Abstract

Independent component analysis (ICA) is a general-purpose technique for analyzing multi-dimensional data to reveal the underlying hidden factors that are maximally independent from each other. We report the first photonic ICA on mixtures of unknown signals by employing an on-chip microring (MRR) weight bank. The MRR weight bank performs so-called weighted addition (i.e., multiply-accumulate) operations on the received mixtures, and outputs a single reduced-dimensional representation of the signal of interest. We propose a novel ICA algorithm to recover independent components solely based on the statistical information of the weighted addition output, while remaining blind to not only the original sources but also the waveform information of the mixtures. We investigate both channel separability and near-far problems, and our two-channel photonic ICA experiment demonstrates our scheme holds comparable performance with the conventional software-based ICA method. Our numerical simulation validates the fidelity of the proposed approach, and studies noise effects to identify the operating regime of our method. The proposed technique could open new domains for future research in blind source separation, microwave photonics, and on-chip information processing.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic principal component analysis using an on-chip microring weight bank

Philip Y. Ma, Alexander N. Tait, Thomas Ferreira de Lima, Siamak Abbaslou, Bhavin J. Shastri, and Paul R. Prucnal
Opt. Express 27(13) 18329-18342 (2019)

Multi-channel control for microring weight banks

Alexander N. Tait, Thomas Ferreira de Lima, Mitchell A. Nahmias, Bhavin J. Shastri, and Paul R. Prucnal
Opt. Express 24(8) 8895-8906 (2016)

Feedback control for microring weight banks

Alexander N. Tait, Hasitha Jayatilleka, Thomas Ferreira De Lima, Philip Y. Ma, Mitchell A. Nahmias, Bhavin J. Shastri, Sudip Shekhar, Lukas Chrostowski, and Paul R. Prucnal
Opt. Express 26(20) 26422-26443 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Jutten and J. Herault, “Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture,” Signal Process. 24(1), 1–10 (1991).
    [Crossref]
  2. P. Comon, “Independent component analysis a new concept?” Signal Process. 36(3), 287–314 (1994).
    [Crossref]
  3. P. O. Hoyer and A. Hyvärinen, “Independent component analysis applied to feature extraction from colour and stereo images,” Network-Comp. Neural. 11(3), 191–210 (2000).
    [Crossref]
  4. M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by independent component analysis,” IEEE Trans. Neural Netw. 13(6), 1450–1464 (2002).
    [Crossref]
  5. Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis,” in “CVPR 2011,” (2011), pp. 3361–3368.
  6. A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Netw. 13(4-5), 411–430 (2000).
    [Crossref]
  7. M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
    [Crossref]
  8. G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, and S. M. Smith, “Automatic denoising of functional mri data: combining independent component analysis and hierarchical fusion of classifiers,” NeuroImage 90, 449–468 (2014).
    [Crossref]
  9. T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, “Blind source separation exploiting higher-order frequency dependencies,” IEEE Trans. Audio Speech Lang. Process. 15(1), 70–79 (2007).
    [Crossref]
  10. E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in blind audio source separation,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1462–1469 (2006).
    [Crossref]
  11. I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer Netw. 50(13), 2127–2159 (2006).
    [Crossref]
  12. M. P. Chang, E. C. Blow, M. Z. Lu, J. J. Sun, and P. R. Prucnal, “Rf characterization of an integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microwave Theory Tech. 66(1), 596–605 (2018).
    [Crossref]
  13. A. N. Tait, T. F. de Lima, P. Y. Ma, M. P. Chang, M. A. Nahmias, B. J. Shastri, P. Mittal, and P. R. Prucnal, “Blind source separation in the physical layer,” in “52nd Annual Conference on Information Sciences and Systems (CISS)”, (IEEE, 2018), pp. 1–6.
  14. R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Select. Areas Commun. 17(4), 539–550 (1999).
    [Crossref]
  15. T. Sundstrom, B. Murmann, and C. Svensson, “Power dissipation bounds for high-speed nyquist analog-to-digital converters,” IEEE Trans. Circuits Syst. I 56(3), 509–518 (2009).
    [Crossref]
  16. P. Jebashini, R. Uma, P. Dhavachelvan, and H. K. Wye, “A survey and comparative analysis of multiply-accumulate (mac) block for digital signal processing application on asic and fpga,” J. Appl. Sci. 15(7), 934–946 (2015).
    [Crossref]
  17. R. K. Mongia, J. Hong, P. Bhartia, and I. J. Bahl, RF and microwave coupled-line circuits (Artech house, 2007).
  18. A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 4029–4041 (2014).
    [Crossref]
  19. A. N. Tait, A. X. Wu, T. F. de Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Microring weight banks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 312–325 (2016).
    [Crossref]
  20. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
    [Crossref]
  21. Q. Xu and R. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
    [Crossref]
  22. J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
    [Crossref]
  23. K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5(1), 3541 (2014).
    [Crossref]
  24. P. R. Prucnal and B. J. Shastri, Neuromorphic Photonics (CRC Press, 2017).
  25. A. N. Tait, T. F. Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
    [Crossref]
  26. P. Y. Ma, A. N. Tait, T. F. de Lima, S. Abbaslou, B. J. Shastri, and P. R. Prucnal, “Photonic principal component analysis using an on-chip microring weight bank,” Opt. Express 27(13), 18329–18342 (2019).
    [Crossref]
  27. A. N. Tait, P. Y. Ma, T. F. De Lima, E. C. Blow, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Demonstration of multivariate photonics: blind dimensionality reduction with integrated photonics,” J. Lightwave Technol. 37(24), 5996–6006 (2019).
    [Crossref]
  28. A. Hyvarinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Trans. Neural Netw. 10(3), 626–634 (1999).
    [Crossref]
  29. A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis (John Wiley & Sons, 2004).
  30. A. Hyvärinen, “New approximations of differential entropy for independent component analysis and projection pursuit,” in “Advances in neural information processing systems,” (1998), pp. 273–279.
  31. D. T. Pham and P. Garat, “Blind separation of mixture of independent sources through a quasi-maximum likelihood approach,” IEEE Trans. Signal Process. 45(7), 1712–1725 (1997).
    [Crossref]
  32. A. Tait, T. F. de Lima, P. Y. Ma, A. Jha, H.-T. Peng, H. Miller, and P. R. Prucnal, “lightwave-lab/lightlab: Version 1.0.5,” (2018). DOI: 10.5281/zenodo.1436917.
  33. A. N. Tait, H. Jayatilleka, T. F. D. Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
    [Crossref]
  34. A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
    [Crossref]
  35. H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
    [Crossref]
  36. T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).
  37. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
    [Crossref]
  38. D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics: Identifying influential data and sources of collinearity (John Wiley & Sons, 2005).
  39. A.. Hyvarinen, “Fast ica for noisy data using gaussian moments,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No. 99CH36349),” (IEEE, 1999), pp. 57–61.
  40. A. Goldsmith, Wireless communications (Cambridge University, 2005).
  41. J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express 20(11), 12222–12232 (2012).
    [Crossref]
  42. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
    [Crossref]
  43. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “Iii-v/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
    [Crossref]
  44. M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  45. C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.
  46. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [Crossref]
  47. A. N. Tait, T. Ferreira de Lima, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Application regime and distortion metric for multivariate rf photonics,” in “IEEE Optical Interconnects Conference (OI),” (2017), p. 25–26.
  48. A. N. Tait, A. X. Wu, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Two-pole microring weight banks,” Opt. Lett. 43(10), 2276–2279 (2018).
    [Crossref]
  49. P. Russer Tuan-Do-Hong, “Signal processing for wideband smart antenna array applications,” IEEE Microw. Mag. 5(1), 57–67 (2004).
    [Crossref]

