Abstract

Optical independent sideband (ISB) signals can be generated by exploiting one external In-phase/Quadrature (I/Q) modulator. Our theoretical analysis shows crosstalk between the two ISB (right and left side) signals can attribute to two main imperfections: amplitude difference and phase unmatched in I/Q data. To reduce the impact of crosstalk between the two ISB signals, we propose three schemes. The first is precise phase match of the I and Q data. The second has been made possible by setting different frequencies for the left sideband (LSB) and the right sideband (RSB) signals, and the last is achieved by adding Multiple-Input Multiple-Output (MIMO) equalization digital signal processing (DSP) at the receiver side. Our experimental results have shown that these schemes can improve the performance of ISB signals. In our experimental system we designed dual ISB system with different modulation formats in two sidebands. Precise phase match can bring a ∼2.2dB improvement at BER of 1×10−2 and a ∼4.3dB improvement at BER of 1×10−3 for 16-ary quadrature-amplitude-modulation (16QAM) and quadrature-phase-shift-keying (QPSK) signals, respectively, in 4Gbaud with carrier frequency of 36GHz system. The BER of 4Gbaud 16QAM ISB signal at 30GHz and 4Gbaud QPSK ISB signal at 38GHz can reach hard-decision forward-error-correction (HD-FEC) when the input power is larger than −5.5 and −7.4dBm respectively in different frequencies system. For 4Gbaud with carrier frequency of 36GHz system, the BER of 16QAM signal and QPSK signal reduce ∼2.1 and ∼2.2dB at HD-FEC after using MIMO. In addition, MIMO can further improve the performance of the matched phase system or the system with different frequencies.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Independent dual single-sideband vector millimeter-wave signal generation by one single I/Q modulator

Xiaolong Pan, Xiangyu Liu, Hongxin Zhang, Kaihui Wang, Yuemin Zhang, Dongsheng Ran, Xishuo Wang, and Chuxuan Wang
Opt. Express 27(14) 19906-19914 (2019)

Asymmetric direct detection of orthogonal offset carriers assisted polarization multiplexed single-sideband signals

Xueyang Li, Maurice O’Sullivan, Zhenping Xing, Md Samiul Alam, Thang Hoang, Meng Xiang, Mingyue Zhu, Jinsong Zhang, Eslam Elfiky, and David V. Plant
Opt. Express 28(3) 3226-3236 (2020)

Optical independent-sideband modulation for bandwidth-economic coherent transmission

Hung-Chang Chien, Zhensheng Jia, Junwen Zhang, Ze Dong, and Jianjun Yu
Opt. Express 22(8) 9465-9470 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal stopping model-based early SKIP mode decision for high-efficiency video coding,” IEEE Trans. Multimedia 19(7), 1431–1441 (2017).
    [Crossref]
  2. J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization scheme with guaranteed quality of service in cloud computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
    [Crossref]
  3. Y. Chen, R. Hu, Q. Yang, M. Luo, S. Yu, and W. Li, “Two orthogonal carriers assisted 101-gb/s dual-band ddo-ofdm transmission over 320-km ssmf,” Opt. Express 23(9), 12065 (2015).
    [Crossref]
  4. I. S. Amiri, S. E. Alavi, S. M. Idrus, A. S. M. Supaat, J. Ali, and P. P. Yupapin, “W-Band OFDM transmission for radio-over-fiber link using solitonic millimeter wave generated by MRR,” IEEE J. Quantum Electron. 50(8), 622–628 (2014).
    [Crossref]
  5. X. Li, J. Xiao, and J. Yu, “Long-distance wireless mm-wave signal delivery at W-band,” J. Lightwave Technol. 34(2), 661–668 (2016).
    [Crossref]
  6. L. Chen, J. Xiao, and J. Yu, “Application of volterra nonlinear compensation in 75-GHz mm-wave fiber-wireless system,” IEEE Photonics J. 9(1), 1–7 (2017).
    [Crossref]
  7. F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFTspread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
    [Crossref]
  8. D. Wake, A. Nkansah, and N. Gomes, “Radio Over Fiber Link Design for Next Generation Wireless Systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
    [Crossref]
  9. M. Sauer, A. Kobyakov, and J. George, “Radio Over Fiber for Picocellular Network Architectures,” J. Lightwave Technol. 25(11), 3301–3320 (2007).
    [Crossref]
  10. L. Chen, H. Wen, and S. Wen, “A Radio-Over-Fiber System With a Novel Scheme for Millimeter-Wave Generation and Wavelength Reuse for Up-Link Connection,” IEEE Photonics Technol. Lett. 18(19), 2056–2058 (2006).
    [Crossref]
  11. C. Browning, H. Elwan, E. Martin, S. Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. Barry, “Gain-Switched Optical Frequency Combs for Future Mobile Radio-Over-Fiber Millimeter-Wave Systems,” J. Lightwave Technol. 36(19), 4602–4610 (2018).
    [Crossref]
  12. A. Deb and N. Kjærgaard, “Radio-over-fiber using an optical antenna based on Rydberg states of atoms,” Appl. Phys. Lett. 112(21), 211106 (2018).
    [Crossref]
  13. S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
    [Crossref]
  14. X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
    [Crossref]
  15. J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
    [Crossref]
  16. Y. Tong, C. Chow, G. Chen, C. Peng, C. Yeh, and H. Tsang, “Integrated Silicon Photonics Remote Radio Frontend (RRF) for Single-Sideband (SSB) Millimeter-Wave Radio-Over-Fiber (ROF) Systems,” IEEE Photonics J. 11(2), 1–8 (2019).
    [Crossref]
  17. G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
    [Crossref]
  18. J. Ma and W. Zhou, “Joint influence of the optical carrier-to-sideband ratio and guard band on direct-detection SSB-OOFDM system,” IEEE Photonics J. 7(5), 1 (2015).
    [Crossref]
  19. Q. Ding, M. Wang, H. Mu, Y. Tang, J. Zhang, B. Wu, and T. Li, “Full-duplex broadcast RoF-WDM-PON with self-coherent detection and photonic frequency up/down-conversion using SSB pilot-carrier,” Opt. Commun. 427(15), 54–60 (2018).
    [Crossref]
  20. S. Yaakob, S. M. Idrus, M. Z. Abdul Kadir, M. S. Salleh, R. Mohamad, C. B. M. Rashidi, Z. Zan, and M. A. Mahdi, “Link Budget Analysis for Dual Sideband Optical Carrier Suppression RoF System,” 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 1–4, DOI: 10.23919/PIERS.2018.8598031 (2018).
  21. C. T. Lin, J. Chen, P. T. Shih, W. J. Jiang, and S. Chi, “Ultra-High Data-Rate 60 GHz Radio-Over-Fiber Systems Employing Optical Frequency Multiplication and OFDM Formats,” J. Lightwave Technol. 28(16), 2296–2306 (2010).
    [Crossref]
  22. X. Li, J. Xiao, Y. Xu, and J. Yu, “QPSK Vector Signal Generation Based on Photonic Heterodyne Beating and Optical Carrier Suppression,” IEEE Photonics J. 7(5), 1–6 (2015).
    [Crossref]
  23. M. Chen, M. Peng, H. Zhou, Z. Zheng, X. Tang, and L. Maivan, “Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator,” Opt. Commun. 405, 259–264 (2017).
    [Crossref]
  24. R. Deng, J. Yu, J. He, M. Chen, Y. Wei, L. Zhao, Q. Zhang, and X. Xin, “Twin-SSB-OFDM transmission over heterodyne W-band fiber-wireless system with real-time implementable blind carrier recovery,” J. Lightwave Technol. 36(23), 5562–5572 (2018).
    [Crossref]
  25. J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM using DD-MZM-based twin-SSB with a MIMO-volterra equalizer,” IEEE Photonics Technol. Lett. 29(14), 1183–1186 (2017).
    [Crossref]
  26. Y. Wang, J. Yu, H. C. Chien, X. Li, and N Chi., “Transmission and direct detection of 300-Gbps DFT-S OFDM signals based on O-ISB modulation with joint image-cancellation and nonlinearity-mitigation,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5
  27. X. Chen and J. Yao, “Wavelength Reuse in an RoF Link Based on CS-DSB, Coherent Detection and DSP,” IEEE Photonics Technol. Lett. 29(12), 975–978 (2017).
    [Crossref]
  28. X. Chen, P. Dong, S. Chandrasekhar, K. Kim, B. Li, H. Chen, A. Adamiecki, A. Gnauck, and P. Winzer, “Characterization and Digital Pre-compensation of Electro-optic Crosstalk in Silicon Photonics I/Q Modulators,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5
  29. Z. Khan, E. Zenteno, P. Händel, and M. Isaksson, “Digital Predistortion for Joint Mitigation of I/Q Imbalance and MIMO Power Amplifier Distortion,” IEEE Trans. Microwave Theory Tech. 65(1), 322–333 (2017).
    [Crossref]
  30. M. Petit and A. Springer, “Analysis of a Properness-Based Blind Adaptive I/Q Filter Mismatch Compensation,” IEEE Trans. Wireless Commun. 15(1), 781–793 (2016).
    [Crossref]
  31. L. Zhang, T. Zuo, Q. Zhang, J. Zhou, E. Zhou, and G. N Liu, “150-Gb/s DMT over 80-km SMF transmission based on spectrally efficient SSBI cancellation using guard-band twin-SSB technique,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5
  32. J. Yu, “Photonics-Assisted Millimeter-Wave Wireless communication,” IEEE J. Quantum Electron. 53(6), 1–17 (2017).
    [Crossref]
  33. X. Li, Z. Dong, J. Yu, N. Chi, Y. Shao, and G. K. Chang, “Fiber wireless transmission system of 108-Gb/s data over 80-km fiber and 2×2 MIMO wireless links at 100GHz W-Band frequency,” Opt. Lett. 37(24), 5106–5108 (2012).
    [Crossref]
  34. X. Li, J. Yu, Z. Dong, J. Zhang, N. Chi, and J. Yu, “Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system,” Opt. Lett. 38(5), 742–744 (2013).
    [Crossref]
  35. X. Li, J. Yu, J. Zhang, Z. Dong, F. Li, and N. Chi, “A 400G optical wireless integration delivery system,” Opt. Express 21(16), 18812–18819 (2013).
    [Crossref]
  36. J. Yu, X. Li, and N. Chi, “Faster than fiber: over 100-Gb/s signal delivery in fiber wireless integration system,” Opt. Express 21(19), 22885–22904 (2013).
    [Crossref]

