light communication,” in Proc. of Asia Commun. and Photonics Conf., T2B.3 (2019).

Liu, X.

Luo, P.

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Mao, Y.

McKendry, J.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Mohammed, M.

M. Mohammed, C. He, and J. Armstrong, “Mitigation of side-effect modulation in optical OFDM VLC systems,” IEEE Access 6, 58161–58170 (2018).
[Crossref]

Mohapatra, P.

P. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17(4), 2047–2077 (2015).
[Crossref]

Neokosmidis, I.

O’Brien, D.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Otaka, S.

S. Kawai, T. Yamagishi, Y. Hagiwara, S. Saigusa, I. Seto, S. Otaka, and S. Ito, “A 2018-QAM capable WLAN receiver with -56.3 dB image rejection ratio using self-calibration technique,” IEICE Trans. Electron. E101C(7), 457–463 (2018).
[Crossref]

Pan, W.

Pathak, P.

P. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17(4), 2047–2077 (2015).
[Crossref]

Popa, V.

A. Cailean, B. Cagneau, L. Chassagne, V. Popa, and M. Dimian, “Evaluation of the noise effects on visible light communications using Manchester and Miller coding,” in Proc. of International Conf. on Develop. & App. Systems, 85–89 (2014).

Qian, Y.

L. Feng, R. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

Rajbhandari, S.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Saigusa, S.

S. Kawai, T. Yamagishi, Y. Hagiwara, S. Saigusa, I. Seto, S. Otaka, and S. Ito, “A 2018-QAM capable WLAN receiver with -56.3 dB image rejection ratio using self-calibration technique,” IEICE Trans. Electron. E101C(7), 457–463 (2018).
[Crossref]

Saramäki, T.

J. Vesma and T. Saramäki, “Polynomial-based interpolation filters-part I: Filter synthesis,” Circuits Syst. Signal Process 26(2), 115–146 (2007).
[Crossref]

Seto, I.

S. Kawai, T. Yamagishi, Y. Hagiwara, S. Saigusa, I. Seto, S. Otaka, and S. Ito, “A 2018-QAM capable WLAN receiver with -56.3 dB image rejection ratio using self-calibration technique,” IEICE Trans. Electron. E101C(7), 457–463 (2018).
[Crossref]

Shi, J.

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

R. Deng, J. He, M. Chen, Y. Wei, J. Shi, and L. Chen, “Real-time VLLC-OFDM HD-SDI video transmission system with TS-based SFO estimation,” in Proc. of Opt. Fiber Commun. Conf., W1 K.6 (2017).

Siuzdak, J.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Sphicopoulos, T.

Stepniak, G.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Tang, J.

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

Tao, L.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Thai, P.

P. Thai, “Real-time 138-kb/s transmission using OLED with 7-kHz modulation bandwidth,” IEEE Photonics Technol. Lett. 27(24), 2571–2574 (2015).
[Crossref]

Tjhung, T.

X. Wang, T. Tjhung, Y. Wu, and B. Caron, “SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization,” IEEE Trans. Broadcast. 49(2), 170–177 (2003).
[Crossref]

Tsai, C.-T.

Tsonev, D.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Uysal, M.

Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, “Emerging optical wireless communications-advances and challenges,” IEEE J. Select. Areas Commun. 33(9), 1738–1749 (2015).
[Crossref]

Vesma, J.

J. Vesma and T. Saramäki, “Polynomial-based interpolation filters-part I: Filter synthesis,” Circuits Syst. Signal Process 26(2), 115–146 (2007).
[Crossref]

Walewski, J.

Wang, H.-Y.

Wang, J.

Y.-L. Gao, Z.-Y. Wu, Z.-K. Wang, and J. Wang, “A 1.34-Gb/s real-time Li-Fi transceiver with DFT-spread-based PAPR mitigation,” IEEE Photonics Technol. Lett. 30(16), 1447–1450 (2018).
[Crossref]

L. Feng, R. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

M. Xu, Z. Jia, J. Wang, L. Campos, and G.-K. Chang, “A novel data-compression technology for digital mobile fronthaul with Lloyd algorithm and differential coding,” in Proc. of Opt. Fiber Commun. Conf., Tu2K-2 (2018).

Wang, X.

X. Wang, T. Tjhung, Y. Wu, and B. Caron, “SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization,” IEEE Trans. Broadcast. 49(2), 170–177 (2003).
[Crossref]

Wang, Y.

Wang, Z.-K.

Y.-L. Gao, Z.-Y. Wu, Z.-K. Wang, and J. Wang, “A 1.34-Gb/s real-time Li-Fi transceiver with DFT-spread-based PAPR mitigation,” IEEE Photonics Technol. Lett. 30(16), 1447–1450 (2018).
[Crossref]

Wei, Y.

R. Deng, J. He, M. Chen, Y. Wei, J. Shi, and L. Chen, “Real-time VLLC-OFDM HD-SDI video transmission system with TS-based SFO estimation,” in Proc. of Opt. Fiber Commun. Conf., W1 K.6 (2017).

Wu, T.-C.

Wu, X.

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

Wu, Y.