2019 (2)

2018 (3)

2017 (1)

A. N. Tait, T. F. Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref]

2016 (1)

A. N. Tait, A. X. Wu, T. F. de Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Microring weight banks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 312–325 (2016).
[Crossref]

2015 (3)

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

P. Jebashini, R. Uma, P. Dhavachelvan, and H. K. Wye, “A survey and comparative analysis of multiply-accumulate (mac) block for digital signal processing application on asic and fpga,” J. Appl. Sci. 15(7), 934–946 (2015).
[Crossref]

H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
[Crossref]

2014 (4)

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 4029–4041 (2014).
[Crossref]

G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, and S. M. Smith, “Automatic denoising of functional mri data: combining independent component analysis and hierarchical fusion of classifiers,” NeuroImage 90, 449–468 (2014).
[Crossref]

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5(1), 3541 (2014).
[Crossref]

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

2013 (2)

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

2012 (2)

2011 (1)

2010 (2)

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “Iii-v/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

2009 (2)

2007 (1)

T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, “Blind source separation exploiting higher-order frequency dependencies,” IEEE Trans. Audio Speech Lang. Process. 15(1), 70–79 (2007).
[Crossref]

2006 (2)

E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in blind audio source separation,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1462–1469 (2006).
[Crossref]

I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer Netw. 50(13), 2127–2159 (2006).
[Crossref]

2004 (1)

P. Russer Tuan-Do-Hong, “Signal processing for wideband smart antenna array applications,” IEEE Microw. Mag. 5(1), 57–67 (2004).
[Crossref]

2002 (1)

M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by independent component analysis,” IEEE Trans. Neural Netw. 13(6), 1450–1464 (2002).
[Crossref]

2000 (2)

A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Netw. 13(4-5), 411–430 (2000).
[Crossref]

P. O. Hoyer and A. Hyvärinen, “Independent component analysis applied to feature extraction from colour and stereo images,” Network-Comp. Neural. 11(3), 191–210 (2000).
[Crossref]

1999 (2)

A. Hyvarinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Trans. Neural Netw. 10(3), 626–634 (1999).
[Crossref]

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Select. Areas Commun. 17(4), 539–550 (1999).
[Crossref]

1997 (1)

D. T. Pham and P. Garat, “Blind separation of mixture of independent sources through a quasi-maximum likelihood approach,” IEEE Trans. Signal Process. 45(7), 1712–1725 (1997).
[Crossref]

1994 (1)

P. Comon, “Independent component analysis a new concept?” Signal Process. 36(3), 287–314 (1994).
[Crossref]

1991 (1)

C. Jutten and J. Herault, “Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture,” Signal Process. 24(1), 1–10 (1991).
[Crossref]

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Á. Guillén-Torres, M.

Abbaslou, S.

Akyildiz, I. F.

I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer Netw. 50(13), 2127–2159 (2006).
[Crossref]

Arakawa, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Asghari, M.

Attias, H. T.

T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, “Blind source separation exploiting higher-order frequency dependencies,” IEEE Trans. Audio Speech Lang. Process. 15(1), 70–79 (2007).
[Crossref]

Ayazi, A.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Baehr-Jones, T.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Bahl, I. J.

R. K. Mongia, J. Hong, P. Bhartia, and I. J. Bahl, RF and microwave coupled-line circuits (Artech house, 2007).

Bartlett, M. S.

M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by independent component analysis,” IEEE Trans. Neural Netw. 13(6), 1450–1464 (2002).
[Crossref]

Bauters, J. F.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Beckmann, C. F.

