Abstract

Infrared micro-optics arrays (MOAs) featuring large numbers of micro-freeform lenslet are required increasingly in advanced infrared optical systems. Ultra-precision diamond cutting technologies have been widely used to fabricate MOAs with high form accuracy. However, the existing technologies can easily cause the non-uniformly fractured surface of infrared MOAs, due to the inherent low fracture toughness and high anisotropy of infrared materials as well as the time-varying chip thickness induced by ever-changing height and slope of the desired MOAs. In this study, a novel self-tuned diamond milling (STDM) system is proposed to achieve the ductile cutting of infrared MOAs with enhanced the surface uniformity and machining efficiency, and the corresponding toolpath planning algorithm is developed. In STDM system, a dual-axial fast servo motion platform is integrated into a raster milling system to self-adaptively match the maximum chip thickness for each tool rotational cycle with the critical depth of cut of the infrared material according to the local surface topography, thereby obtaining crack-free lenslet with high surface uniformity. Practically, micro-aspheric MOAs free from fractures are successfully machined on single-crystal silicon, a typical infrared material, to validate the proposed cutting concept. Compared with the conventional diamond milling, the proposed STDM is demonstrated to be able to avoid the non-uniform fractures without needing to reduce feed rate, and a smaller surface roughness of 4 nm and nearly double machining efficiency are achieved.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flexible fabrication of micro-optics arrays with high-aspect-ratio by an offset-tool-servo diamond machining system

Zhanwen Sun, Suet To, Guoqing Zhang, and Shaojian Zhang
Opt. Express 27(7) 9631-9646 (2019)

Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining

Zhiwei Zhu, Suet To, and Shaojian Zhang
Opt. Express 23(16) 20593-20604 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Hong and R. Liang, “IR-laser assisted additive freeform optics manufacturing,” Sci. Rep. 7(1), 7145 (2017).
    [Crossref]
  2. C. Deng, H. Kim, and H. Ki, “Fabrication of a compound infrared microlens array with ultrashort focal length using femtosecond laser-assisted wet etching and dual-beam pulsed laser deposition,” Opt. Express 27(20), 28679–28691 (2019).
    [Crossref]
  3. W.-L. Zhu, F. Duan, X. Zhang, Z. Zhu, and B.-F. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tool. Manu. 124, 134–148 (2018).
    [Crossref]
  4. G. Yan, Y. Zhang, K. You, Z. Li, Y. Yuan, and F. Fang, “Off-spindle-axis spiral grinding of aspheric microlens array mold inserts,” Opt. Express 27(8), 10873–10889 (2019).
    [Crossref]
  5. Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
    [Crossref]
  6. A. Krywonos, J. E. Harvey, and N. Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” J. Opt. Soc. Am. A 28(6), 1121–1138 (2011).
    [Crossref]
  7. H. Zuo, D.-Y. Choi, X. Gai, B. Luther-Davies, and B. Zhang, “CMOS compatible fabrication of micro, nano convex silicon lens arrays by conformal chemical vapor deposition,” Opt. Express 25(4), 3069–3076 (2017).
    [Crossref]
  8. Y. Zhang, J. Luo, Z. Xiong, H. Liu, L. Wang, Y. Gu, Z. Lu, J. Li, and J. Huang, “User-defined microstructures array fabricated by DMD based multistep lithography with dose modulation,” Opt. Express 27(22), 31956–31966 (2019).
    [Crossref]
  9. Z. Li, F. Fang, J. Chen, and X. Zhang, “Machining approach of freeform optics on infrared materials via ultra-precision turning,” Opt. Express 25(3), 2051–2062 (2017).
    [Crossref]
  10. D. Li, B. Wang, Z. Qiao, and X. Jiang, “Ultraprecision machining of microlens arrays with integrated on-machine surface metrology,” Opt. Express 27(1), 212–224 (2019).
    [Crossref]
  11. M. Mukaida and J. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tool. Manu. 115, 2–14 (2017).
    [Crossref]
  12. M. Wang, W. Wang, and Z. Lu, “Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study,” Int. J. Adv. Manuf. Technol. 60(5-8), 473–485 (2012).
    [Crossref]
  13. Z. Sun, S. To, G. Zhang, and S. Zhang, “Flexible fabrication of micro-optics arrays with high-aspect-ratio by an offset-tool-servo diamond machining system,” Opt. Express 27(7), 9631–9646 (2019).
    [Crossref]
  14. Z. Zhu and S. To, “Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics,” Opt. Express 23(16), 20234–20248 (2015).
    [Crossref]
  15. Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593 (2015).
    [Crossref]
  16. Z. Sun, S. To, and K. Yu, “One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling,” Opt. Express 26(21), 28161–28177 (2018).
    [Crossref]
  17. B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
    [Crossref]
  18. J. Owen, J. Troutman, T. Harriman, A. Zare, Y. Wang, D. Lucca, and M. Davies, “The mechanics of milling of germanium for IR applications,” CIRP Ann. 65(1), 109–112 (2016).
    [Crossref]
  19. Z. Sun, S. To, and S. Zhang, “A novel ductile machining model of single-crystal silicon for freeform surfaces with large azimuthal height variation by ultra-precision fly cutting,” Int. J. Mach. Tool. Manu. 135, 1–11 (2018).
    [Crossref]
  20. Z. Sun, S. To, and K. Yu, “An investigation in the ultra-precision fly cutting of freeform surfaces on brittle materials with high machining efficiency and low tool wear,” Int. J. Adv. Manuf. Technol. 101(5-8), 1583–1593 (2019).
    [Crossref]
  21. A. Mir, X. Luo, K. Cheng, and A. Cox, “Investigation of influence of tool rake angle in single point diamond turning of silicon,” Int. J. Adv. Manuf. Technol. 94(5-8), 2343–2355 (2018).
    [Crossref]
  22. Z. Zhu, S. To, G. Xiao, K. F. Ehmann, and G. Zhang, “Rotary spatial vibration-assisted diamond cutting of brittle materials,” Precis. Eng. 44, 211–219 (2016).
    [Crossref]
  23. S. Wang, J. Wang, X. Lei, Z. Liu, J. Zhang, and Q. Xu, “Investigation of the laser-induced surface damage of KDP crystal by explosion simulation,” Opt. Express 27(11), 15142–15158 (2019).
    [Crossref]
  24. G. Xiao, S. To, and E. Jelenković, “Effects of non-amorphizing hydrogen ion implantation on anisotropy in micro cutting of silicon,” J. Mater. Process. Technol. 225, 439–450 (2015).
    [Crossref]
  25. Z. Sun, S. To, and K. Yu, “Feasibility investigation on ductile machining of single-crystal silicon for deep micro-structures by ultra-precision fly cutting,” J. Manuf. Process. 45, 176–187 (2019).
    [Crossref]
  26. D. Yu, Y. Wong, and G. Hong, “Ultraprecision machining of micro-structured functional surfaces on brittle materials,” J. Micromech. Microeng. 21(9), 095011 (2011).
    [Crossref]
  27. S. J. Zhang, S. To, and S. J. Zhang, “The effects of spindle vibration on surface generation in ultra-precision raster milling,” Int. J. Mach. Tool. Manu. 71, 52–56 (2013).
    [Crossref]
  28. J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51(1), 013402 (2012).
    [Crossref]
  29. H. Ottevaere, R. Cox, H.-P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
    [Crossref]

2019 (8)

C. Deng, H. Kim, and H. Ki, “Fabrication of a compound infrared microlens array with ultrashort focal length using femtosecond laser-assisted wet etching and dual-beam pulsed laser deposition,” Opt. Express 27(20), 28679–28691 (2019).
[Crossref]

G. Yan, Y. Zhang, K. You, Z. Li, Y. Yuan, and F. Fang, “Off-spindle-axis spiral grinding of aspheric microlens array mold inserts,” Opt. Express 27(8), 10873–10889 (2019).
[Crossref]

Y. Zhang, J. Luo, Z. Xiong, H. Liu, L. Wang, Y. Gu, Z. Lu, J. Li, and J. Huang, “User-defined microstructures array fabricated by DMD based multistep lithography with dose modulation,” Opt. Express 27(22), 31956–31966 (2019).
[Crossref]

D. Li, B. Wang, Z. Qiao, and X. Jiang, “Ultraprecision machining of microlens arrays with integrated on-machine surface metrology,” Opt. Express 27(1), 212–224 (2019).
[Crossref]

Z. Sun, S. To, G. Zhang, and S. Zhang, “Flexible fabrication of micro-optics arrays with high-aspect-ratio by an offset-tool-servo diamond machining system,” Opt. Express 27(7), 9631–9646 (2019).
[Crossref]

Z. Sun, S. To, and K. Yu, “An investigation in the ultra-precision fly cutting of freeform surfaces on brittle materials with high machining efficiency and low tool wear,” Int. J. Adv. Manuf. Technol. 101(5-8), 1583–1593 (2019).
[Crossref]