2019 (1)

Y. Tong, C. Chow, G. Chen, C. Peng, C. Yeh, and H. Tsang, “Integrated Silicon Photonics Remote Radio Frontend (RRF) for Single-Sideband (SSB) Millimeter-Wave Radio-Over-Fiber (ROF) Systems,” IEEE Photonics J. 11(2), 1–8 (2019).
[Crossref]

2018 (4)

C. Browning, H. Elwan, E. Martin, S. Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. Barry, “Gain-Switched Optical Frequency Combs for Future Mobile Radio-Over-Fiber Millimeter-Wave Systems,” J. Lightwave Technol. 36(19), 4602–4610 (2018).
[Crossref]

A. Deb and N. Kjærgaard, “Radio-over-fiber using an optical antenna based on Rydberg states of atoms,” Appl. Phys. Lett. 112(21), 211106 (2018).
[Crossref]

Q. Ding, M. Wang, H. Mu, Y. Tang, J. Zhang, B. Wu, and T. Li, “Full-duplex broadcast RoF-WDM-PON with self-coherent detection and photonic frequency up/down-conversion using SSB pilot-carrier,” Opt. Commun. 427(15), 54–60 (2018).
[Crossref]

R. Deng, J. Yu, J. He, M. Chen, Y. Wei, L. Zhao, Q. Zhang, and X. Xin, “Twin-SSB-OFDM transmission over heterodyne W-band fiber-wireless system with real-time implementable blind carrier recovery,” J. Lightwave Technol. 36(23), 5562–5572 (2018).
[Crossref]

2017 (7)

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM using DD-MZM-based twin-SSB with a MIMO-volterra equalizer,” IEEE Photonics Technol. Lett. 29(14), 1183–1186 (2017).
[Crossref]

X. Chen and J. Yao, “Wavelength Reuse in an RoF Link Based on CS-DSB, Coherent Detection and DSP,” IEEE Photonics Technol. Lett. 29(12), 975–978 (2017).
[Crossref]

Z. Khan, E. Zenteno, P. Händel, and M. Isaksson, “Digital Predistortion for Joint Mitigation of I/Q Imbalance and MIMO Power Amplifier Distortion,” IEEE Trans. Microwave Theory Tech. 65(1), 322–333 (2017).
[Crossref]

M. Chen, M. Peng, H. Zhou, Z. Zheng, X. Tang, and L. Maivan, “Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator,” Opt. Commun. 405, 259–264 (2017).
[Crossref]

J. Yu, “Photonics-Assisted Millimeter-Wave Wireless communication,” IEEE J. Quantum Electron. 53(6), 1–17 (2017).
[Crossref]

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal stopping model-based early SKIP mode decision for high-efficiency video coding,” IEEE Trans. Multimedia 19(7), 1431–1441 (2017).
[Crossref]

L. Chen, J. Xiao, and J. Yu, “Application of volterra nonlinear compensation in 75-GHz mm-wave fiber-wireless system,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

2016 (3)

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

X. Li, J. Xiao, and J. Yu, “Long-distance wireless mm-wave signal delivery at W-band,” J. Lightwave Technol. 34(2), 661–668 (2016).
[Crossref]