G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, and S. M. Smith, “Automatic denoising of functional mri data: combining independent component analysis and hierarchical fusion of classifiers,” NeuroImage 90, 449–468 (2014).
[Crossref]

Belsley, D. A.

D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics: Identifying influential data and sources of collinearity (John Wiley & Sons, 2005).

Bhartia, P.

R. K. Mongia, J. Hong, P. Bhartia, and I. J. Bahl, RF and microwave coupled-line circuits (Artech house, 2007).

Bienstman, P.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5(1), 3541 (2014).
[Crossref]

Blow, E. C.

A. N. Tait, P. Y. Ma, T. F. De Lima, E. C. Blow, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Demonstration of multivariate photonics: blind dimensionality reduction with integrated photonics,” J. Lightwave Technol. 37(24), 5996–6006 (2019).
[Crossref]

M. P. Chang, E. C. Blow, M. Z. Lu, J. J. Sun, and P. R. Prucnal, “Rf characterization of an integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microwave Theory Tech. 66(1), 596–605 (2018).
[Crossref]

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “Iii-v/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Bowers, J. E.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Caverley, M.

Chang, M. P.

A. N. Tait, P. Y. Ma, T. F. De Lima, E. C. Blow, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Demonstration of multivariate photonics: blind dimensionality reduction with integrated photonics,” J. Lightwave Technol. 37(24), 5996–6006 (2019).
[Crossref]

M. P. Chang, E. C. Blow, M. Z. Lu, J. J. Sun, and P. R. Prucnal, “Rf characterization of an integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microwave Theory Tech. 66(1), 596–605 (2018).
[Crossref]

A. N. Tait, T. F. de Lima, P. Y. Ma, M. P. Chang, M. A. Nahmias, B. J. Shastri, P. Mittal, and P. R. Prucnal, “Blind source separation in the physical layer,” in “52nd Annual Conference on Information Sciences and Systems (CISS)”, (IEEE, 2018), pp. 1–6.

A. N. Tait, T. Ferreira de Lima, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Application regime and distortion metric for multivariate rf photonics,” in “IEEE Optical Interconnects Conference (OI),” (2017), p. 25–26.

Chen, K. K.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Chou, J. B.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Chrostowski, L.

Comon, P.

P. Comon, “Independent component analysis a new concept?” Signal Process. 36(3), 287–314 (1994).
[Crossref]

Dambre, J.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5(1), 3541 (2014).
[Crossref]

Davenport, M. L.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

de Lima, T. F.

P. Y. Ma, A. N. Tait, T. F. de Lima, S. Abbaslou, B. J. Shastri, and P. R. Prucnal, “Photonic principal component analysis using an on-chip microring weight bank,” Opt. Express 27(13), 18329–18342 (2019).
[Crossref]

A. N. Tait, P. Y. Ma, T. F. De Lima, E. C. Blow, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Demonstration of multivariate photonics: blind dimensionality reduction with integrated photonics,” J. Lightwave Technol. 37(24), 5996–6006 (2019).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Two-pole microring weight banks,” Opt. Lett. 43(10), 2276–2279 (2018).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Microring weight banks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 312–325 (2016).
[Crossref]

A. N. Tait, T. F. de Lima, P. Y. Ma, M. P. Chang, M. A. Nahmias, B. J. Shastri, P. Mittal, and P. R. Prucnal, “Blind source separation in the physical layer,” in “52nd Annual Conference on Information Sciences and Systems (CISS)”, (IEEE, 2018), pp. 1–6.

A. Tait, T. F. de Lima, P. Y. Ma, A. Jha, H.-T. Peng, H. Miller, and P. R. Prucnal, “lightwave-lab/lightlab: Version 1.0.5,” (2018). DOI: 10.5281/zenodo.1436917.

Deckoff-Jones, S.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Dhavachelvan, P.

P. Jebashini, R. Uma, P. Dhavachelvan, and H. K. Wye, “A survey and comparative analysis of multiply-accumulate (mac) block for digital signal processing application on asic and fpga,” J. Appl. Sci. 15(7), 934–946 (2015).
[Crossref]

Ding, R.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Dong, P.

Douaud, G.

G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, and S. M. Smith, “Automatic denoising of functional mri data: combining independent component analysis and hierarchical fusion of classifiers,” NeuroImage 90, 449–468 (2014).
[Crossref]

Doylend, J. K.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Duan, N.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Fan, L.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “Iii-v/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Fang, Q.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Feng, D.

Ferreira de Lima, T.

A. N. Tait, T. Ferreira de Lima, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Application regime and distortion metric for multivariate rf photonics,” in “IEEE Optical Interconnects Conference (OI),” (2017), p. 25–26.

Févotte, C.

E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in blind audio source separation,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1462–1469 (2006).
[Crossref]

Fiers, M.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5(1), 3541 (2014).
[Crossref]

Fujita, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Gan, F.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Garat, P.

D. T. Pham and P. Garat, “Blind separation of mixture of independent sources through a quasi-maximum likelihood approach,” IEEE Trans. Signal Process. 45(7), 1712–1725 (1997).
[Crossref]

Georgas, M.

Glasser, M. F.

G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, and S. M. Smith, “Automatic denoising of functional mri data: combining independent component analysis and hierarchical fusion of classifiers,” NeuroImage 90, 449–468 (2014).
[Crossref]

Goldsmith, A.

A. Goldsmith, Wireless communications (Cambridge University, 2005).

Gonçalves, C.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Gould, M.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Gribonval, R.

E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in blind audio source separation,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1462–1469 (2006).
[Crossref]

Griffanti, L.