S. Wang, J. Wang, X. Lei, Z. Liu, J. Zhang, and Q. Xu, “Investigation of the laser-induced surface damage of KDP crystal by explosion simulation,” Opt. Express 27(11), 15142–15158 (2019).
[Crossref]

Z. Sun, S. To, and K. Yu, “Feasibility investigation on ductile machining of single-crystal silicon for deep micro-structures by ultra-precision fly cutting,” J. Manuf. Process. 45, 176–187 (2019).
[Crossref]

2018 (4)

A. Mir, X. Luo, K. Cheng, and A. Cox, “Investigation of influence of tool rake angle in single point diamond turning of silicon,” Int. J. Adv. Manuf. Technol. 94(5-8), 2343–2355 (2018).
[Crossref]

Z. Sun, S. To, and K. Yu, “One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling,” Opt. Express 26(21), 28161–28177 (2018).
[Crossref]

Z. Sun, S. To, and S. Zhang, “A novel ductile machining model of single-crystal silicon for freeform surfaces with large azimuthal height variation by ultra-precision fly cutting,” Int. J. Mach. Tool. Manu. 135, 1–11 (2018).
[Crossref]

W.-L. Zhu, F. Duan, X. Zhang, Z. Zhu, and B.-F. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tool. Manu. 124, 134–148 (2018).
[Crossref]

2017 (4)

Z. Li, F. Fang, J. Chen, and X. Zhang, “Machining approach of freeform optics on infrared materials via ultra-precision turning,” Opt. Express 25(3), 2051–2062 (2017).
[Crossref]

Z. Hong and R. Liang, “IR-laser assisted additive freeform optics manufacturing,” Sci. Rep. 7(1), 7145 (2017).
[Crossref]

H. Zuo, D.-Y. Choi, X. Gai, B. Luther-Davies, and B. Zhang, “CMOS compatible fabrication of micro, nano convex silicon lens arrays by conformal chemical vapor deposition,” Opt. Express 25(4), 3069–3076 (2017).
[Crossref]

M. Mukaida and J. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tool. Manu. 115, 2–14 (2017).
[Crossref]

2016 (2)

J. Owen, J. Troutman, T. Harriman, A. Zare, Y. Wang, D. Lucca, and M. Davies, “The mechanics of milling of germanium for IR applications,” CIRP Ann. 65(1), 109–112 (2016).
[Crossref]

Z. Zhu, S. To, G. Xiao, K. F. Ehmann, and G. Zhang, “Rotary spatial vibration-assisted diamond cutting of brittle materials,” Precis. Eng. 44, 211–219 (2016).
[Crossref]

2015 (3)

2014 (1)

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

2013 (2)

Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
[Crossref]

S. J. Zhang, S. To, and S. J. Zhang, “The effects of spindle vibration on surface generation in ultra-precision raster milling,” Int. J. Mach. Tool. Manu. 71, 52–56 (2013).
[Crossref]

2012 (2)

J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51(1), 013402 (2012).
[Crossref]

M. Wang, W. Wang, and Z. Lu, “Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study,” Int. J. Adv. Manuf. Technol. 60(5-8), 473–485 (2012).
[Crossref]

2011 (2)

A. Krywonos, J. E. Harvey, and N. Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” J. Opt. Soc. Am. A 28(6), 1121–1138 (2011).
[Crossref]

D. Yu, Y. Wong, and G. Hong, “Ultraprecision machining of micro-structured functional surfaces on brittle materials,” J. Micromech. Microeng. 21(9), 095011 (2011).
[Crossref]

2006 (1)

H. Ottevaere, R. Cox, H.-P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Chen, J.

Cheng, K.

A. Mir, X. Luo, K. Cheng, and A. Cox, “Investigation of influence of tool rake angle in single point diamond turning of silicon,” Int. J. Adv. Manuf. Technol. 94(5-8), 2343–2355 (2018).
[Crossref]

Choi, D.-Y.

Choi, N.

J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51(1), 013402 (2012).
[Crossref]

A. Krywonos, J. E. Harvey, and N. Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” J. Opt. Soc. Am. A 28(6), 1121–1138 (2011).
[Crossref]

Cox, A.

A. Mir, X. Luo, K. Cheng, and A. Cox, “Investigation of influence of tool rake angle in single point diamond turning of silicon,” Int. J. Adv. Manuf. Technol. 94(5-8), 2343–2355 (2018).
[Crossref]

Cox, R.

