A. Yamamura, K. Aihara, and Y. Yamamoto, “Quantum model for coherent Ising machines: Discrete-time measurement feedback formulation,” Phys. Rev. A 96(5), 053834 (2017).

[Crossref]

D. Maruo, S. Utsunomiya, and Y. Yamamoto, “Truncated Wigner theory of coherent Ising machines based on degenerate optical parametric oscillator network,” Phys. Scr. 91(8), 083010 (2016).

[Crossref]

Y. Haribara, S. Utsunomiya, and Y. Yamamoto, “Computational principle and performance evaluation of coherent Ising machine based on degenerate optical parametric oscillator network,” Entropy 18(4), 151–166 (2016).

[Crossref]

T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, and H. Takesue, “Large-scale Ising spin network based on degenerate optical parametric oscillators,” Nat. Photonics 10(6), 415–419 (2016).

[Crossref]

H. Takesue and T. Inagaki, “10 GHz clock time-multiplexed degenerate optical parametric oscillators for a photonic Ising spin network,” Opt. Lett. 41(18), 4273–4276 (2016).

[Crossref]

K. Takata, A. Marandi, and Y. Yamamoto, “Quantum correlation in degenerate optical parametric oscillators with mutual injections,” Phys. Rev. A 92(4), 043821 (2015).

[Crossref]

E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, and V. N. Smelyanskiy, “A case study in programming a quantum annealer for hard operational planning problems,” Quantum Inf. Process. 14(1), 1–36 (2015).

[Crossref]

A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto, “Network of time-multiplexed optical parametric oscillators as a coherent Ising machine,” Nat. Photonics 8(12), 937–942 (2014).

[Crossref]

Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent Ising machine based on degenerate optical parametric oscillators,” Phys. Rev. A 88(6), 063853 (2013).

[Crossref]

P. Honzatko, J. Kanka, and B. Vrany, “Retrieval of the pulse amplitude and phase from cross-phase modulation spectrograms using the simulated annealing method,” Opt. Express 12(24), 6046–6052 (2004).

[Crossref]

D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications,” Nat. Rev. Drug Discovery 3(11), 935–949 (2004).

[Crossref]

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).

[Crossref]

C. Helmberg and F. A. Rendl, “spectral bundle method for semidefinite programming,” SIAM J. Control 10(3), 673–696 (2000).

[Crossref]

T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse Ising model,” Phys. Rev. E 58(5), 5355–5363 (1998).

[Crossref]

M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,” J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995).

[Crossref]

J. D. Bryngelson and P. G. Wolynes, “Spin glasses and the statistical mechanics of protein folding,” Proc. Natl. Acad. Sci. 84(21), 7524–7528 (1987).

[Crossref]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).

[Crossref]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).

[Crossref]

D. F. Walls, “Squeezed states of light,” Nature 306(5939), 141–146 (1983).

[Crossref]

G. J. Milburn and D. F. Walls, “Squeezed states and intensity fluctuations in degenerate parametric oscillation,” Phys. Rev. A 27(1), 392–394 (1983).

[Crossref]

F. Barahona, “On the computational complexity of Ising spin glass models,” J. Phys. A: Math. Gen. 15(10), 3241–3253 (1982).

[Crossref]

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).

[Crossref]

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23(8), 1693–1708 (1981).

[Crossref]

H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13(6), 2226–2243 (1976).

[Crossref]

A. Yamamura, K. Aihara, and Y. Yamamoto, “Quantum model for coherent Ising machines: Discrete-time measurement feedback formulation,” Phys. Rev. A 96(5), 053834 (2017).

[Crossref]

D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications,” Nat. Rev. Drug Discovery 3(11), 935–949 (2004).

[Crossref]

F. Barahona, “On the computational complexity of Ising spin glass models,” J. Phys. A: Math. Gen. 15(10), 3241–3253 (1982).

[Crossref]

J. D. Bryngelson and P. G. Wolynes, “Spin glasses and the statistical mechanics of protein folding,” Proc. Natl. Acad. Sci. 84(21), 7524–7528 (1987).

[Crossref]

A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto, “Network of time-multiplexed optical parametric oscillators as a coherent Ising machine,” Nat. Photonics 8(12), 937–942 (2014).

[Crossref]

Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent Ising machine based on degenerate optical parametric oscillators,” Phys. Rev. A 88(6), 063853 (2013).