M. Petit and A. Springer, “Analysis of a Properness-Based Blind Adaptive I/Q Filter Mismatch Compensation,” IEEE Trans. Wireless Commun. 15(1), 781–793 (2016).
[Crossref]

2015 (6)

X. Li, J. Xiao, Y. Xu, and J. Yu, “QPSK Vector Signal Generation Based on Photonic Heterodyne Beating and Optical Carrier Suppression,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

J. Ma and W. Zhou, “Joint influence of the optical carrier-to-sideband ratio and guard band on direct-detection SSB-OOFDM system,” IEEE Photonics J. 7(5), 1 (2015).
[Crossref]

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFTspread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization scheme with guaranteed quality of service in cloud computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
[Crossref]

Y. Chen, R. Hu, Q. Yang, M. Luo, S. Yu, and W. Li, “Two orthogonal carriers assisted 101-gb/s dual-band ddo-ofdm transmission over 320-km ssmf,” Opt. Express 23(9), 12065 (2015).
[Crossref]

2014 (1)

I. S. Amiri, S. E. Alavi, S. M. Idrus, A. S. M. Supaat, J. Ali, and P. P. Yupapin, “W-Band OFDM transmission for radio-over-fiber link using solitonic millimeter wave generated by MRR,” IEEE J. Quantum Electron. 50(8), 622–628 (2014).
[Crossref]

2013 (3)

2012 (1)

2010 (2)

2007 (1)

2006 (2)

L. Chen, H. Wen, and S. Wen, “A Radio-Over-Fiber System With a Novel Scheme for Millimeter-Wave Generation and Wavelength Reuse for Up-Link Connection,” IEEE Photonics Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

Abdul Kadir, M. Z.

S. Yaakob, S. M. Idrus, M. Z. Abdul Kadir, M. S. Salleh, R. Mohamad, C. B. M. Rashidi, Z. Zan, and M. A. Mahdi, “Link Budget Analysis for Dual Sideband Optical Carrier Suppression RoF System,” 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 1–4, DOI: 10.23919/PIERS.2018.8598031 (2018).

Adamiecki, A.

X. Chen, P. Dong, S. Chandrasekhar, K. Kim, B. Li, H. Chen, A. Adamiecki, A. Gnauck, and P. Winzer, “Characterization and Digital Pre-compensation of Electro-optic Crosstalk in Silicon Photonics I/Q Modulators,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Ahmad, H.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

Alavi, S. E.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

I. S. Amiri, S. E. Alavi, S. M. Idrus, A. S. M. Supaat, J. Ali, and P. P. Yupapin, “W-Band OFDM transmission for radio-over-fiber link using solitonic millimeter wave generated by MRR,” IEEE J. Quantum Electron. 50(8), 622–628 (2014).
[Crossref]

Ali, J.

I. S. Amiri, S. E. Alavi, S. M. Idrus, A. S. M. Supaat, J. Ali, and P. P. Yupapin, “W-Band OFDM transmission for radio-over-fiber link using solitonic millimeter wave generated by MRR,” IEEE J. Quantum Electron. 50(8), 622–628 (2014).
[Crossref]

Amiri, I. S.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

I. S. Amiri, S. E. Alavi, S. M. Idrus, A. S. M. Supaat, J. Ali, and P. P. Yupapin, “W-Band OFDM transmission for radio-over-fiber link using solitonic millimeter wave generated by MRR,” IEEE J. Quantum Electron. 50(8), 622–628 (2014).
[Crossref]

Barry, L.

Browning, C.

Cabon, B.

Cao, Z.

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFTspread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

Chandrasekhar, S.

X. Chen, P. Dong, S. Chandrasekhar, K. Kim, B. Li, H. Chen, A. Adamiecki, A. Gnauck, and P. Winzer, “Characterization and Digital Pre-compensation of Electro-optic Crosstalk in Silicon Photonics I/Q Modulators,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Chang, G. K.

X. Li, Z. Dong, J. Yu, N. Chi, Y. Shao, and G. K. Chang, “Fiber wireless transmission system of 108-Gb/s data over 80-km fiber and 2×2 MIMO wireless links at 100GHz W-Band frequency,” Opt. Lett. 37(24), 5106–5108 (2012).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Chen, G.

Y. Tong, C. Chow, G. Chen, C. Peng, C. Yeh, and H. Tsang, “Integrated Silicon Photonics Remote Radio Frontend (RRF) for Single-Sideband (SSB) Millimeter-Wave Radio-Over-Fiber (ROF) Systems,” IEEE Photonics J. 11(2), 1–8 (2019).
[Crossref]

Chen, H.

X. Chen, P. Dong, S. Chandrasekhar, K. Kim, B. Li, H. Chen, A. Adamiecki, A. Gnauck, and P. Winzer, “Characterization and Digital Pre-compensation of Electro-optic Crosstalk in Silicon Photonics I/Q Modulators,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Chen, J.

Chen, L.

L. Chen, J. Xiao, and J. Yu, “Application of volterra nonlinear compensation in 75-GHz mm-wave fiber-wireless system,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

L. Chen, H. Wen, and S. Wen, “A Radio-Over-Fiber System With a Novel Scheme for Millimeter-Wave Generation and Wavelength Reuse for Up-Link Connection,” IEEE Photonics Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

Chen, M.

R. Deng, J. Yu, J. He, M. Chen, Y. Wei, L. Zhao, Q. Zhang, and X. Xin, “Twin-SSB-OFDM transmission over heterodyne W-band fiber-wireless system with real-time implementable blind carrier recovery,” J. Lightwave Technol. 36(23), 5562–5572 (2018).
[Crossref]

M. Chen, M. Peng, H. Zhou, Z. Zheng, X. Tang, and L. Maivan, “Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator,” Opt. Commun. 405, 259–264 (2017).
[Crossref]

Chen, X.

X. Chen and J. Yao, “Wavelength Reuse in an RoF Link Based on CS-DSB, Coherent Detection and DSP,” IEEE Photonics Technol. Lett. 29(12), 975–978 (2017).
[Crossref]

X. Chen, P. Dong, S. Chandrasekhar, K. Kim, B. Li, H. Chen, A. Adamiecki, A. Gnauck, and P. Winzer, “Characterization and Digital Pre-compensation of Electro-optic Crosstalk in Silicon Photonics I/Q Modulators,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Chen, Y.

Chi, N

Y. Wang, J. Yu, H. C. Chien, X. Li, and N Chi., “Transmission and direct detection of 300-Gbps DFT-S OFDM signals based on O-ISB modulation with joint image-cancellation and nonlinearity-mitigation,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Chi, N.

Chi, S.

Chien, H. C.

Y. Wang, J. Yu, H. C. Chien, X. Li, and N Chi., “Transmission and direct detection of 300-Gbps DFT-S OFDM signals based on O-ISB modulation with joint image-cancellation and nonlinearity-mitigation,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Chow, C.