H. Ottevaere, R. Cox, H.-P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Davies, M.

J. Owen, J. Troutman, T. Harriman, A. Zare, Y. Wang, D. Lucca, and M. Davies, “The mechanics of milling of germanium for IR applications,” CIRP Ann. 65(1), 109–112 (2016).
[Crossref]

Davies, M. A.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Deng, C.

Duan, F.

W.-L. Zhu, F. Duan, X. Zhang, Z. Zhu, and B.-F. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tool. Manu. 124, 134–148 (2018).
[Crossref]

Duparré, A.

J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51(1), 013402 (2012).
[Crossref]

Dutterer, B. S.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Ehmann, K. F.

Z. Zhu, S. To, G. Xiao, K. F. Ehmann, and G. Zhang, “Rotary spatial vibration-assisted diamond cutting of brittle materials,” Precis. Eng. 44, 211–219 (2016).
[Crossref]

Fang, F.

Gai, X.

Gu, Y.

Harriman, T.

J. Owen, J. Troutman, T. Harriman, A. Zare, Y. Wang, D. Lucca, and M. Davies, “The mechanics of milling of germanium for IR applications,” CIRP Ann. 65(1), 109–112 (2016).
[Crossref]

Harriman, T. A.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Harvey, J. E.

J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51(1), 013402 (2012).
[Crossref]

A. Krywonos, J. E. Harvey, and N. Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” J. Opt. Soc. Am. A 28(6), 1121–1138 (2011).
[Crossref]

Herzig, H.-P.

H. Ottevaere, R. Cox, H.-P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Hildebrand, D. S.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Hong, G.

D. Yu, Y. Wong, and G. Hong, “Ultraprecision machining of micro-structured functional surfaces on brittle materials,” J. Micromech. Microeng. 21(9), 095011 (2011).
[Crossref]

Hong, Z.

Z. Hong and R. Liang, “IR-laser assisted additive freeform optics manufacturing,” Sci. Rep. 7(1), 7145 (2017).
[Crossref]

Huang, J.

Jelenkovic, E.

G. Xiao, S. To, and E. Jelenković, “Effects of non-amorphizing hydrogen ion implantation on anisotropy in micro cutting of silicon,” J. Mater. Process. Technol. 225, 439–450 (2015).
[Crossref]

Jiang, X.

Ju, B.-F.

W.-L. Zhu, F. Duan, X. Zhang, Z. Zhu, and B.-F. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tool. Manu. 124, 134–148 (2018).
[Crossref]

Ki, H.

Kim, H.

Krywonos, A.

Lei, X.

Li, D.

Li, J.

Li, Z.

Liang, R.

Z. Hong and R. Liang, “IR-laser assisted additive freeform optics manufacturing,” Sci. Rep. 7(1), 7145 (2017).
[Crossref]

Lineberger, J. L.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Liu, H.

Liu, Q.

Liu, Z.

Lu, Z.

Y. Zhang, J. Luo, Z. Xiong, H. Liu, L. Wang, Y. Gu, Z. Lu, J. Li, and J. Huang, “User-defined microstructures array fabricated by DMD based multistep lithography with dose modulation,” Opt. Express 27(22), 31956–31966 (2019).
[Crossref]

M. Wang, W. Wang, and Z. Lu, “Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study,” Int. J. Adv. Manuf. Technol. 60(5-8), 473–485 (2012).
[Crossref]

Lucca, D.

J. Owen, J. Troutman, T. Harriman, A. Zare, Y. Wang, D. Lucca, and M. Davies, “The mechanics of milling of germanium for IR applications,” CIRP Ann. 65(1), 109–112 (2016).
[Crossref]

Lucca, D. A.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Luo, D.

Luo, J.

Luo, X.

A. Mir, X. Luo, K. Cheng, and A. Cox, “Investigation of influence of tool rake angle in single point diamond turning of silicon,” Int. J. Adv. Manuf. Technol. 94(5-8), 2343–2355 (2018).
[Crossref]

Luther-Davies, B.

Mir, A.

A. Mir, X. Luo, K. Cheng, and A. Cox, “Investigation of influence of tool rake angle in single point diamond turning of silicon,” Int. J. Adv. Manuf. Technol. 94(5-8), 2343–2355 (2018).
[Crossref]

Miyashita, T.

H. Ottevaere, R. Cox, H.-P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Mukaida, M.

M. Mukaida and J. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tool. Manu. 115, 2–14 (2017).
[Crossref]

Naessens, K.