X. Wang, T. Tjhung, Y. Wu, and B. Caron, “SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization,” IEEE Trans. Broadcast. 49(2), 170–177 (2003).
[Crossref]

Wu, Z.-Y.

Y.-L. Gao, Z.-Y. Wu, Z.-K. Wang, and J. Wang, “A 1.34-Gb/s real-time Li-Fi transceiver with DFT-spread-based PAPR mitigation,” IEEE Photonics Technol. Lett. 30(16), 1447–1450 (2018).
[Crossref]

Xiao, S.

Y. Xue, Y. Hou, S. Xiao, Y. Zhang, and L. Zhang, “Real-time visible light communication system based on 2ASK-OFDM coding,” in Proc. of Opto-Electronics and Commun. Conf., 1–3 (2016).

Xie, E.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

Xu, M.

M. Xu, Z. Jia, J. Wang, L. Campos, and G.-K. Chang, “A novel data-compression technology for digital mobile fronthaul with Lloyd algorithm and differential coding,” in Proc. of Opt. Fiber Commun. Conf., Tu2K-2 (2018).

Xu, P.

L. Feng, R. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

Xu, W.

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Xu, Z.

Y. Mao, X. Jin, W. Pan, W. Liu, M. Jin, C. Gong, and Z. Xu, “Real-time investigation of CAP transceivers with hybrid digital equalization for visible light communication,” Opt. Express 27(7), 9382–9393 (2019).
[Crossref]

Q. Hu, X. Jin, and Z. Xu, “Compensation of sampling frequency offset with digital interpolation for OFDM-based visible light communication systems,” J. Lightwave Technol. 36(23), 5488–5497 (2018).
[Crossref]

Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, “Emerging optical wireless communications-advances and challenges,” IEEE J. Select. Areas Commun. 33(9), 1738–1749 (2015).
[Crossref]

Q. Hu, X. Jin, W. Liu, M. Jin, and Z. Xu, “Real-time OFDM receiver with robust frequency synchronization for visible Light communication,” in Proc. of Asia Commun. and Photonics Conf., T2B.3 (2019).

R. Yang, X. Jin, M. Jin, and Z. Xu, “Experimental investigation of optical OFDMA for vehicular visible light communication,” in Proc. of European Conf. on Opt. Commun., 1–3 (2017).

Xue, Y.

Y. Xue, Y. Hou, S. Xiao, Y. Zhang, and L. Zhang, “Real-time visible light communication system based on 2ASK-OFDM coding,” in Proc. of Opto-Electronics and Commun. Conf., 1–3 (2016).

Yamagishi, T.

S. Kawai, T. Yamagishi, Y. Hagiwara, S. Saigusa, I. Seto, S. Otaka, and S. Ito, “A 2018-QAM capable WLAN receiver with -56.3 dB image rejection ratio using self-calibration technique,” IEICE Trans. Electron. E101C(7), 457–463 (2018).
[Crossref]

Yang, R.

R. Yang, X. Jin, M. Jin, and Z. Xu, “Experimental investigation of optical OFDMA for vehicular visible light communication,” in Proc. of European Conf. on Opt. Commun., 1–3 (2017).

Zhang, J.

Zhang, L.

Y. Xue, Y. Hou, S. Xiao, Y. Zhang, and L. Zhang, “Real-time visible light communication system based on 2ASK-OFDM coding,” in Proc. of Opto-Electronics and Commun. Conf., 1–3 (2016).

Zhang, M.

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Zhang, Y.

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Y. Xue, Y. Hou, S. Xiao, Y. Zhang, and L. Zhang, “Real-time visible light communication system based on 2ASK-OFDM coding,” in Proc. of Opto-Electronics and Commun. Conf., 1–3 (2016).

Zhou, Z.

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Zwierko, P.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Circuits Syst. Signal Process (1)

J. Vesma and T. Saramäki, “Polynomial-based interpolation filters-part I: Filter synthesis,” Circuits Syst. Signal Process 26(2), 115–146 (2007).
[Crossref]

IEEE Access (1)

M. Mohammed, C. He, and J. Armstrong, “Mitigation of side-effect modulation in optical OFDM VLC systems,” IEEE Access 6, 58161–58170 (2018).
[Crossref]

IEEE Commun. Mag. (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

IEEE Commun. Surv. Tutorials (1)

P. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17(4), 2047–2077 (2015).
[Crossref]

IEEE J. Select. Areas Commun. (2)

Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, “Emerging optical wireless communications-advances and challenges,” IEEE J. Select. Areas Commun. 33(9), 1738–1749 (2015).
[Crossref]

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. McKendry, J. Herrnsdorf, E. Gu, M. Dawson, and D. O’Brien, “High-speed integrated visible light communication system: device constraints and design considerations,” IEEE J. Select. Areas Commun. 33(9), 1750–1757 (2015).
[Crossref]

IEEE Network (1)

L. Feng, R. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

IEEE Photonics J. (3)

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

W. Xu, M. Zhang, D. Han, Z. Ghassemlooy, P. Luo, and Y. Zhang, “Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (3)

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Y.-L. Gao, Z.-Y. Wu, Z.-K. Wang, and J. Wang, “A 1.34-Gb/s real-time Li-Fi transceiver with DFT-spread-based PAPR mitigation,” IEEE Photonics Technol. Lett. 30(16), 1447–1450 (2018).
[Crossref]