Y. Tong, C. Chow, G. Chen, C. Peng, C. Yeh, and H. Tsang, “Integrated Silicon Photonics Remote Radio Frontend (RRF) for Single-Sideband (SSB) Millimeter-Wave Radio-Over-Fiber (ROF) Systems,” IEEE Photonics J. 11(2), 1–8 (2019).
[Crossref]

Deb, A.

A. Deb and N. Kjærgaard, “Radio-over-fiber using an optical antenna based on Rydberg states of atoms,” Appl. Phys. Lett. 112(21), 211106 (2018).
[Crossref]

Deng, R.

Ding, Q.

Q. Ding, M. Wang, H. Mu, Y. Tang, J. Zhang, B. Wu, and T. Li, “Full-duplex broadcast RoF-WDM-PON with self-coherent detection and photonic frequency up/down-conversion using SSB pilot-carrier,” Opt. Commun. 427(15), 54–60 (2018).
[Crossref]

Ding, X.

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal stopping model-based early SKIP mode decision for high-efficiency video coding,” IEEE Trans. Multimedia 19(7), 1431–1441 (2017).
[Crossref]

Dong, P.

X. Chen, P. Dong, S. Chandrasekhar, K. Kim, B. Li, H. Chen, A. Adamiecki, A. Gnauck, and P. Winzer, “Characterization and Digital Pre-compensation of Electro-optic Crosstalk in Silicon Photonics I/Q Modulators,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Dong, Z.

Duill, S.

Elwan, H.

Farhang, A.

George, J.

Gnauck, A.

X. Chen, P. Dong, S. Chandrasekhar, K. Kim, B. Li, H. Chen, A. Adamiecki, A. Gnauck, and P. Winzer, “Characterization and Digital Pre-compensation of Electro-optic Crosstalk in Silicon Photonics I/Q Modulators,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Gomes, N.

Händel, P.

Z. Khan, E. Zenteno, P. Händel, and M. Isaksson, “Digital Predistortion for Joint Mitigation of I/Q Imbalance and MIMO Power Amplifier Distortion,” IEEE Trans. Microwave Theory Tech. 65(1), 322–333 (2017).
[Crossref]

He, J.

Hu, R.

Idrus, S. M.

I. S. Amiri, S. E. Alavi, S. M. Idrus, A. S. M. Supaat, J. Ali, and P. P. Yupapin, “W-Band OFDM transmission for radio-over-fiber link using solitonic millimeter wave generated by MRR,” IEEE J. Quantum Electron. 50(8), 622–628 (2014).
[Crossref]

S. Yaakob, S. M. Idrus, M. Z. Abdul Kadir, M. S. Salleh, R. Mohamad, C. B. M. Rashidi, Z. Zan, and M. A. Mahdi, “Link Budget Analysis for Dual Sideband Optical Carrier Suppression RoF System,” 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 1–4, DOI: 10.23919/PIERS.2018.8598031 (2018).

Isaksson, M.

Z. Khan, E. Zenteno, P. Händel, and M. Isaksson, “Digital Predistortion for Joint Mitigation of I/Q Imbalance and MIMO Power Amplifier Distortion,” IEEE Trans. Microwave Theory Tech. 65(1), 322–333 (2017).
[Crossref]

Jia, Z.

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Jiang, W. J.

Khalily, M.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

Khan, Z.

Z. Khan, E. Zenteno, P. Händel, and M. Isaksson, “Digital Predistortion for Joint Mitigation of I/Q Imbalance and MIMO Power Amplifier Distortion,” IEEE Trans. Microwave Theory Tech. 65(1), 322–333 (2017).
[Crossref]

Kim, K.

X. Chen, P. Dong, S. Chandrasekhar, K. Kim, B. Li, H. Chen, A. Adamiecki, A. Gnauck, and P. Winzer, “Characterization and Digital Pre-compensation of Electro-optic Crosstalk in Silicon Photonics I/Q Modulators,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Kjærgaard, N.

A. Deb and N. Kjærgaard, “Radio-over-fiber using an optical antenna based on Rydberg states of atoms,” Appl. Phys. Lett. 112(21), 211106 (2018).
[Crossref]

Kobyakov, A.

Li, B.

X. Chen, P. Dong, S. Chandrasekhar, K. Kim, B. Li, H. Chen, A. Adamiecki, A. Gnauck, and P. Winzer, “Characterization and Digital Pre-compensation of Electro-optic Crosstalk in Silicon Photonics I/Q Modulators,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Li, F.

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFTspread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

X. Li, J. Yu, J. Zhang, Z. Dong, F. Li, and N. Chi, “A 400G optical wireless integration delivery system,” Opt. Express 21(16), 18812–18819 (2013).
[Crossref]

Li, K.

J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization scheme with guaranteed quality of service in cloud computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
[Crossref]

J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization scheme with guaranteed quality of service in cloud computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
[Crossref]

Li, T.

Q. Ding, M. Wang, H. Mu, Y. Tang, J. Zhang, B. Wu, and T. Li, “Full-duplex broadcast RoF-WDM-PON with self-coherent detection and photonic frequency up/down-conversion using SSB pilot-carrier,” Opt. Commun. 427(15), 54–60 (2018).
[Crossref]

Li, W.

Li, X.

X. Li, J. Xiao, and J. Yu, “Long-distance wireless mm-wave signal delivery at W-band,” J. Lightwave Technol. 34(2), 661–668 (2016).
[Crossref]

X. Li, J. Xiao, Y. Xu, and J. Yu, “QPSK Vector Signal Generation Based on Photonic Heterodyne Beating and Optical Carrier Suppression,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFTspread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

X. Li, J. Yu, J. Zhang, Z. Dong, F. Li, and N. Chi, “A 400G optical wireless integration delivery system,” Opt. Express 21(16), 18812–18819 (2013).
[Crossref]

J. Yu, X. Li, and N. Chi, “Faster than fiber: over 100-Gb/s signal delivery in fiber wireless integration system,” Opt. Express 21(19), 22885–22904 (2013).
[Crossref]

X. Li, J. Yu, Z. Dong, J. Zhang, N. Chi, and J. Yu, “Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system,” Opt. Lett. 38(5), 742–744 (2013).
[Crossref]

X. Li, Z. Dong, J. Yu, N. Chi, Y. Shao, and G. K. Chang, “Fiber wireless transmission system of 108-Gb/s data over 80-km fiber and 2×2 MIMO wireless links at 100GHz W-Band frequency,” Opt. Lett. 37(24), 5106–5108 (2012).
[Crossref]

Y. Wang, J. Yu, H. C. Chien, X. Li, and N Chi., “Transmission and direct detection of 300-Gbps DFT-S OFDM signals based on O-ISB modulation with joint image-cancellation and nonlinearity-mitigation,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Li, Y.

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal stopping model-based early SKIP mode decision for high-efficiency video coding,” IEEE Trans. Multimedia 19(7), 1431–1441 (2017).
[Crossref]

Lin, C. T.

