M. Kazemi, Z. Kavehvash, and M. Shabany, “K-space aware multi-static millimeter-wave imaging,” IEEE Trans. on Image Process. 28(7), 3613–3623 (2019).

[Crossref]

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).

[Crossref]

M. E. Yanik and M. Torlak, “Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data,” IEEE Access 7, 31801–31819 (2019).

[Crossref]

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).

[Crossref]

U. Alkus, A. B. Sahin, and H. Altan, “Stand-off through-the-wall W-band millimeter-wave imaging using compressive sensing,” IEEE Geosci. Remote Sensing Lett. 15(7), 1025–1029 (2018).

[Crossref]

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).

[Crossref]

E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).

[Crossref]

S. Mohapatra and J. Weisshaar, “Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells,” BMC Bioinformatics 19(1), 428 (2018).

[Crossref]

R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).

[Crossref]

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).

[Crossref]

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).

[Crossref]

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).

[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).

[Crossref]

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).

[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).

[Crossref]

V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).

[Crossref]

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).

[Crossref]

K. Lin, J. Deng, and K. Feng, “Time–frequency multiplex transceiver design with RX IQ imbalance, CFO, and multipath channel estimation and compensation for multicarrier systems,” Wireless Pers. Commun. 87(1), 107–123 (2016).

[Crossref]

Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).

[Crossref]

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” IEEE Trans. Signal Process. 63(18), 4814–4826 (2015).

[Crossref]

L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).

[Crossref]

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).

[Crossref]

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).

[Crossref]

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).

[Crossref]

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).

[Crossref]

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sensing 49(1), 509–518 (2011).

[Crossref]

D. M. Sheen and T. E. Hall, “Calibration, reconstruction, and rendering of cylindrical millimeter-wave image data,” Proc. SPIE 8022, 80220H (2011).

[Crossref]

A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).

[Crossref]

J. Tsai and T. Huang, “35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Tech. 55(10), 2075–2085 (2007).

[Crossref]

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).

[Crossref]

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).

[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).

[Crossref]

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. on Image Process. 1(1), 64–76 (1992).

[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).

[Crossref]

U. Alkus, A. B. Sahin, and H. Altan, “Stand-off through-the-wall W-band millimeter-wave imaging using compressive sensing,” IEEE Geosci. Remote Sensing Lett. 15(7), 1025–1029 (2018).

[Crossref]

H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.

U. Alkus, A. B. Sahin, and H. Altan, “Stand-off through-the-wall W-band millimeter-wave imaging using compressive sensing,” IEEE Geosci. Remote Sensing Lett. 15(7), 1025–1029 (2018).

[Crossref]

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).

[Crossref]

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).

[Crossref]

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).

[Crossref]

E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).

[Crossref]

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).

[Crossref]

A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).

[Crossref]

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).

[Crossref]

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).

[Crossref]

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).

[Crossref]

L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).

[Crossref]

Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).

[Crossref]

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).

[Crossref]

Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).

[Crossref]

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).

[Crossref]

Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).

[Crossref]

A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).

[Crossref]

A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).

[Crossref]

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).

[Crossref]

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).

[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).

[Crossref]

K. Lin, J. Deng, and K. Feng, “Time–frequency multiplex transceiver design with RX IQ imbalance, CFO, and multipath channel estimation and compensation for multicarrier systems,” Wireless Pers. Commun. 87(1), 107–123 (2016).

[Crossref]

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).

[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).

[Crossref]

E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).

[Crossref]

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).

[Crossref]

K. Lin, J. Deng, and K. Feng, “Time–frequency multiplex transceiver design with RX IQ imbalance, CFO, and multipath channel estimation and compensation for multicarrier systems,” Wireless Pers. Commun. 87(1), 107–123 (2016).

[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).

[Crossref]

R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).

[Crossref]

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).

[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).

[Crossref]

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).

[Crossref]

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).

[Crossref]

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).

[Crossref]

D. M. Sheen and T. E. Hall, “Calibration, reconstruction, and rendering of cylindrical millimeter-wave image data,” Proc. SPIE 8022, 80220H (2011).

[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).

[Crossref]

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).

[Crossref]

J. T. Logan, D. S. Reinhard, and K. E. Hauck, “Phased array calibration and diagnostics utilizing a student-built planar near-field system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 279–286.

V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).

[Crossref]

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).

[Crossref]

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).

[Crossref]

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).

[Crossref]

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).

[Crossref]

J. Tsai and T. Huang, “35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Tech. 55(10), 2075–2085 (2007).

[Crossref]

H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).

[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).

[Crossref]

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” IEEE Trans. Signal Process. 63(18), 4814–4826 (2015).

[Crossref]

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).

[Crossref]

R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).

[Crossref]

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).

[Crossref]

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).

[Crossref]

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).

[Crossref]

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).

[Crossref]

Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).

[Crossref]

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).

[Crossref]

M. Kazemi, Z. Kavehvash, and M. Shabany, “K-space aware multi-static millimeter-wave imaging,” IEEE Trans. on Image Process. 28(7), 3613–3623 (2019).

[Crossref]

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).

[Crossref]

M. Kazemi, Z. Kavehvash, and M. Shabany, “K-space aware multi-static millimeter-wave imaging,” IEEE Trans. on Image Process. 28(7), 3613–3623 (2019).

[Crossref]

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).

[Crossref]

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).

[Crossref]

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).

[Crossref]

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).

[Crossref]

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).

[Crossref]

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).

[Crossref]

K. Lin, J. Deng, and K. Feng, “Time–frequency multiplex transceiver design with RX IQ imbalance, CFO, and multipath channel estimation and compensation for multicarrier systems,” Wireless Pers. Commun. 87(1), 107–123 (2016).

[Crossref]

H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.