H. Ottevaere, R. Cox, H.-P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Ottevaere, H.

H. Ottevaere, R. Cox, H.-P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Owen, J.

J. Owen, J. Troutman, T. Harriman, A. Zare, Y. Wang, D. Lucca, and M. Davies, “The mechanics of milling of germanium for IR applications,” CIRP Ann. 65(1), 109–112 (2016).
[Crossref]

Qiao, Z.

Schröder, S.

J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51(1), 013402 (2012).
[Crossref]

Smilie, P. J.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Suleski, T. J.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Sun, Z.

Z. Sun, S. To, G. Zhang, and S. Zhang, “Flexible fabrication of micro-optics arrays with high-aspect-ratio by an offset-tool-servo diamond machining system,” Opt. Express 27(7), 9631–9646 (2019).
[Crossref]

Z. Sun, S. To, and K. Yu, “An investigation in the ultra-precision fly cutting of freeform surfaces on brittle materials with high machining efficiency and low tool wear,” Int. J. Adv. Manuf. Technol. 101(5-8), 1583–1593 (2019).
[Crossref]

Z. Sun, S. To, and K. Yu, “Feasibility investigation on ductile machining of single-crystal silicon for deep micro-structures by ultra-precision fly cutting,” J. Manuf. Process. 45, 176–187 (2019).
[Crossref]

Z. Sun, S. To, and S. Zhang, “A novel ductile machining model of single-crystal silicon for freeform surfaces with large azimuthal height variation by ultra-precision fly cutting,” Int. J. Mach. Tool. Manu. 135, 1–11 (2018).
[Crossref]

Z. Sun, S. To, and K. Yu, “One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling,” Opt. Express 26(21), 28161–28177 (2018).
[Crossref]

Taghizadeh, M.

H. Ottevaere, R. Cox, H.-P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Thienpont, H.

H. Ottevaere, R. Cox, H.-P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

To, S.

Z. Sun, S. To, and K. Yu, “An investigation in the ultra-precision fly cutting of freeform surfaces on brittle materials with high machining efficiency and low tool wear,” Int. J. Adv. Manuf. Technol. 101(5-8), 1583–1593 (2019).
[Crossref]

Z. Sun, S. To, and K. Yu, “Feasibility investigation on ductile machining of single-crystal silicon for deep micro-structures by ultra-precision fly cutting,” J. Manuf. Process. 45, 176–187 (2019).
[Crossref]

Z. Sun, S. To, G. Zhang, and S. Zhang, “Flexible fabrication of micro-optics arrays with high-aspect-ratio by an offset-tool-servo diamond machining system,” Opt. Express 27(7), 9631–9646 (2019).
[Crossref]

Z. Sun, S. To, and K. Yu, “One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling,” Opt. Express 26(21), 28161–28177 (2018).
[Crossref]

Z. Sun, S. To, and S. Zhang, “A novel ductile machining model of single-crystal silicon for freeform surfaces with large azimuthal height variation by ultra-precision fly cutting,” Int. J. Mach. Tool. Manu. 135, 1–11 (2018).
[Crossref]

Z. Zhu, S. To, G. Xiao, K. F. Ehmann, and G. Zhang, “Rotary spatial vibration-assisted diamond cutting of brittle materials,” Precis. Eng. 44, 211–219 (2016).
[Crossref]

G. Xiao, S. To, and E. Jelenković, “Effects of non-amorphizing hydrogen ion implantation on anisotropy in micro cutting of silicon,” J. Mater. Process. Technol. 225, 439–450 (2015).
[Crossref]

Z. Zhu and S. To, “Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics,” Opt. Express 23(16), 20234–20248 (2015).
[Crossref]

Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593 (2015).
[Crossref]

S. J. Zhang, S. To, and S. J. Zhang, “The effects of spindle vibration on surface generation in ultra-precision raster milling,” Int. J. Mach. Tool. Manu. 71, 52–56 (2013).
[Crossref]

Troutman, J.

J. Owen, J. Troutman, T. Harriman, A. Zare, Y. Wang, D. Lucca, and M. Davies, “The mechanics of milling of germanium for IR applications,” CIRP Ann. 65(1), 109–112 (2016).
[Crossref]

Völkel, R.

H. Ottevaere, R. Cox, H.-P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Wang, B.

Wang, J.

Wang, L.

Wang, M.

M. Wang, W. Wang, and Z. Lu, “Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study,” Int. J. Adv. Manuf. Technol. 60(5-8), 473–485 (2012).
[Crossref]

Wang, S.