Liu, G. N

L. Zhang, T. Zuo, Q. Zhang, J. Zhou, E. Zhou, and G. N Liu, “150-Gb/s DMT over 80-km SMF transmission based on spectrally efficient SSBI cancellation using guard-band twin-SSB technique,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Luo, M.

Ma, J.

J. Ma and W. Zhou, “Joint influence of the optical carrier-to-sideband ratio and guard band on direct-detection SSB-OOFDM system,” IEEE Photonics J. 7(5), 1 (2015).
[Crossref]

Mahdi, M. A.

S. Yaakob, S. M. Idrus, M. Z. Abdul Kadir, M. S. Salleh, R. Mohamad, C. B. M. Rashidi, Z. Zan, and M. A. Mahdi, “Link Budget Analysis for Dual Sideband Optical Carrier Suppression RoF System,” 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 1–4, DOI: 10.23919/PIERS.2018.8598031 (2018).

Maivan, L.

M. Chen, M. Peng, H. Zhou, Z. Zheng, X. Tang, and L. Maivan, “Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator,” Opt. Commun. 405, 259–264 (2017).
[Crossref]

Martin, E.

Mei, J.

J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization scheme with guaranteed quality of service in cloud computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
[Crossref]

Mohamad, R.

S. Yaakob, S. M. Idrus, M. Z. Abdul Kadir, M. S. Salleh, R. Mohamad, C. B. M. Rashidi, Z. Zan, and M. A. Mahdi, “Link Budget Analysis for Dual Sideband Optical Carrier Suppression RoF System,” 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 1–4, DOI: 10.23919/PIERS.2018.8598031 (2018).

Mu, H.

Q. Ding, M. Wang, H. Mu, Y. Tang, J. Zhang, B. Wu, and T. Li, “Full-duplex broadcast RoF-WDM-PON with self-coherent detection and photonic frequency up/down-conversion using SSB pilot-carrier,” Opt. Commun. 427(15), 54–60 (2018).
[Crossref]

Nkansah, A.

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

Ouyang, A.

J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization scheme with guaranteed quality of service in cloud computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
[Crossref]

Peng, C.

Y. Tong, C. Chow, G. Chen, C. Peng, C. Yeh, and H. Tsang, “Integrated Silicon Photonics Remote Radio Frontend (RRF) for Single-Sideband (SSB) Millimeter-Wave Radio-Over-Fiber (ROF) Systems,” IEEE Photonics J. 11(2), 1–8 (2019).
[Crossref]

Peng, M.

M. Chen, M. Peng, H. Zhou, Z. Zheng, X. Tang, and L. Maivan, “Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator,” Opt. Commun. 405, 259–264 (2017).
[Crossref]

Petit, M.

M. Petit and A. Springer, “Analysis of a Properness-Based Blind Adaptive I/Q Filter Mismatch Compensation,” IEEE Trans. Wireless Commun. 15(1), 781–793 (2016).
[Crossref]

Poette, J.

Rashidi, C. B. M.

S. Yaakob, S. M. Idrus, M. Z. Abdul Kadir, M. S. Salleh, R. Mohamad, C. B. M. Rashidi, Z. Zan, and M. A. Mahdi, “Link Budget Analysis for Dual Sideband Optical Carrier Suppression RoF System,” 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 1–4, DOI: 10.23919/PIERS.2018.8598031 (2018).

Salleh, M. S.

S. Yaakob, S. M. Idrus, M. Z. Abdul Kadir, M. S. Salleh, R. Mohamad, C. B. M. Rashidi, Z. Zan, and M. A. Mahdi, “Link Budget Analysis for Dual Sideband Optical Carrier Suppression RoF System,” 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 1–4, DOI: 10.23919/PIERS.2018.8598031 (2018).

Sauer, M.

Shao, Y.

Sheridan, P.

Shi, J.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM using DD-MZM-based twin-SSB with a MIMO-volterra equalizer,” IEEE Photonics Technol. Lett. 29(14), 1183–1186 (2017).
[Crossref]

Shih, P. T.

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

Soltanian, M. R. K.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

Springer, A.

M. Petit and A. Springer, “Analysis of a Properness-Based Blind Adaptive I/Q Filter Mismatch Compensation,” IEEE Trans. Wireless Commun. 15(1), 781–793 (2016).
[Crossref]

Su, Y.

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Sun, X.

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal stopping model-based early SKIP mode decision for high-efficiency video coding,” IEEE Trans. Multimedia 19(7), 1431–1441 (2017).
[Crossref]

Supa’at, A. S. M.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

Supaat, A. S. M.

I. S. Amiri, S. E. Alavi, S. M. Idrus, A. S. M. Supaat, J. Ali, and P. P. Yupapin, “W-Band OFDM transmission for radio-over-fiber link using solitonic millimeter wave generated by MRR,” IEEE J. Quantum Electron. 50(8), 622–628 (2014).
[Crossref]

Tang, X.

M. Chen, M. Peng, H. Zhou, Z. Zheng, X. Tang, and L. Maivan, “Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator,” Opt. Commun. 405, 259–264 (2017).
[Crossref]

Tang, Y.

Q. Ding, M. Wang, H. Mu, Y. Tang, J. Zhang, B. Wu, and T. Li, “Full-duplex broadcast RoF-WDM-PON with self-coherent detection and photonic frequency up/down-conversion using SSB pilot-carrier,” Opt. Commun. 427(15), 54–60 (2018).
[Crossref]

Tong, Y.

Y. Tong, C. Chow, G. Chen, C. Peng, C. Yeh, and H. Tsang, “Integrated Silicon Photonics Remote Radio Frontend (RRF) for Single-Sideband (SSB) Millimeter-Wave Radio-Over-Fiber (ROF) Systems,” IEEE Photonics J. 11(2), 1–8 (2019).
[Crossref]

Tsang, H.

Y. Tong, C. Chow, G. Chen, C. Peng, C. Yeh, and H. Tsang, “Integrated Silicon Photonics Remote Radio Frontend (RRF) for Single-Sideband (SSB) Millimeter-Wave Radio-Over-Fiber (ROF) Systems,” IEEE Photonics J. 11(2), 1–8 (2019).
[Crossref]

Wake, D.

Wang, M.

Q. Ding, M. Wang, H. Mu, Y. Tang, J. Zhang, B. Wu, and T. Li, “Full-duplex broadcast RoF-WDM-PON with self-coherent detection and photonic frequency up/down-conversion using SSB pilot-carrier,” Opt. Commun. 427(15), 54–60 (2018).
[Crossref]

Wang, T.

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Wang, Y.

Y. Wang, J. Yu, H. C. Chien, X. Li, and N Chi., “Transmission and direct detection of 300-Gbps DFT-S OFDM signals based on O-ISB modulation with joint image-cancellation and nonlinearity-mitigation,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Wei, Y.

Wen, H.