[Crossref]

H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer-Verlag, 2002).

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).

[Crossref]

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23(8), 1693–1708 (1981).

[Crossref]

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).

[Crossref]

D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications,” Nat. Rev. Drug Discovery 3(11), 935–949 (2004).

[Crossref]

E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, and V. N. Smelyanskiy, “A case study in programming a quantum annealer for hard operational planning problems,” Quantum Inf. Process. 14(1), 1–36 (2015).

[Crossref]

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).

[Crossref]

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2016).

D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications,” Nat. Rev. Drug Discovery 3(11), 935–949 (2004).

[Crossref]

M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness (Freeman, 2009).

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).

[Crossref]

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).

[Crossref]

M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,” J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995).

[Crossref]

M. Gu and Á Perales, “Encoding universal computation in the ground states of Ising lattices,” Phys. Rev. E 86(1), 011116 (2012).

[Crossref]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).

[Crossref]

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2016).

T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, and H. Takesue, “Large-scale Ising spin network based on degenerate optical parametric oscillators,” Nat. Photonics 10(6), 415–419 (2016).

[Crossref]

Y. Haribara, S. Utsunomiya, and Y. Yamamoto, “Computational principle and performance evaluation of coherent Ising machine based on degenerate optical parametric oscillator network,” Entropy 18(4), 151–166 (2016).

[Crossref]

C. Helmberg and F. A. Rendl, “spectral bundle method for semidefinite programming,” SIAM J. Control 10(3), 673–696 (2000).

[Crossref]

T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, and H. Takesue, “Large-scale Ising spin network based on degenerate optical parametric oscillators,” Nat. Photonics 10(6), 415–419 (2016).

[Crossref]

T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, and H. Takesue, “Large-scale Ising spin network based on degenerate optical parametric oscillators,” Nat. Photonics 10(6), 415–419 (2016).

[Crossref]

H. Takesue and T. Inagaki, “10 GHz clock time-multiplexed degenerate optical parametric oscillators for a photonic Ising spin network,” Opt. Lett. 41(18), 4273–4276 (2016).

[Crossref]

T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, and H. Takesue, “Large-scale Ising spin network based on degenerate optical parametric oscillators,” Nat. Photonics 10(6), 415–419 (2016).

[Crossref]

M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness (Freeman, 2009).

T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse Ising model,” Phys. Rev. E 58(5), 5355–5363 (1998).

[Crossref]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).

[Crossref]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).

[Crossref]

D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications,” Nat. Rev. Drug Discovery 3(11), 935–949 (2004).

[Crossref]

K. Takata, A. Marandi, and Y. Yamamoto, “Quantum correlation in degenerate optical parametric oscillators with mutual injections,” Phys. Rev. A 92(4), 043821 (2015).

[Crossref]

A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto, “Network of time-multiplexed optical parametric oscillators as a coherent Ising machine,” Nat. Photonics 8(12), 937–942 (2014).

[Crossref]

Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent Ising machine based on degenerate optical parametric oscillators,” Phys. Rev. A 88(6), 063853 (2013).

[Crossref]

M. Marc, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications (World Scientific Publishing Company, 1987).

D. Maruo, S. Utsunomiya, and Y. Yamamoto, “Truncated Wigner theory of coherent Ising machines based on degenerate optical parametric oscillator network,” Phys. Scr. 91(8), 083010 (2016).

[Crossref]

G. J. Milburn and D. F. Walls, “Squeezed states and intensity fluctuations in degenerate parametric oscillation,” Phys. Rev. A 27(1), 392–394 (1983).

[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 2007).

T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse Ising model,” Phys. Rev. E 58(5), 5355–5363 (1998).

[Crossref]

E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, and V. N. Smelyanskiy, “A case study in programming a quantum annealer for hard operational planning problems,” Quantum Inf. Process. 14(1), 1–36 (2015).

[Crossref]

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2016).

M. Marc, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications (World Scientific Publishing Company, 1987).

M. Gu and Á Perales, “Encoding universal computation in the ground states of Ising lattices,” Phys. Rev. E 86(1), 011116 (2012).

[Crossref]

E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, and V. N. Smelyanskiy, “A case study in programming a quantum annealer for hard operational planning problems,” Quantum Inf. Process. 14(1), 1–36 (2015).