Wang, W.

M. Wang, W. Wang, and Z. Lu, “Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study,” Int. J. Adv. Manuf. Technol. 60(5-8), 473–485 (2012).
[Crossref]

Wang, Y.

J. Owen, J. Troutman, T. Harriman, A. Zare, Y. Wang, D. Lucca, and M. Davies, “The mechanics of milling of germanium for IR applications,” CIRP Ann. 65(1), 109–112 (2016).
[Crossref]

Wong, Y.

D. Yu, Y. Wong, and G. Hong, “Ultraprecision machining of micro-structured functional surfaces on brittle materials,” J. Micromech. Microeng. 21(9), 095011 (2011).
[Crossref]

Woo, H.

H. Ottevaere, R. Cox, H.-P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Xiao, G.

Z. Zhu, S. To, G. Xiao, K. F. Ehmann, and G. Zhang, “Rotary spatial vibration-assisted diamond cutting of brittle materials,” Precis. Eng. 44, 211–219 (2016).
[Crossref]

G. Xiao, S. To, and E. Jelenković, “Effects of non-amorphizing hydrogen ion implantation on anisotropy in micro cutting of silicon,” J. Mater. Process. Technol. 225, 439–450 (2015).
[Crossref]

Xiong, Z.

Xu, Q.

Yan, G.

Yan, J.

M. Mukaida and J. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tool. Manu. 115, 2–14 (2017).
[Crossref]

You, K.

Yu, D.

D. Yu, Y. Wong, and G. Hong, “Ultraprecision machining of micro-structured functional surfaces on brittle materials,” J. Micromech. Microeng. 21(9), 095011 (2011).
[Crossref]

Yu, K.

Z. Sun, S. To, and K. Yu, “Feasibility investigation on ductile machining of single-crystal silicon for deep micro-structures by ultra-precision fly cutting,” J. Manuf. Process. 45, 176–187 (2019).
[Crossref]

Z. Sun, S. To, and K. Yu, “An investigation in the ultra-precision fly cutting of freeform surfaces on brittle materials with high machining efficiency and low tool wear,” Int. J. Adv. Manuf. Technol. 101(5-8), 1583–1593 (2019).
[Crossref]

Z. Sun, S. To, and K. Yu, “One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling,” Opt. Express 26(21), 28161–28177 (2018).
[Crossref]

Yuan, Y.

Zare, A.

J. Owen, J. Troutman, T. Harriman, A. Zare, Y. Wang, D. Lucca, and M. Davies, “The mechanics of milling of germanium for IR applications,” CIRP Ann. 65(1), 109–112 (2016).
[Crossref]

Zhang, B.

Zhang, G.

Z. Sun, S. To, G. Zhang, and S. Zhang, “Flexible fabrication of micro-optics arrays with high-aspect-ratio by an offset-tool-servo diamond machining system,” Opt. Express 27(7), 9631–9646 (2019).
[Crossref]

Z. Zhu, S. To, G. Xiao, K. F. Ehmann, and G. Zhang, “Rotary spatial vibration-assisted diamond cutting of brittle materials,” Precis. Eng. 44, 211–219 (2016).
[Crossref]

Zhang, J.

Zhang, S.

Zhang, S. J.

S. J. Zhang, S. To, and S. J. Zhang, “The effects of spindle vibration on surface generation in ultra-precision raster milling,” Int. J. Mach. Tool. Manu. 71, 52–56 (2013).
[Crossref]

S. J. Zhang, S. To, and S. J. Zhang, “The effects of spindle vibration on surface generation in ultra-precision raster milling,” Int. J. Mach. Tool. Manu. 71, 52–56 (2013).
[Crossref]

Zhang, X.

W.-L. Zhu, F. Duan, X. Zhang, Z. Zhu, and B.-F. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tool. Manu. 124, 134–148 (2018).
[Crossref]

Z. Li, F. Fang, J. Chen, and X. Zhang, “Machining approach of freeform optics on infrared materials via ultra-precision turning,” Opt. Express 25(3), 2051–2062 (2017).
[Crossref]

Zhang, Y.

Zhou, X.

Zhu, W.-L.

W.-L. Zhu, F. Duan, X. Zhang, Z. Zhu, and B.-F. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tool. Manu. 124, 134–148 (2018).
[Crossref]

Zhu, Z.

Zuo, H.