L. Chen, H. Wen, and S. Wen, “A Radio-Over-Fiber System With a Novel Scheme for Millimeter-Wave Generation and Wavelength Reuse for Up-Link Connection,” IEEE Photonics Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

Wen, S.

L. Chen, H. Wen, and S. Wen, “A Radio-Over-Fiber System With a Novel Scheme for Millimeter-Wave Generation and Wavelength Reuse for Up-Link Connection,” IEEE Photonics Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

Winzer, P.

X. Chen, P. Dong, S. Chandrasekhar, K. Kim, B. Li, H. Chen, A. Adamiecki, A. Gnauck, and P. Winzer, “Characterization and Digital Pre-compensation of Electro-optic Crosstalk in Silicon Photonics I/Q Modulators,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Wu, B.

Q. Ding, M. Wang, H. Mu, Y. Tang, J. Zhang, B. Wu, and T. Li, “Full-duplex broadcast RoF-WDM-PON with self-coherent detection and photonic frequency up/down-conversion using SSB pilot-carrier,” Opt. Commun. 427(15), 54–60 (2018).
[Crossref]

Xiao, J.

L. Chen, J. Xiao, and J. Yu, “Application of volterra nonlinear compensation in 75-GHz mm-wave fiber-wireless system,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

X. Li, J. Xiao, and J. Yu, “Long-distance wireless mm-wave signal delivery at W-band,” J. Lightwave Technol. 34(2), 661–668 (2016).
[Crossref]

X. Li, J. Xiao, Y. Xu, and J. Yu, “QPSK Vector Signal Generation Based on Photonic Heterodyne Beating and Optical Carrier Suppression,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

Xin, X.

Xu, Y.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM using DD-MZM-based twin-SSB with a MIMO-volterra equalizer,” IEEE Photonics Technol. Lett. 29(14), 1183–1186 (2017).
[Crossref]

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

X. Li, J. Xiao, Y. Xu, and J. Yu, “QPSK Vector Signal Generation Based on Photonic Heterodyne Beating and Optical Carrier Suppression,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

Yaakob, S.

S. Yaakob, S. M. Idrus, M. Z. Abdul Kadir, M. S. Salleh, R. Mohamad, C. B. M. Rashidi, Z. Zan, and M. A. Mahdi, “Link Budget Analysis for Dual Sideband Optical Carrier Suppression RoF System,” 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 1–4, DOI: 10.23919/PIERS.2018.8598031 (2018).

Yang, G.

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal stopping model-based early SKIP mode decision for high-efficiency video coding,” IEEE Trans. Multimedia 19(7), 1431–1441 (2017).
[Crossref]

Yang, Q.

Yao, J.

X. Chen and J. Yao, “Wavelength Reuse in an RoF Link Based on CS-DSB, Coherent Detection and DSP,” IEEE Photonics Technol. Lett. 29(12), 975–978 (2017).
[Crossref]

Yeh, C.

Y. Tong, C. Chow, G. Chen, C. Peng, C. Yeh, and H. Tsang, “Integrated Silicon Photonics Remote Radio Frontend (RRF) for Single-Sideband (SSB) Millimeter-Wave Radio-Over-Fiber (ROF) Systems,” IEEE Photonics J. 11(2), 1–8 (2019).
[Crossref]

Yi, L.

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Yu, J.

R. Deng, J. Yu, J. He, M. Chen, Y. Wei, L. Zhao, Q. Zhang, and X. Xin, “Twin-SSB-OFDM transmission over heterodyne W-band fiber-wireless system with real-time implementable blind carrier recovery,” J. Lightwave Technol. 36(23), 5562–5572 (2018).
[Crossref]

J. Yu, “Photonics-Assisted Millimeter-Wave Wireless communication,” IEEE J. Quantum Electron. 53(6), 1–17 (2017).
[Crossref]

L. Chen, J. Xiao, and J. Yu, “Application of volterra nonlinear compensation in 75-GHz mm-wave fiber-wireless system,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM using DD-MZM-based twin-SSB with a MIMO-volterra equalizer,” IEEE Photonics Technol. Lett. 29(14), 1183–1186 (2017).
[Crossref]

X. Li, J. Xiao, and J. Yu, “Long-distance wireless mm-wave signal delivery at W-band,” J. Lightwave Technol. 34(2), 661–668 (2016).
[Crossref]

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

X. Li, J. Xiao, Y. Xu, and J. Yu, “QPSK Vector Signal Generation Based on Photonic Heterodyne Beating and Optical Carrier Suppression,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFTspread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

X. Li, J. Yu, Z. Dong, J. Zhang, N. Chi, and J. Yu, “Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system,” Opt. Lett. 38(5), 742–744 (2013).
[Crossref]

X. Li, J. Yu, Z. Dong, J. Zhang, N. Chi, and J. Yu, “Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system,” Opt. Lett. 38(5), 742–744 (2013).
[Crossref]

X. Li, J. Yu, J. Zhang, Z. Dong, F. Li, and N. Chi, “A 400G optical wireless integration delivery system,” Opt. Express 21(16), 18812–18819 (2013).
[Crossref]

J. Yu, X. Li, and N. Chi, “Faster than fiber: over 100-Gb/s signal delivery in fiber wireless integration system,” Opt. Express 21(19), 22885–22904 (2013).
[Crossref]

X. Li, Z. Dong, J. Yu, N. Chi, Y. Shao, and G. K. Chang, “Fiber wireless transmission system of 108-Gb/s data over 80-km fiber and 2×2 MIMO wireless links at 100GHz W-Band frequency,” Opt. Lett. 37(24), 5106–5108 (2012).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Y. Wang, J. Yu, H. C. Chien, X. Li, and N Chi., “Transmission and direct detection of 300-Gbps DFT-S OFDM signals based on O-ISB modulation with joint image-cancellation and nonlinearity-mitigation,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Yu, S.

Yupapin, P. P.

I. S. Amiri, S. E. Alavi, S. M. Idrus, A. S. M. Supaat, J. Ali, and P. P. Yupapin, “W-Band OFDM transmission for radio-over-fiber link using solitonic millimeter wave generated by MRR,” IEEE J. Quantum Electron. 50(8), 622–628 (2014).
[Crossref]

Zan, Z.

S. Yaakob, S. M. Idrus, M. Z. Abdul Kadir, M. S. Salleh, R. Mohamad, C. B. M. Rashidi, Z. Zan, and M. A. Mahdi, “Link Budget Analysis for Dual Sideband Optical Carrier Suppression RoF System,” 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 1–4, DOI: 10.23919/PIERS.2018.8598031 (2018).

Zenteno, E.

Z. Khan, E. Zenteno, P. Händel, and M. Isaksson, “Digital Predistortion for Joint Mitigation of I/Q Imbalance and MIMO Power Amplifier Distortion,” IEEE Trans. Microwave Theory Tech. 65(1), 322–333 (2017).
[Crossref]

Zhang, J.