[Crossref]

C. Helmberg and F. A. Rendl, “spectral bundle method for semidefinite programming,” SIAM J. Control 10(3), 673–696 (2000).

[Crossref]

E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, and V. N. Smelyanskiy, “A case study in programming a quantum annealer for hard operational planning problems,” Quantum Inf. Process. 14(1), 1–36 (2015).

[Crossref]

E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, and V. N. Smelyanskiy, “A case study in programming a quantum annealer for hard operational planning problems,” Quantum Inf. Process. 14(1), 1–36 (2015).

[Crossref]

K. Takata, A. Marandi, and Y. Yamamoto, “Quantum correlation in degenerate optical parametric oscillators with mutual injections,” Phys. Rev. A 92(4), 043821 (2015).

[Crossref]

A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto, “Network of time-multiplexed optical parametric oscillators as a coherent Ising machine,” Nat. Photonics 8(12), 937–942 (2014).

[Crossref]

T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, and H. Takesue, “Large-scale Ising spin network based on degenerate optical parametric oscillators,” Nat. Photonics 10(6), 415–419 (2016).

[Crossref]

H. Takesue and T. Inagaki, “10 GHz clock time-multiplexed degenerate optical parametric oscillators for a photonic Ising spin network,” Opt. Lett. 41(18), 4273–4276 (2016).

[Crossref]

D. Maruo, S. Utsunomiya, and Y. Yamamoto, “Truncated Wigner theory of coherent Ising machines based on degenerate optical parametric oscillator network,” Phys. Scr. 91(8), 083010 (2016).

[Crossref]

Y. Haribara, S. Utsunomiya, and Y. Yamamoto, “Computational principle and performance evaluation of coherent Ising machine based on degenerate optical parametric oscillator network,” Entropy 18(4), 151–166 (2016).

[Crossref]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).

[Crossref]

E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, and V. N. Smelyanskiy, “A case study in programming a quantum annealer for hard operational planning problems,” Quantum Inf. Process. 14(1), 1–36 (2015).

[Crossref]

M. Marc, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications (World Scientific Publishing Company, 1987).

D. F. Walls, “Squeezed states of light,” Nature 306(5939), 141–146 (1983).

[Crossref]

G. J. Milburn and D. F. Walls, “Squeezed states and intensity fluctuations in degenerate parametric oscillation,” Phys. Rev. A 27(1), 392–394 (1983).

[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 2007).

A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto, “Network of time-multiplexed optical parametric oscillators as a coherent Ising machine,” Nat. Photonics 8(12), 937–942 (2014).

[Crossref]

Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent Ising machine based on degenerate optical parametric oscillators,” Phys. Rev. A 88(6), 063853 (2013).

[Crossref]

Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent Ising machine based on degenerate optical parametric oscillators,” Phys. Rev. A 88(6), 063853 (2013).

[Crossref]

M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,” J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995).

[Crossref]

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2016).

J. D. Bryngelson and P. G. Wolynes, “Spin glasses and the statistical mechanics of protein folding,” Proc. Natl. Acad. Sci. 84(21), 7524–7528 (1987).

[Crossref]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).

[Crossref]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).

[Crossref]

A. Yamamura, K. Aihara, and Y. Yamamoto, “Quantum model for coherent Ising machines: Discrete-time measurement feedback formulation,” Phys. Rev. A 96(5), 053834 (2017).

[Crossref]

D. Maruo, S. Utsunomiya, and Y. Yamamoto, “Truncated Wigner theory of coherent Ising machines based on degenerate optical parametric oscillator network,” Phys. Scr. 91(8), 083010 (2016).

[Crossref]

Y. Haribara, S. Utsunomiya, and Y. Yamamoto, “Computational principle and performance evaluation of coherent Ising machine based on degenerate optical parametric oscillator network,” Entropy 18(4), 151–166 (2016).

[Crossref]

T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, and H. Takesue, “Large-scale Ising spin network based on degenerate optical parametric oscillators,” Nat. Photonics 10(6), 415–419 (2016).

[Crossref]

K. Takata, A. Marandi, and Y. Yamamoto, “Quantum correlation in degenerate optical parametric oscillators with mutual injections,” Phys. Rev. A 92(4), 043821 (2015).