P. Thai, “Real-time 138-kb/s transmission using OLED with 7-kHz modulation bandwidth,” IEEE Photonics Technol. Lett. 27(24), 2571–2574 (2015).
[Crossref]

IEEE Trans. Broadcast. (1)

X. Wang, T. Tjhung, Y. Wu, and B. Caron, “SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization,” IEEE Trans. Broadcast. 49(2), 170–177 (2003).
[Crossref]

IEEE Trans. Commun. (1)

L. Erup, F. Gardner, and R. Harris, “Interpolation in digital modems-part II: Implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[Crossref]

IEICE Trans. Electron. (1)

S. Kawai, T. Yamagishi, Y. Hagiwara, S. Saigusa, I. Seto, S. Otaka, and S. Ito, “A 2018-QAM capable WLAN receiver with -56.3 dB image rejection ratio using self-calibration technique,” IEICE Trans. Electron. E101C(7), 457–463 (2018).
[Crossref]

J. Lightwave Technol. (3)

Opt. Commun. (1)

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

Opt. Express (3)

Other (6)

R. Deng, J. He, M. Chen, Y. Wei, J. Shi, and L. Chen, “Real-time VLLC-OFDM HD-SDI video transmission system with TS-based SFO estimation,” in Proc. of Opt. Fiber Commun. Conf., W1 K.6 (2017).

Y. Xue, Y. Hou, S. Xiao, Y. Zhang, and L. Zhang, “Real-time visible light communication system based on 2ASK-OFDM coding,” in Proc. of Opto-Electronics and Commun. Conf., 1–3 (2016).

A. Cailean, B. Cagneau, L. Chassagne, V. Popa, and M. Dimian, “Evaluation of the noise effects on visible light communications using Manchester and Miller coding,” in Proc. of International Conf. on Develop. & App. Systems, 85–89 (2014).

Q. Hu, X. Jin, W. Liu, M. Jin, and Z. Xu, “Real-time OFDM receiver with robust frequency synchronization for visible Light communication,” in Proc. of Asia Commun. and Photonics Conf., T2B.3 (2019).

M. Xu, Z. Jia, J. Wang, L. Campos, and G.-K. Chang, “A novel data-compression technology for digital mobile fronthaul with Lloyd algorithm and differential coding,” in Proc. of Opt. Fiber Commun. Conf., Tu2K-2 (2018).

R. Yang, X. Jin, M. Jin, and Z. Xu, “Experimental investigation of optical OFDMA for vehicular visible light communication,” in Proc. of European Conf. on Opt. Commun., 1–3 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic diagram of a typical OFDM-VLC system with an LED-based intensity modulator.
Fig. 2.
Fig. 2. A polynomial interpolator with the Farrow structure.
Fig. 3.
Fig. 3. Block diagram of the DSP in the OFDM-VLC receiver. Sync: synchronization.
Fig. 4.
Fig. 4. Designed frame structure of the OFDM-VLC signal.
Fig. 5.
Fig. 5. Experimental setup of the OFDM-VLC system.
Fig. 6.
Fig. 6. (a) Waveforms constructed with the 2nd, 3rd, 4th order interpolators. (b) Comparison of fitted PDFs, (c) PDF of reconstructed signal errors. SFO = 100 ppm, λ=1.3.
Fig. 7.
Fig. 7. (a) EVM on each subcarrier. (b) EVM comparison between simulation and experiment (ROM). Q = 4, SFO = 100 ppm.
Fig. 8.
Fig. 8. EVM performance with the 4th order interpolator (SFO = 100 ppm).
Fig. 9.
Fig. 9. Estimated SFO with the 4th interpolator at different oversampling rates (λ).
Fig. 10.
Fig. 10. (a) Measured EVM versus SFO (Q = 4), (b) EVM performance with the 2nd, 3rd and 4th order interpolators.

Tables (2)

Tables Icon

Table 1. Key parameters of the OFDM-VLC system

Tables Icon

Table 2. Comparison in DSP complexity of the Farrow-structured interpolators

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

z ( t ) = V b + u k = 1 N / 2 1 Z ( k ) cos ( 2 π k f t t / N ) t [ 0 , N / N f t f t ]
p ( t ) = j = 1 M b j z j ( t ) + b 0
x ( t ) = p ( t ) h v ( t ) + w ( t )
h v ( t ) = η e 2 π k L f L t u ( t ) e 2 π k P f P t u ( t ) h B ( t )
y ( n T i ) = i = 0 K 1 x [ ( m n i ) T s ] h I [ ( i  +  μ n ) T s ] = q = 0 Q μ n q v ( q )
v ( q ) = i = 0 K 1 c q ( i ) x [ ( m n i ) T s ]
m n = int [ n T i / [ n T i T s T s ] = int [ n λ ( 1 + η ) ]
μ n = n T i / n T i T s T s m n = n λ ( 1 + η ) m n
T i = λ ( 1 + η ) T s

Metrics