Q. Ding, M. Wang, H. Mu, Y. Tang, J. Zhang, B. Wu, and T. Li, “Full-duplex broadcast RoF-WDM-PON with self-coherent detection and photonic frequency up/down-conversion using SSB pilot-carrier,” Opt. Commun. 427(15), 54–60 (2018).
[Crossref]

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM using DD-MZM-based twin-SSB with a MIMO-volterra equalizer,” IEEE Photonics Technol. Lett. 29(14), 1183–1186 (2017).
[Crossref]

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFTspread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

X. Li, J. Yu, Z. Dong, J. Zhang, N. Chi, and J. Yu, “Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system,” Opt. Lett. 38(5), 742–744 (2013).
[Crossref]

X. Li, J. Yu, J. Zhang, Z. Dong, F. Li, and N. Chi, “A 400G optical wireless integration delivery system,” Opt. Express 21(16), 18812–18819 (2013).
[Crossref]

Zhang, L.

L. Zhang, T. Zuo, Q. Zhang, J. Zhou, E. Zhou, and G. N Liu, “150-Gb/s DMT over 80-km SMF transmission based on spectrally efficient SSBI cancellation using guard-band twin-SSB technique,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Zhang, Q.

R. Deng, J. Yu, J. He, M. Chen, Y. Wei, L. Zhao, Q. Zhang, and X. Xin, “Twin-SSB-OFDM transmission over heterodyne W-band fiber-wireless system with real-time implementable blind carrier recovery,” J. Lightwave Technol. 36(23), 5562–5572 (2018).
[Crossref]

L. Zhang, T. Zuo, Q. Zhang, J. Zhou, E. Zhou, and G. N Liu, “150-Gb/s DMT over 80-km SMF transmission based on spectrally efficient SSBI cancellation using guard-band twin-SSB technique,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Zhang, Z.

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

Zhao, L.

Zheng, Z.

M. Chen, M. Peng, H. Zhou, Z. Zheng, X. Tang, and L. Maivan, “Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator,” Opt. Commun. 405, 259–264 (2017).
[Crossref]

Zhou, E.

L. Zhang, T. Zuo, Q. Zhang, J. Zhou, E. Zhou, and G. N Liu, “150-Gb/s DMT over 80-km SMF transmission based on spectrally efficient SSBI cancellation using guard-band twin-SSB technique,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Zhou, H.

M. Chen, M. Peng, H. Zhou, Z. Zheng, X. Tang, and L. Maivan, “Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator,” Opt. Commun. 405, 259–264 (2017).
[Crossref]

Zhou, J.

L. Zhang, T. Zuo, Q. Zhang, J. Zhou, E. Zhou, and G. N Liu, “150-Gb/s DMT over 80-km SMF transmission based on spectrally efficient SSBI cancellation using guard-band twin-SSB technique,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Zhou, W.

J. Ma and W. Zhou, “Joint influence of the optical carrier-to-sideband ratio and guard band on direct-detection SSB-OOFDM system,” IEEE Photonics J. 7(5), 1 (2015).
[Crossref]

Zhou, Y.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM using DD-MZM-based twin-SSB with a MIMO-volterra equalizer,” IEEE Photonics Technol. Lett. 29(14), 1183–1186 (2017).
[Crossref]

Zhu, Y.

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal stopping model-based early SKIP mode decision for high-efficiency video coding,” IEEE Trans. Multimedia 19(7), 1431–1441 (2017).
[Crossref]

Zuo, T.

L. Zhang, T. Zuo, Q. Zhang, J. Zhou, E. Zhou, and G. N Liu, “150-Gb/s DMT over 80-km SMF transmission based on spectrally efficient SSBI cancellation using guard-band twin-SSB technique,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Appl. Phys. Lett. (1)

A. Deb and N. Kjærgaard, “Radio-over-fiber using an optical antenna based on Rydberg states of atoms,” Appl. Phys. Lett. 112(21), 211106 (2018).
[Crossref]

Electron. Lett. (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

IEEE J. Quantum Electron. (2)

I. S. Amiri, S. E. Alavi, S. M. Idrus, A. S. M. Supaat, J. Ali, and P. P. Yupapin, “W-Band OFDM transmission for radio-over-fiber link using solitonic millimeter wave generated by MRR,” IEEE J. Quantum Electron. 50(8), 622–628 (2014).
[Crossref]

J. Yu, “Photonics-Assisted Millimeter-Wave Wireless communication,” IEEE J. Quantum Electron. 53(6), 1–17 (2017).
[Crossref]

IEEE Photonics J. (4)

X. Li, J. Xiao, Y. Xu, and J. Yu, “QPSK Vector Signal Generation Based on Photonic Heterodyne Beating and Optical Carrier Suppression,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

Y. Tong, C. Chow, G. Chen, C. Peng, C. Yeh, and H. Tsang, “Integrated Silicon Photonics Remote Radio Frontend (RRF) for Single-Sideband (SSB) Millimeter-Wave Radio-Over-Fiber (ROF) Systems,” IEEE Photonics J. 11(2), 1–8 (2019).
[Crossref]

L. Chen, J. Xiao, and J. Yu, “Application of volterra nonlinear compensation in 75-GHz mm-wave fiber-wireless system,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

J. Ma and W. Zhou, “Joint influence of the optical carrier-to-sideband ratio and guard band on direct-detection SSB-OOFDM system,” IEEE Photonics J. 7(5), 1 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (6)

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM using DD-MZM-based twin-SSB with a MIMO-volterra equalizer,” IEEE Photonics Technol. Lett. 29(14), 1183–1186 (2017).
[Crossref]

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFTspread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

L. Chen, H. Wen, and S. Wen, “A Radio-Over-Fiber System With a Novel Scheme for Millimeter-Wave Generation and Wavelength Reuse for Up-Link Connection,” IEEE Photonics Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

X. Chen and J. Yao, “Wavelength Reuse in an RoF Link Based on CS-DSB, Coherent Detection and DSP,” IEEE Photonics Technol. Lett. 29(12), 975–978 (2017).
[Crossref]

IEEE Trans. Comput. (1)

J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization scheme with guaranteed quality of service in cloud computing,” IEEE Trans. Comput. 64(11), 3064–3078 (2015).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

Z. Khan, E. Zenteno, P. Händel, and M. Isaksson, “Digital Predistortion for Joint Mitigation of I/Q Imbalance and MIMO Power Amplifier Distortion,” IEEE Trans. Microwave Theory Tech. 65(1), 322–333 (2017).
[Crossref]

IEEE Trans. Multimedia (1)

Y. Li, G. Yang, Y. Zhu, X. Ding, and X. Sun, “Unimodal stopping model-based early SKIP mode decision for high-efficiency video coding,” IEEE Trans. Multimedia 19(7), 1431–1441 (2017).
[Crossref]

IEEE Trans. Wireless Commun. (1)