[Crossref]

A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto, “Network of time-multiplexed optical parametric oscillators as a coherent Ising machine,” Nat. Photonics 8(12), 937–942 (2014).

[Crossref]

Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent Ising machine based on degenerate optical parametric oscillators,” Phys. Rev. A 88(6), 063853 (2013).

[Crossref]

A. Yamamura, K. Aihara, and Y. Yamamoto, “Quantum model for coherent Ising machines: Discrete-time measurement feedback formulation,” Phys. Rev. A 96(5), 053834 (2017).

[Crossref]

H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13(6), 2226–2243 (1976).

[Crossref]

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).

[Crossref]

Y. Haribara, S. Utsunomiya, and Y. Yamamoto, “Computational principle and performance evaluation of coherent Ising machine based on degenerate optical parametric oscillator network,” Entropy 18(4), 151–166 (2016).

[Crossref]

M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,” J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995).

[Crossref]

F. Barahona, “On the computational complexity of Ising spin glass models,” J. Phys. A: Math. Gen. 15(10), 3241–3253 (1982).

[Crossref]

T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, and H. Takesue, “Large-scale Ising spin network based on degenerate optical parametric oscillators,” Nat. Photonics 10(6), 415–419 (2016).

[Crossref]

A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto, “Network of time-multiplexed optical parametric oscillators as a coherent Ising machine,” Nat. Photonics 8(12), 937–942 (2014).

[Crossref]

D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications,” Nat. Rev. Drug Discovery 3(11), 935–949 (2004).

[Crossref]

D. F. Walls, “Squeezed states of light,” Nature 306(5939), 141–146 (1983).

[Crossref]

Z. Su, D. Xue, and Z. Ji, “Designing LED array for uniform illumination distribution by simulated annealing algorithm,” Opt. Express 20(S6), A843–855 (2012).

[Crossref]

P. Honzatko, J. Kanka, and B. Vrany, “Retrieval of the pulse amplitude and phase from cross-phase modulation spectrograms using the simulated annealing method,” Opt. Express 12(24), 6046–6052 (2004).

[Crossref]

A. Yamamura, K. Aihara, and Y. Yamamoto, “Quantum model for coherent Ising machines: Discrete-time measurement feedback formulation,” Phys. Rev. A 96(5), 053834 (2017).

[Crossref]

Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent Ising machine based on degenerate optical parametric oscillators,” Phys. Rev. A 88(6), 063853 (2013).

[Crossref]

K. Takata, A. Marandi, and Y. Yamamoto, “Quantum correlation in degenerate optical parametric oscillators with mutual injections,” Phys. Rev. A 92(4), 043821 (2015).

[Crossref]

H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13(6), 2226–2243 (1976).

[Crossref]

G. J. Milburn and D. F. Walls, “Squeezed states and intensity fluctuations in degenerate parametric oscillation,” Phys. Rev. A 27(1), 392–394 (1983).

[Crossref]

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23(8), 1693–1708 (1981).

[Crossref]

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).

[Crossref]

M. Gu and Á Perales, “Encoding universal computation in the ground states of Ising lattices,” Phys. Rev. E 86(1), 011116 (2012).

[Crossref]

T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse Ising model,” Phys. Rev. E 58(5), 5355–5363 (1998).

[Crossref]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).

[Crossref]

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).

[Crossref]

D. Maruo, S. Utsunomiya, and Y. Yamamoto, “Truncated Wigner theory of coherent Ising machines based on degenerate optical parametric oscillator network,” Phys. Scr. 91(8), 083010 (2016).

[Crossref]

J. D. Bryngelson and P. G. Wolynes, “Spin glasses and the statistical mechanics of protein folding,” Proc. Natl. Acad. Sci. 84(21), 7524–7528 (1987).

[Crossref]

E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, and V. N. Smelyanskiy, “A case study in programming a quantum annealer for hard operational planning problems,” Quantum Inf. Process. 14(1), 1–36 (2015).

[Crossref]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).

[Crossref]

C. Helmberg and F. A. Rendl, “spectral bundle method for semidefinite programming,” SIAM J. Control 10(3), 673–696 (2000).

[Crossref]

H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer-Verlag, 2002).

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 2007).

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2016).

M. Marc, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications (World Scientific Publishing Company, 1987).

M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness (Freeman, 2009).