CIRP Ann. (1)

J. Owen, J. Troutman, T. Harriman, A. Zare, Y. Wang, D. Lucca, and M. Davies, “The mechanics of milling of germanium for IR applications,” CIRP Ann. 65(1), 109–112 (2016).
[Crossref]

Int. J. Adv. Manuf. Technol. (3)

Z. Sun, S. To, and K. Yu, “An investigation in the ultra-precision fly cutting of freeform surfaces on brittle materials with high machining efficiency and low tool wear,” Int. J. Adv. Manuf. Technol. 101(5-8), 1583–1593 (2019).
[Crossref]

A. Mir, X. Luo, K. Cheng, and A. Cox, “Investigation of influence of tool rake angle in single point diamond turning of silicon,” Int. J. Adv. Manuf. Technol. 94(5-8), 2343–2355 (2018).
[Crossref]

M. Wang, W. Wang, and Z. Lu, “Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study,” Int. J. Adv. Manuf. Technol. 60(5-8), 473–485 (2012).
[Crossref]

Int. J. Mach. Tool. Manu. (4)

Z. Sun, S. To, and S. Zhang, “A novel ductile machining model of single-crystal silicon for freeform surfaces with large azimuthal height variation by ultra-precision fly cutting,” Int. J. Mach. Tool. Manu. 135, 1–11 (2018).
[Crossref]

W.-L. Zhu, F. Duan, X. Zhang, Z. Zhu, and B.-F. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tool. Manu. 124, 134–148 (2018).
[Crossref]

M. Mukaida and J. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tool. Manu. 115, 2–14 (2017).
[Crossref]

S. J. Zhang, S. To, and S. J. Zhang, “The effects of spindle vibration on surface generation in ultra-precision raster milling,” Int. J. Mach. Tool. Manu. 71, 52–56 (2013).
[Crossref]

J. Manuf. Process. (1)

Z. Sun, S. To, and K. Yu, “Feasibility investigation on ductile machining of single-crystal silicon for deep micro-structures by ultra-precision fly cutting,” J. Manuf. Process. 45, 176–187 (2019).
[Crossref]

J. Mater. Process. Technol. (1)

G. Xiao, S. To, and E. Jelenković, “Effects of non-amorphizing hydrogen ion implantation on anisotropy in micro cutting of silicon,” J. Mater. Process. Technol. 225, 439–450 (2015).
[Crossref]

J. Micromech. Microeng. (1)

D. Yu, Y. Wong, and G. Hong, “Ultraprecision machining of micro-structured functional surfaces on brittle materials,” J. Micromech. Microeng. 21(9), 095011 (2011).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

H. Ottevaere, R. Cox, H.-P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51(1), 013402 (2012).
[Crossref]

Opt. Express (12)

S. Wang, J. Wang, X. Lei, Z. Liu, J. Zhang, and Q. Xu, “Investigation of the laser-induced surface damage of KDP crystal by explosion simulation,” Opt. Express 27(11), 15142–15158 (2019).
[Crossref]

H. Zuo, D.-Y. Choi, X. Gai, B. Luther-Davies, and B. Zhang, “CMOS compatible fabrication of micro, nano convex silicon lens arrays by conformal chemical vapor deposition,” Opt. Express 25(4), 3069–3076 (2017).
[Crossref]

Y. Zhang, J. Luo, Z. Xiong, H. Liu, L. Wang, Y. Gu, Z. Lu, J. Li, and J. Huang, “User-defined microstructures array fabricated by DMD based multistep lithography with dose modulation,” Opt. Express 27(22), 31956–31966 (2019).
[Crossref]

Z. Li, F. Fang, J. Chen, and X. Zhang, “Machining approach of freeform optics on infrared materials via ultra-precision turning,” Opt. Express 25(3), 2051–2062 (2017).
[Crossref]

D. Li, B. Wang, Z. Qiao, and X. Jiang, “Ultraprecision machining of microlens arrays with integrated on-machine surface metrology,” Opt. Express 27(1), 212–224 (2019).
[Crossref]

G. Yan, Y. Zhang, K. You, Z. Li, Y. Yuan, and F. Fang, “Off-spindle-axis spiral grinding of aspheric microlens array mold inserts,” Opt. Express 27(8), 10873–10889 (2019).
[Crossref]

Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
[Crossref]

C. Deng, H. Kim, and H. Ki, “Fabrication of a compound infrared microlens array with ultrashort focal length using femtosecond laser-assisted wet etching and dual-beam pulsed laser deposition,” Opt. Express 27(20), 28679–28691 (2019).
[Crossref]