G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, and S. M. Smith, “Automatic denoising of functional mri data: combining independent component analysis and hierarchical fusion of classifiers,” NeuroImage 90, 449–468 (2014).
[Crossref]

Gu, T.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Harris, N.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

He, L.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Heck, M. J.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Herault, J.

C. Jutten and J. Herault, “Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture,” Signal Process. 24(1), 1–10 (1991).
[Crossref]

Hochberg, M.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Hong, J.

R. K. Mongia, J. Hong, P. Bhartia, and I. J. Bahl, RF and microwave coupled-line circuits (Artech house, 2007).

Hoyer, P. O.

P. O. Hoyer and A. Hyvärinen, “Independent component analysis applied to feature extraction from colour and stereo images,” Network-Comp. Neural. 11(3), 191–210 (2000).
[Crossref]

Hu, J.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Hu, R.

Hyvarinen, A.

A. Hyvarinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Trans. Neural Netw. 10(3), 626–634 (1999).
[Crossref]

Hyvarinen, A..

A.. Hyvarinen, “Fast ica for noisy data using gaussian moments,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No. 99CH36349),” (IEEE, 1999), pp. 57–61.

Hyvärinen, A.

A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Netw. 13(4-5), 411–430 (2000).
[Crossref]

P. O. Hoyer and A. Hyvärinen, “Independent component analysis applied to feature extraction from colour and stereo images,” Network-Comp. Neural. 11(3), 191–210 (2000).
[Crossref]

A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis (John Wiley & Sons, 2004).

A. Hyvärinen, “New approximations of differential entropy for independent component analysis and projection pursuit,” in “Advances in neural information processing systems,” (1998), pp. 273–279.

Jaeger, N. A.

Jain, S.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jayatilleka, H.

Jebashini, P.

P. Jebashini, R. Uma, P. Dhavachelvan, and H. K. Wye, “A survey and comparative analysis of multiply-accumulate (mac) block for digital signal processing application on asic and fpga,” J. Appl. Sci. 15(7), 934–946 (2015).
[Crossref]

Jha, A.

A. Tait, T. F. de Lima, P. Y. Ma, A. Jha, H.-T. Peng, H. Miller, and P. R. Prucnal, “lightwave-lab/lightlab: Version 1.0.5,” (2018). DOI: 10.5281/zenodo.1436917.

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “Iii-v/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Jutten, C.

C. Jutten and J. Herault, “Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture,” Signal Process. 24(1), 1–10 (1991).
[Crossref]

Karhunen, J.

A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis (John Wiley & Sons, 2004).

Kim, T.

T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, “Blind source separation exploiting higher-order frequency dependencies,” IEEE Trans. Audio Speech Lang. Process. 15(1), 70–79 (2007).
[Crossref]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “Iii-v/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Kong, J.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Krishnamoorthy, A. V.

Kuh, E.

D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics: Identifying influential data and sources of collinearity (John Wiley & Sons, 2005).

Kung, C.-C.

Kurczveil, G.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Le, Q. V.

Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis,” in “CVPR 2011,” (2011), pp. 3361–3368.

Leaird, D. E.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Lee, S.-Y.

T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, “Blind source separation exploiting higher-order frequency dependencies,” IEEE Trans. Audio Speech Lang. Process. 15(1), 70–79 (2007).
[Crossref]

Lee, T.-W.

T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, “Blind source separation exploiting higher-order frequency dependencies,” IEEE Trans. Audio Speech Lang. Process. 15(1), 70–79 (2007).
[Crossref]

Lee, W.-Y.

I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer Netw. 50(13), 2127–2159 (2006).
[Crossref]

Leu, J.

Li, C.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Li, G.

Li, H.

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express 20(11), 12222–12232 (2012).
[Crossref]

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Li, J.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “Iii-v/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Liang, H.

Liao, S.

Liberman, V.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Lim, A. E.-J.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Lima, T. F.

A. N. Tait, T. F. Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref]

Lima, T. F. D.

Liow, T.-Y.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “Iii-v/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Lo, G.-Q.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Lu, M. Z.

M. P. Chang, E. C. Blow, M. Z. Lu, J. J. Sun, and P. R. Prucnal, “Rf characterization of an integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microwave Theory Tech. 66(1), 596–605 (2018).
[Crossref]

Ma, P. Y.

McDuff, D. J.

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Mechet, P.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5(1), 3541 (2014).
[Crossref]

Miller, H.

A. Tait, T. F. de Lima, P. Y. Ma, A. Jha, H.-T. Peng, H. Miller, and P. R. Prucnal, “lightwave-lab/lightlab: Version 1.0.5,” (2018). DOI: 10.5281/zenodo.1436917.

Mittal, P.

A. N. Tait, T. F. de Lima, P. Y. Ma, M. P. Chang, M. A. Nahmias, B. J. Shastri, P. Mittal, and P. R. Prucnal, “Blind source separation in the physical layer,” in “52nd Annual Conference on Information Sciences and Systems (CISS)”, (IEEE, 2018), pp. 1–6.

Mohanty, S.

I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer Netw. 50(13), 2127–2159 (2006).
[Crossref]

Mongia, R. K.

R. K. Mongia, J. Hong, P. Bhartia, and I. J. Bahl, RF and microwave coupled-line circuits (Artech house, 2007).

Morthier, G.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5(1), 3541 (2014).
[Crossref]

Moss, B.

Movellan, J. R.

M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by independent component analysis,” IEEE Trans. Neural Netw. 13(6), 1450–1464 (2002).
[Crossref]

Murmann, B.

T. Sundstrom, B. Murmann, and C. Svensson, “Power dissipation bounds for high-speed nyquist analog-to-digital converters,” IEEE Trans. Circuits Syst. I 56(3), 509–518 (2009).
[Crossref]

Murray, K.