M. Petit and A. Springer, “Analysis of a Properness-Based Blind Adaptive I/Q Filter Mismatch Compensation,” IEEE Trans. Wireless Commun. 15(1), 781–793 (2016).
[Crossref]

J. Lightwave Technol. (6)

Opt. Commun. (2)

M. Chen, M. Peng, H. Zhou, Z. Zheng, X. Tang, and L. Maivan, “Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator,” Opt. Commun. 405, 259–264 (2017).
[Crossref]

Q. Ding, M. Wang, H. Mu, Y. Tang, J. Zhang, B. Wu, and T. Li, “Full-duplex broadcast RoF-WDM-PON with self-coherent detection and photonic frequency up/down-conversion using SSB pilot-carrier,” Opt. Commun. 427(15), 54–60 (2018).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Sci. Rep. (1)

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

Other (4)

S. Yaakob, S. M. Idrus, M. Z. Abdul Kadir, M. S. Salleh, R. Mohamad, C. B. M. Rashidi, Z. Zan, and M. A. Mahdi, “Link Budget Analysis for Dual Sideband Optical Carrier Suppression RoF System,” 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 1–4, DOI: 10.23919/PIERS.2018.8598031 (2018).

Y. Wang, J. Yu, H. C. Chien, X. Li, and N Chi., “Transmission and direct detection of 300-Gbps DFT-S OFDM signals based on O-ISB modulation with joint image-cancellation and nonlinearity-mitigation,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

L. Zhang, T. Zuo, Q. Zhang, J. Zhou, E. Zhou, and G. N Liu, “150-Gb/s DMT over 80-km SMF transmission based on spectrally efficient SSBI cancellation using guard-band twin-SSB technique,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

X. Chen, P. Dong, S. Chandrasekhar, K. Kim, B. Li, H. Chen, A. Adamiecki, A. Gnauck, and P. Winzer, “Characterization and Digital Pre-compensation of Electro-optic Crosstalk in Silicon Photonics I/Q Modulators,” ECOC 42nd Dusseldorf, Germany, 2016, 978-3-8007-4274-5

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. The scheme of the single-sideband generation and delivery with unmatched I & Q. (ECL: External Cavity Laser, MOD: Modulator, Osc: Oscilloscope)
Fig. 2.
Fig. 2. The scheme of dual single-sideband generation and delivery with unmatched I & Q.
Fig. 3.
Fig. 3. The scheme of method 1 with matched delay.
Fig. 4.
Fig. 4. The scheme of method 2 with using different frequencies of two signals.
Fig. 5.
Fig. 5. The scheme of method 3 with using MIMO.
Fig. 6.
Fig. 6. Experimental setup for the generation and delivery of 20GHz QPSK signals and 20GHz 16QAM signals. (a) Transmission side and (b) received side.
Fig. 7.
Fig. 7. Optical spectrums of the received 4Gbaud 16QAM signal at 15GHz and QPSK signal at 25GHz dual-ISB optical mm-wave signal (a) without optimized time shifting and (b) with optimized time shifting.
Fig. 8.
Fig. 8. Optical spectra: (a) before interleaver; (b) output 16QAM signal at 36GHz from optical interleaver and (c) output QPSK signal at 36GHz from optical interleaver.
Fig. 9.
Fig. 9. Measured BER versus input power into PD with and without matched delay.
Fig. 10.
Fig. 10. Measured BER versus input power into PD for different frequencies QPSK signals with 30GHz 16QAM signal.
Fig. 11.
Fig. 11. Optical spectra of 4Gbaud 16QAM signal at 30GHz and QPSK signal at 38GHz.
Fig. 12.
Fig. 12. Optical spectra after optical interleaver: (a) output 4Gbaud 16QAM signal at 30GHz and (b) output 4Gbaud QPSK signal at 38GHz.
Fig. 13.
Fig. 13. Measured BER versus input power into PD for 38GHz QPSK signal and 30GHz 16QAM signal. The inserts give the constellations for 4Gbaud 16QAM signal at 30GHz with input power of −4dBm and 4Gbaud QPSK signal at 38GHz with input power of −6dBm.
Fig. 14.
Fig. 14. Measured BER versus input power into PD using and without using MIMO. Inserts give the constellations for 16QAM signal with and without MIMO equalization with input power of −2 dBm.
Fig. 15.
Fig. 15. Measured BER versus input power into PD using and without using MIMO for (a) 36GHz QPSK and 16QAM signals in matched delay system and (b) 32GHz QPSK signal in different frequency system.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

S E = A(1 - k)cos ( ω t ) + iAsin ( ω t ) = A cos ( ω t ) A k cos ( ω t ) + i A sin ( ω t ) = A e i ω t k ( A e i ω t + A e i ω t ) / 2 = ( 1 k / 2 ) A e i ω t ( k / 2 ) ( A e i ω t )
R 1 = ( k / 2 ) / ( 1 k / 2 ) = k / ( 2 k )
0.05 / ( 2 0.05 ) = 0.0256 = 15.9 d B
S E = A cos ( ω ( t + T ) ) + i A sin ( ω t ) = A cos ( ω t ) cos ( ω T ) A sin ( ω t ) sin ( ω T ) + i A sin ( ω t )
S E = A cos ( ω T ) + i A sin ( ω t ) A ω T sin ( ω t ) = A e i ω t ω T ( A e i ω t A e i ω t ) / ( 2 i ) = ( 1 + ω T i / 2 ) A e i ω t ( ω T i / 2 ) A e i ω t = ( 1 + ω 2 T 2 / 4 ) 1 / 2 e j arctan ( ω T / 2 ) A e i ω t + ( ω T / 2 ) e j ( 3 π / 2 ) A e i ω t
R 2 = ( ω T / 2 ) / ( 1 + ω 2 T 2 / 4 ) 1 / 2 = ω T / ( 1 + ω 2 T 2 ) 1 / 2
0.05 / ( 1 + 0.05 2 ) 1 / 2 = 0.0499 = 13.0 d B
S R S B = X e i ω t
S L S B = Y e i ω t
S E = ( 1 p / 2 ) ( X e i ω t + Y e i ω t ) ( p / 2 ) ( X e i ω t + Y e i ω t )
S E = ( 1 p / 2 ) ( X e i ω 1 t + Y e i ω 2 t ) ( p / 2 ) ( X e i ω 1 t + Y e i ω 2 t )
h x x ( n + 1 ) = h x x ( n ) + μ ( 1 | E x ( n ) | 2 ) E x ( n ) E x ( n )
h x y ( n + 1 ) = h x y ( n ) + μ ( 1 | E x ( n ) | 2 ) E x ( n ) E y ( n )
h y x ( n + 1 ) = h y x ( n ) + μ ( 1 | E y ( n ) | 2 ) E y ( n ) E x ( n )
h yy ( n + 1 ) = h y y ( n ) + μ ( 1 | E y ( n ) | 2 ) E y ( n ) E y ( n )

Metrics