Z. Sun, S. To, G. Zhang, and S. Zhang, “Flexible fabrication of micro-optics arrays with high-aspect-ratio by an offset-tool-servo diamond machining system,” Opt. Express 27(7), 9631–9646 (2019).
[Crossref]

Z. Zhu and S. To, “Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics,” Opt. Express 23(16), 20234–20248 (2015).
[Crossref]

Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593 (2015).
[Crossref]

Z. Sun, S. To, and K. Yu, “One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling,” Opt. Express 26(21), 28161–28177 (2018).
[Crossref]

Precis. Eng. (2)

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Z. Zhu, S. To, G. Xiao, K. F. Ehmann, and G. Zhang, “Rotary spatial vibration-assisted diamond cutting of brittle materials,” Precis. Eng. 44, 211–219 (2016).
[Crossref]

Sci. Rep. (1)

Z. Hong and R. Liang, “IR-laser assisted additive freeform optics manufacturing,” Sci. Rep. 7(1), 7145 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of (a) hardware configuration and (b) cutting mechanism of STDM.
Fig. 2.
Fig. 2. Schematic of the chip formation under (a) and (b) STDM and (c) and (d) conventional raster milling.
Fig. 3.
Fig. 3. Schematic of (a) STDM viewed from y-axis and (b) 3D morphology of the chip.
Fig. 4.
Fig. 4. Schematic of (a) toolpath and (b) shape of micro-aspheric arrays, (c) toolpath in x-y plane and (d) distribution of SCPs for the central line of one lenslet.
Fig. 5.
Fig. 5. (a) Position of the SCPs along feed direction, motions of the (b) spindle and (c) self-tuned platform in x-axis and (d) feed rate.
Fig. 6.
Fig. 6. (a) Hardware configuration of the STDM system and (b) an enlarged view of the three-DoF fast motion platform.
Fig. 7.
Fig. 7. (a) 3D topography and (b) microscope of the machined MOAs, (b) and (d) the cross-sectional profies along x- and y-axis, respectably.
Fig. 8.
Fig. 8. (a) 3D topography of the lenslet cell, (b) and (c) the corresponding cross-sectional profiles along x and y-axis, (d) micro-topography and (e) microscope.
Fig. 9.
Fig. 9. 3D surface topographies, micro-topographies and microscopes of the lenslet generated by raster milling under different feed rates.

Tables (2)

Tables Icon

Table 1. Coefficients defining the shape of the micro-aspheric lenslet.

Tables Icon

Table 2. Machining parameters used for STDM and conventional raster milling.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

y i , j ( w ) = j S t
{ x b ( s ) = ( R t 2 ( y b ( s ) ) 2 + S w R t ) 2 ( z b ( s ) ) 2 f i , j y b ( s ) = z b ( s ) cos θ i , j d i , j + S w cos θ i , j sin θ i , j z b ( s ) = R t S w + S t sin φ i , j R t 2 ( y b ( s ) S t cos φ i , j ) 2
{ θ i , j = arctan ( z i , j ( w ) z i 1 , j ( w ) f i , j ) φ i , j = arctan ( z i , j ( w ) z i , j 1 ( w ) S t )
x x b ( s ) = y y b ( s ) = z z b ( s )
{ x i ( s ) = x b ( s ) k y i ( s ) = y b ( s ) k z i ( s ) = z b ( s ) k , k = ( S w R t ) ( x b ( s ) ) 2 + ( y b ( s ) ) 2 + R t 2 ( x b ( s ) + z b ( s ) ) 2 + ( y b ( s ) ) 2 S w ( S w 2 R t ) ( x b ( s ) ) 2 + ( y b ( s ) ) 2 + ( z b ( s ) ) 2
h max = ( x b ( s ) x i ( s ) ) 2 + ( y b ( s ) y i ( s ) ) 2 + ( z b ( s ) z i ( s ) ) 2
z m , n ( s ) = ( R t 1 ( n N t ) 2 + S w R t ) 2 ( m S w N s ) 2 , m [ N s , N s ] , n [ N t , N t ]
z i , j = min | z m , n ( s ) F ( f i , j + x i 1 , j + m N s S w , y i , j ( w ) + n N t R t ) | + z 0 , m [ N s , N s ] , n [ N t , N t ]
z ( x , y ) = s C R 0 2 4 + 4 1 ( 1 + k ) C 2 R 0 2 s C ρ 2 ( x , y ) 4 + 4 1 ( 1 + k ) C 2 ρ 2 ( x , y )
T I S ( 4 π δ λ ) 2

Metrics