Nahmias, M. A.

A. N. Tait, P. Y. Ma, T. F. De Lima, E. C. Blow, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Demonstration of multivariate photonics: blind dimensionality reduction with integrated photonics,” J. Lightwave Technol. 37(24), 5996–6006 (2019).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Two-pole microring weight banks,” Opt. Lett. 43(10), 2276–2279 (2018).
[Crossref]

A. N. Tait, H. Jayatilleka, T. F. D. Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
[Crossref]

A. N. Tait, T. F. Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Microring weight banks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 312–325 (2016).
[Crossref]

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 4029–4041 (2014).
[Crossref]

A. N. Tait, T. F. de Lima, P. Y. Ma, M. P. Chang, M. A. Nahmias, B. J. Shastri, P. Mittal, and P. R. Prucnal, “Blind source separation in the physical layer,” in “52nd Annual Conference on Information Sciences and Systems (CISS)”, (IEEE, 2018), pp. 1–6.

A. N. Tait, T. Ferreira de Lima, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Application regime and distortion metric for multivariate rf photonics,” in “IEEE Optical Interconnects Conference (OI),” (2017), p. 25–26.

Nakamura, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Nawrodt, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Ng, A. Y.

Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis,” in “CVPR 2011,” (2011), pp. 3361–3368.

Niu, B.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Oja, E.

A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Netw. 13(4-5), 411–430 (2000).
[Crossref]

A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis (John Wiley & Sons, 2004).

Orcutt, J. S.

Peng, H.-T.

A. Tait, T. F. de Lima, P. Y. Ma, A. Jha, H.-T. Peng, H. Miller, and P. R. Prucnal, “lightwave-lab/lightlab: Version 1.0.5,” (2018). DOI: 10.5281/zenodo.1436917.

Pham, D. T.

D. T. Pham and P. Garat, “Blind separation of mixture of independent sources through a quasi-maximum likelihood approach,” IEEE Trans. Signal Process. 45(7), 1712–1725 (1997).
[Crossref]

Picard, R. W.

Pinguet, T.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Poh, M.-Z.

Popovic, M.

Prucnal, P. R.

P. Y. Ma, A. N. Tait, T. F. de Lima, S. Abbaslou, B. J. Shastri, and P. R. Prucnal, “Photonic principal component analysis using an on-chip microring weight bank,” Opt. Express 27(13), 18329–18342 (2019).
[Crossref]

A. N. Tait, P. Y. Ma, T. F. De Lima, E. C. Blow, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Demonstration of multivariate photonics: blind dimensionality reduction with integrated photonics,” J. Lightwave Technol. 37(24), 5996–6006 (2019).
[Crossref]

A. N. Tait, H. Jayatilleka, T. F. D. Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Two-pole microring weight banks,” Opt. Lett. 43(10), 2276–2279 (2018).
[Crossref]

M. P. Chang, E. C. Blow, M. Z. Lu, J. J. Sun, and P. R. Prucnal, “Rf characterization of an integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microwave Theory Tech. 66(1), 596–605 (2018).
[Crossref]

A. N. Tait, T. F. Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Microring weight banks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 312–325 (2016).
[Crossref]

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 4029–4041 (2014).
[Crossref]

A. N. Tait, T. F. de Lima, P. Y. Ma, M. P. Chang, M. A. Nahmias, B. J. Shastri, P. Mittal, and P. R. Prucnal, “Blind source separation in the physical layer,” in “52nd Annual Conference on Information Sciences and Systems (CISS)”, (IEEE, 2018), pp. 1–6.

P. R. Prucnal and B. J. Shastri, Neuromorphic Photonics (CRC Press, 2017).

A. Tait, T. F. de Lima, P. Y. Ma, A. Jha, H.-T. Peng, H. Miller, and P. R. Prucnal, “lightwave-lab/lightlab: Version 1.0.5,” (2018). DOI: 10.5281/zenodo.1436917.

A. N. Tait, T. Ferreira de Lima, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Application regime and distortion metric for multivariate rf photonics,” in “IEEE Optical Interconnects Conference (OI),” (2017), p. 25–26.

Qi, M.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Qian, W.

Ram, R. J.

Richardson, K.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Ríos, C.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Roberts, C.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “Iii-v/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Salimi-Khorshidi, G.

G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, and S. M. Smith, “Automatic denoising of functional mri data: combining independent component analysis and hierarchical fusion of classifiers,” NeuroImage 90, 449–468 (2014).
[Crossref]

Schrauwen, B.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5(1), 3541 (2014).
[Crossref]

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Sejnowski, T. J.

M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by independent component analysis,” IEEE Trans. Neural Netw. 13(6), 1450–1464 (2002).
[Crossref]

Shafiiha, R.

Shainline, J.

Shalaginov, M.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Shastri, B. J.

P. Y. Ma, A. N. Tait, T. F. de Lima, S. Abbaslou, B. J. Shastri, and P. R. Prucnal, “Photonic principal component analysis using an on-chip microring weight bank,” Opt. Express 27(13), 18329–18342 (2019).
[Crossref]

A. N. Tait, P. Y. Ma, T. F. De Lima, E. C. Blow, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Demonstration of multivariate photonics: blind dimensionality reduction with integrated photonics,” J. Lightwave Technol. 37(24), 5996–6006 (2019).
[Crossref]

A. N. Tait, H. Jayatilleka, T. F. D. Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Two-pole microring weight banks,” Opt. Lett. 43(10), 2276–2279 (2018).
[Crossref]

A. N. Tait, T. F. Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Microring weight banks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 312–325 (2016).
[Crossref]

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 4029–4041 (2014).
[Crossref]

A. N. Tait, T. F. de Lima, P. Y. Ma, M. P. Chang, M. A. Nahmias, B. J. Shastri, P. Mittal, and P. R. Prucnal, “Blind source separation in the physical layer,” in “52nd Annual Conference on Information Sciences and Systems (CISS)”, (IEEE, 2018), pp. 1–6.