A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).

[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).

[Crossref]

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).

[Crossref]

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).

[Crossref]

J. T. Logan, D. S. Reinhard, and K. E. Hauck, “Phased array calibration and diagnostics utilizing a student-built planar near-field system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 279–286.

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).

[Crossref]

V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).

[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).

[Crossref]

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).

[Crossref]

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).

[Crossref]

S. Mohapatra and J. Weisshaar, “Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells,” BMC Bioinformatics 19(1), 428 (2018).

[Crossref]

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).

[Crossref]

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” IEEE Trans. Signal Process. 63(18), 4814–4826 (2015).

[Crossref]

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).

[Crossref]

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).

[Crossref]

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).

[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).

[Crossref]

V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).

[Crossref]

E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).

[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).

[Crossref]

V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).

[Crossref]

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).

[Crossref]

L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).

[Crossref]

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).

[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).

[Crossref]

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).

[Crossref]

J. T. Logan, D. S. Reinhard, and K. E. Hauck, “Phased array calibration and diagnostics utilizing a student-built planar near-field system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 279–286.

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).

[Crossref]

E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).

[Crossref]

U. Alkus, A. B. Sahin, and H. Altan, “Stand-off through-the-wall W-band millimeter-wave imaging using compressive sensing,” IEEE Geosci. Remote Sensing Lett. 15(7), 1025–1029 (2018).

[Crossref]

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” IEEE Trans. Signal Process. 63(18), 4814–4826 (2015).

[Crossref]

M. Kazemi, Z. Kavehvash, and M. Shabany, “K-space aware multi-static millimeter-wave imaging,” IEEE Trans. on Image Process. 28(7), 3613–3623 (2019).

[Crossref]

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).

[Crossref]

D. M. Sheen and T. E. Hall, “Calibration, reconstruction, and rendering of cylindrical millimeter-wave image data,” Proc. SPIE 8022, 80220H (2011).

[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).

[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).

[Crossref]

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. on Image Process. 1(1), 64–76 (1992).

[Crossref]

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).

[Crossref]

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).

[Crossref]

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).

[Crossref]

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).

[Crossref]

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).

[Crossref]

M. E. Yanik and M. Torlak, “Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data,” IEEE Access 7, 31801–31819 (2019).

[Crossref]

J. Tsai and T. Huang, “35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Tech. 55(10), 2075–2085 (2007).

[Crossref]

H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).

[Crossref]

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).

[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).

[Crossref]

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).

[Crossref]

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).

[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).

[Crossref]

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).

[Crossref]

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).

[Crossref]

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).

[Crossref]

L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).

[Crossref]

S. Mohapatra and J. Weisshaar, “Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells,” BMC Bioinformatics 19(1), 428 (2018).

[Crossref]

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).

[Crossref]

H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).

[Crossref]

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).

[Crossref]

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).

[Crossref]

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).

[Crossref]

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).

[Crossref]

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).

[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).

[Crossref]

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).

[Crossref]

M. E. Yanik and M. Torlak, “Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data,” IEEE Access 7, 31801–31819 (2019).

[Crossref]

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sensing 49(1), 509–518 (2011).

[Crossref]

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).

[Crossref]

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).

[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).

[Crossref]

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).

[Crossref]

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).

[Crossref]

L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).

[Crossref]

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).

[Crossref]

R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).

[Crossref]

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).

[Crossref]

R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).

[Crossref]

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sensing 49(1), 509–518 (2011).

[Crossref]

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).

[Crossref]

S. Mohapatra and J. Weisshaar, “Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells,” BMC Bioinformatics 19(1), 428 (2018).

[Crossref]

M. E. Yanik and M. Torlak, “Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data,” IEEE Access 7, 31801–31819 (2019).

[Crossref]

R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).

[Crossref]

U. Alkus, A. B. Sahin, and H. Altan, “Stand-off through-the-wall W-band millimeter-wave imaging using compressive sensing,” IEEE Geosci. Remote Sensing Lett. 15(7), 1025–1029 (2018).

[Crossref]

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).

[Crossref]

V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).

[Crossref]

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).

[Crossref]

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).

[Crossref]

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sensing 49(1), 509–518 (2011).

[Crossref]

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).

[Crossref]

A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).

[Crossref]

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).

[Crossref]

Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).

[Crossref]

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).

[Crossref]

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).

[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).

[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).

[Crossref]

J. Tsai and T. Huang, “35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Tech. 55(10), 2075–2085 (2007).

[Crossref]

M. Kazemi, Z. Kavehvash, and M. Shabany, “K-space aware multi-static millimeter-wave imaging,” IEEE Trans. on Image Process. 28(7), 3613–3623 (2019).

[Crossref]

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).

[Crossref]

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. on Image Process. 1(1), 64–76 (1992).

[Crossref]

E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).

[Crossref]

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” IEEE Trans. Signal Process. 63(18), 4814–4826 (2015).

[Crossref]

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).

[Crossref]

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).

[Crossref]

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).

[Crossref]

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).

[Crossref]

L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).

[Crossref]

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).

[Crossref]

D. M. Sheen and T. E. Hall, “Calibration, reconstruction, and rendering of cylindrical millimeter-wave image data,” Proc. SPIE 8022, 80220H (2011).

[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).

[Crossref]

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).

[Crossref]

K. Lin, J. Deng, and K. Feng, “Time–frequency multiplex transceiver design with RX IQ imbalance, CFO, and multipath channel estimation and compensation for multicarrier systems,” Wireless Pers. Commun. 87(1), 107–123 (2016).

[Crossref]

H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.

J. T. Logan, D. S. Reinhard, and K. E. Hauck, “Phased array calibration and diagnostics utilizing a student-built planar near-field system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 279–286.