P. R. Prucnal and B. J. Shastri, Neuromorphic Photonics (CRC Press, 2017).

A. N. Tait, T. Ferreira de Lima, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Application regime and distortion metric for multivariate rf photonics,” in “IEEE Optical Interconnects Conference (OI),” (2017), p. 25–26.

Shekhar, S.

Shen, H.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Smith, S. M.

G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, and S. M. Smith, “Automatic denoising of functional mri data: combining independent component analysis and hierarchical fusion of classifiers,” NeuroImage 90, 449–468 (2014).
[Crossref]

Song, J.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Soref, R.

Srinivasan, S.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Stojanovic, V.

Streshinsky, M.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Sun, C.

Sun, J.

Sun, J. J.

M. P. Chang, E. C. Blow, M. Z. Lu, J. J. Sun, and P. R. Prucnal, “Rf characterization of an integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microwave Theory Tech. 66(1), 596–605 (2018).
[Crossref]

Sundstrom, T.

T. Sundstrom, B. Murmann, and C. Svensson, “Power dissipation bounds for high-speed nyquist analog-to-digital converters,” IEEE Trans. Circuits Syst. I 56(3), 509–518 (2009).
[Crossref]

Svensson, C.

T. Sundstrom, B. Murmann, and C. Svensson, “Power dissipation bounds for high-speed nyquist analog-to-digital converters,” IEEE Trans. Circuits Syst. I 56(3), 509–518 (2009).
[Crossref]

Tait, A.

A. Tait, T. F. de Lima, P. Y. Ma, A. Jha, H.-T. Peng, H. Miller, and P. R. Prucnal, “lightwave-lab/lightlab: Version 1.0.5,” (2018). DOI: 10.5281/zenodo.1436917.

Tait, A. N.

A. N. Tait, P. Y. Ma, T. F. De Lima, E. C. Blow, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Demonstration of multivariate photonics: blind dimensionality reduction with integrated photonics,” J. Lightwave Technol. 37(24), 5996–6006 (2019).
[Crossref]

P. Y. Ma, A. N. Tait, T. F. de Lima, S. Abbaslou, B. J. Shastri, and P. R. Prucnal, “Photonic principal component analysis using an on-chip microring weight bank,” Opt. Express 27(13), 18329–18342 (2019).
[Crossref]

A. N. Tait, H. Jayatilleka, T. F. D. Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Two-pole microring weight banks,” Opt. Lett. 43(10), 2276–2279 (2018).
[Crossref]

A. N. Tait, T. F. Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Microring weight banks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 312–325 (2016).
[Crossref]

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 4029–4041 (2014).
[Crossref]

A. N. Tait, T. F. de Lima, P. Y. Ma, M. P. Chang, M. A. Nahmias, B. J. Shastri, P. Mittal, and P. R. Prucnal, “Blind source separation in the physical layer,” in “52nd Annual Conference on Information Sciences and Systems (CISS)”, (IEEE, 2018), pp. 1–6.

A. N. Tait, T. Ferreira de Lima, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Application regime and distortion metric for multivariate rf photonics,” in “IEEE Optical Interconnects Conference (OI),” (2017), p. 25–26.

Tang, Y.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Teo, S. H.-G.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Tern, R. P.-C.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Tu, X.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Tuan-Do-Hong, P. Russer

P. Russer Tuan-Do-Hong, “Signal processing for wideband smart antenna array applications,” IEEE Microw. Mag. 5(1), 57–67 (2004).
[Crossref]

Uma, R.

P. Jebashini, R. Uma, P. Dhavachelvan, and H. K. Wye, “A survey and comparative analysis of multiply-accumulate (mac) block for digital signal processing application on asic and fpga,” J. Appl. Sci. 15(7), 934–946 (2015).
[Crossref]

Urino, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Uroševic, S.

Van Vaerenbergh, T.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5(1), 3541 (2014).
[Crossref]

Vandoorne, K.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5(1), 3541 (2014).
[Crossref]

Varghese, L. T.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Verstraeten, D.

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5(1), 3541 (2014).
[Crossref]

Vincent, E.

E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in blind audio source separation,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1462–1469 (2006).
[Crossref]

Vuran, M. C.

I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer Netw. 50(13), 2127–2159 (2006).
[Crossref]

Walden, R. H.

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Select. Areas Commun. 17(4), 539–550 (1999).
[Crossref]

Wang, H.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

Wang, J.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Wang, X.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Weaver, M.

Weiner, A. M.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Welsch, R. E.

D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics: Identifying influential data and sources of collinearity (John Wiley & Sons, 2005).

Wu, A. X.

A. N. Tait, A. X. Wu, T. F. de Lima, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Two-pole microring weight banks,” Opt. Lett. 43(10), 2276–2279 (2018).
[Crossref]

A. N. Tait, T. F. Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Microring weight banks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 312–325 (2016).
[Crossref]

Wu, R.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Wye, H. K.

P. Jebashini, R. Uma, P. Dhavachelvan, and H. K. Wye, “A survey and comparative analysis of multiply-accumulate (mac) block for digital signal processing application on asic and fpga,” J. Appl. Sci. 15(7), 934–946 (2015).
[Crossref]

Xu, Q.

Xuan, Y.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Yeung, S. Y.

Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis,” in “CVPR 2011,” (2011), pp. 3361–3368.

Zgraggen, E.

Zhang, Y.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

Zheng, D.

Zheng, X.

Zhou, E.

A. N. Tait, T. F. Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Microring weight banks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 312–325 (2016).
[Crossref]

Zou, W. Y.

Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis,” in “CVPR 2011,” (2011), pp. 3361–3368.

Appl. Phys. Lett. (1)

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Comput. J. (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Computer Netw. (1)

I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer Netw. 50(13), 2127–2159 (2006).
[Crossref]

IEEE Commun. Mag. (1)

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

A. N. Tait, A. X. Wu, T. F. de Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Microring weight banks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 312–325 (2016).
[Crossref]

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

IEEE J. Select. Areas Commun. (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Select. Areas Commun. 17(4), 539–550 (1999).
[Crossref]

IEEE Microw. Mag. (1)

P. Russer Tuan-Do-Hong, “Signal processing for wideband smart antenna array applications,” IEEE Microw. Mag. 5(1), 57–67 (2004).
[Crossref]

IEEE Trans. Audio Speech Lang. Process. (2)

T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, “Blind source separation exploiting higher-order frequency dependencies,” IEEE Trans. Audio Speech Lang. Process. 15(1), 70–79 (2007).
[Crossref]

E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in blind audio source separation,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1462–1469 (2006).
[Crossref]

IEEE Trans. Circuits Syst. I (1)

T. Sundstrom, B. Murmann, and C. Svensson, “Power dissipation bounds for high-speed nyquist analog-to-digital converters,” IEEE Trans. Circuits Syst. I 56(3), 509–518 (2009).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

M. P. Chang, E. C. Blow, M. Z. Lu, J. J. Sun, and P. R. Prucnal, “Rf characterization of an integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microwave Theory Tech. 66(1), 596–605 (2018).
[Crossref]

IEEE Trans. Neural Netw. (2)

M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by independent component analysis,” IEEE Trans. Neural Netw. 13(6), 1450–1464 (2002).
[Crossref]

A. Hyvarinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Trans. Neural Netw. 10(3), 626–634 (1999).
[Crossref]

IEEE Trans. Signal Process. (1)

D. T. Pham and P. Garat, “Blind separation of mixture of independent sources through a quasi-maximum likelihood approach,” IEEE Trans. Signal Process. 45(7), 1712–1725 (1997).
[Crossref]

J. Appl. Sci. (1)

P. Jebashini, R. Uma, P. Dhavachelvan, and H. K. Wye, “A survey and comparative analysis of multiply-accumulate (mac) block for digital signal processing application on asic and fpga,” J. Appl. Sci. 15(7), 934–946 (2015).
[Crossref]

J. Lightwave Technol. (2)

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 4029–4041 (2014).
[Crossref]

A. N. Tait, P. Y. Ma, T. F. De Lima, E. C. Blow, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Demonstration of multivariate photonics: blind dimensionality reduction with integrated photonics,” J. Lightwave Technol. 37(24), 5996–6006 (2019).
[Crossref]

Laser Photonics Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “Iii-v/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Nat. Commun. (2)

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Commun. 5(1), 3541 (2014).
[Crossref]

Network-Comp. Neural. (1)

P. O. Hoyer and A. Hyvärinen, “Independent component analysis applied to feature extraction from colour and stereo images,” Network-Comp. Neural. 11(3), 191–210 (2000).
[Crossref]

Neural Netw. (1)

A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Netw. 13(4-5), 411–430 (2000).
[Crossref]

NeuroImage (1)

G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, and S. M. Smith, “Automatic denoising of functional mri data: combining independent component analysis and hierarchical fusion of classifiers,” NeuroImage 90, 449–468 (2014).
[Crossref]

Opt. Express (7)

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[Crossref]

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
[Crossref]

Q. Xu and R. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
[Crossref]

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express 20(11), 12222–12232 (2012).
[Crossref]

H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
[Crossref]

A. N. Tait, H. Jayatilleka, T. F. D. Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
[Crossref]

P. Y. Ma, A. N. Tait, T. F. de Lima, S. Abbaslou, B. J. Shastri, and P. R. Prucnal, “Photonic principal component analysis using an on-chip microring weight bank,” Opt. Express 27(13), 18329–18342 (2019).
[Crossref]

Opt. Lett. (1)

Sci. Rep. (1)

A. N. Tait, T. F. Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref]

Signal Process. (2)

C. Jutten and J. Herault, “Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture,” Signal Process. 24(1), 1–10 (1991).
[Crossref]

P. Comon, “Independent component analysis a new concept?” Signal Process. 36(3), 287–314 (1994).
[Crossref]

Other (13)

Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis,” in “CVPR 2011,” (2011), pp. 3361–3368.

R. K. Mongia, J. Hong, P. Bhartia, and I. J. Bahl, RF and microwave coupled-line circuits (Artech house, 2007).

A. N. Tait, T. F. de Lima, P. Y. Ma, M. P. Chang, M. A. Nahmias, B. J. Shastri, P. Mittal, and P. R. Prucnal, “Blind source separation in the physical layer,” in “52nd Annual Conference on Information Sciences and Systems (CISS)”, (IEEE, 2018), pp. 1–6.

P. R. Prucnal and B. J. Shastri, Neuromorphic Photonics (CRC Press, 2017).

A. Tait, T. F. de Lima, P. Y. Ma, A. Jha, H.-T. Peng, H. Miller, and P. R. Prucnal, “lightwave-lab/lightlab: Version 1.0.5,” (2018). DOI: 10.5281/zenodo.1436917.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 gb/s silicon photonics platform,” arXiv preprint arXiv:1203.0767 (2012).

A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis (John Wiley & Sons, 2004).

A. Hyvärinen, “New approximations of differential entropy for independent component analysis and projection pursuit,” in “Advances in neural information processing systems,” (1998), pp. 273–279.

C. Ríos, Y. Zhang, S. Deckoff-Jones, H. Li, J. B. Chou, H. Wang, M. Shalaginov, C. Roberts, C. Gonçalves, V. Liberman, T. Gu, J. Kong, K. Richardson, and J. Hu, “Reversible switching of optical phase change materials using graphene microheaters,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2019), p. SF2H.4.

D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics: Identifying influential data and sources of collinearity (John Wiley & Sons, 2005).

A.. Hyvarinen, “Fast ica for noisy data using gaussian moments,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No. 99CH36349),” (IEEE, 1999), pp. 57–61.

A. Goldsmith, Wireless communications (Cambridge University, 2005).

A. N. Tait, T. Ferreira de Lima, M. P. Chang, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Application regime and distortion metric for multivariate rf photonics,” in “IEEE Optical Interconnects Conference (OI),” (2017), p. 25–26.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the experimental setup for performing photonic ICA using an on-chip MRR weight bank. DFB: distributed feedback laser, MZM: Mach-Zehnder modulator, ATT: RF attenuator, AWG: arbitrary wave generator, MUX: WDM multiplexer, SM: source meter, BPD: balanced photo-detector, Oscope: sampling oscilloscope. The synchronization (SYNC) switch toggles the Oscope triggering state between a repeating pattern from AWG and a free-running clock at 200 kHz. (b) Micrograph of the fabricated MRR weight bank. MRRs are coupled with two bus waveguides that input the WDM signals at the IN port, and output the weighted WDM signals at the THRU and DROP ports. Metal traces are deposited to deliver the tuning current to the MRR weight bank to thermally tune the optical transmission of MRRs to configure their weights. (c) Two-channel weight evaluation results in the same format of [26,33]. Black grid crossings are the target weights. Red lines represent the deviation between the target weights and the mean of measured weights over 3 repetitions. Blue ellipses represent the standard deviation of measured weights over 3 repetitions. (d) Example of IC sources generated by two AWGs; top: square wave with kurtosis of 2, and bottom: sinusoidal wave with kurtosis of 1.5.
Fig. 2.
Fig. 2. Flowchart of the complete photonic ICA procedure exploiting the interaction between the photonic hardware (MRR weight bank plus BPD) and software (photonic PCA/ICA algorithms). First, the photonic hardware produces the weighted addition output $\mathbf {y}$ of the input mixtures $\mathbf {X}$. Next, the photonic PCA algorithm updates the weight vectors $\mathbf {w_1,\ldots ,w_n}$ (set at the MRR weight bank) to be the target PC vectors by maximizing the variance of $\mathbf {y}$ (when switch is on 1). Finally, the photonic ICA algorithm takes the whitening matrix $\mathbf {V}$ computed from photonic PCA results, and updates the weight vectors in the whitened subspace $\mathbf {Vw_1,\ldots ,Vw_n}$ to be the target IC vectors by maximizing the kurtosis of $\mathbf {y}$ (when switch is on 2). Both photonic PCA and ICA algorithms require multiple iterations for convergence. Detailed code implementations of photonic PCA can be found in [26], while code implementations of photonic ICA can be found in Appendix A of this manuscript.
Fig. 3.
Fig. 3. Experimental waveforms of the received mixtures (left column) and corresponding ICs (right column) associated with 4 typical condition numbers of the mixing matrix: (a) $\kappa =1$, (b) $\kappa =5$, (c) $\kappa =10$, (d) $\kappa =21$. The degradation of channel separability conditions (from top to bottom) makes it more difficult for FastICA (black curves) and PhotonicICA (red curves) to retrieve correct ICs.
Fig. 4.
Fig. 4. Experimental waveforms of the received mixtures (left column) and corresponding ICs (right column) associated with 4 typical power ratios of the received power levels of ICs: (a) SIR $ =0$ dB, (b) SIR $ =-4.44$ dB, (c) SIR $ =-7.96$ dB, (d) SIR $ =-12.04$ dB. Here, the square wave is the signal of interest (i.e., far source), while the sinusoidal wave is the signal of interference (i.e., near source). The decrease of the SIR (from top to bottom) makes it more difficult for FastICA (black curves, IC1) and PhotonicICA (red curves, IC1) to retrieve square waves. The recovery of sinusoidal wave (IC2) is largely successful thanks to the pure copy of it on the second mixture channel (RX2).
Fig. 5.
Fig. 5. Numerical investigations of the photonic ICA performance considering the channel noise added in the mixing process. Curves associated with 7 typical SNR values between 0 dB and 30 dB are displayed to show the noise effect on: (a) RMSE versus $\kappa$ ranging from 1 to 1000. The red asterisks represent our experimental data of channel separability conditions whose SNR range is between 21 dB and 23 dB. The label next to each asterisk stands for the corresponding $\kappa$ value. (b) RMSE versus SIR ranging from -20 dB to 5 dB. The red asterisks represent our experimental data of near-far conditions whose SNR range is between 20 dB and 24 dB. The label next to each asterisk stands for the corresponding SIR value.

Tables (2)

Tables Icon

Table 1. ICA Performance Under Channel Separability Conditions

Tables Icon

Table 2. ICA Performance Under Near-far Conditions

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k u r t ( y ) = μ 4 ( y ) σ 4 ( y ) 3
A = [ a 1 a 2 a 3 a 4 ]
κ ( A ) = | | A | | | | A 1 | |
A = [ ϵ 1 0 1 ]