Abstract

A conventional millimeter-wave stepped frequency continuous wave (SFCW) synthetic aperture radar (SAR) imaging system generally utilizes IQ modulation technique to acquire the amplitude and phase of the waves scattered from a target object. Due to measure both in-phase signal and quadrature signal, the transceiver of the conventional system is complicate and costly, and the IQ imbalance problem makes the system difficult to calibrate. To reduce hardware complexity and enhance efficiency-cost ratio, a novel SFCW SAR imaging system only measuring in-phase signal is proposed and demonstrated. For lack of quadrature signal measurement, an algorithm based on Fourier transform is proposed to estimate the amplitude and phase. The ultimate images are obtained through an image-reconstruction algorithm, which uses the estimated amplitude and phase as input parameters. The proposed system is verified by both simulation and experiment, where the frequencies are set from 24GHz to 30GHz. The imaging results with high resolution and low noise are demonstrated. Compared to the conventional system, the image quality of the proposed system is almost identical, but the transceiver of the proposed system is greatly simplified.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna

Claire M. Watts, Andreas Pedross-Engel, David R. Smith, and Matthew S. Reynolds
J. Opt. Soc. Am. B 34(2) 300-306 (2017)

A system-level simulator for indoor mmW SAR imaging and its applications

Feng Qi, Ilja Ocket, Dominique Schreurs, and Bart Nauwelaers
Opt. Express 20(21) 23811-23820 (2012)

Compressive sensing for direct millimeter-wave holographic imaging

Lingbo Qiao, Yingxin Wang, Zongjun Shen, Ziran Zhao, and Zhiqiang Chen
Appl. Opt. 54(11) 3280-3289 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Kazemi, Z. Kavehvash, and M. Shabany, “K-space aware multi-static millimeter-wave imaging,” IEEE Trans. on Image Process. 28(7), 3613–3623 (2019).
    [Crossref]
  2. V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).
    [Crossref]
  3. C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).
    [Crossref]
  4. M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).
    [Crossref]
  5. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
    [Crossref]
  6. X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sensing 49(1), 509–518 (2011).
    [Crossref]
  7. W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).
    [Crossref]
  8. A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).
    [Crossref]
  9. E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).
    [Crossref]
  10. U. Alkus, A. B. Sahin, and H. Altan, “Stand-off through-the-wall W-band millimeter-wave imaging using compressive sensing,” IEEE Geosci. Remote Sensing Lett. 15(7), 1025–1029 (2018).
    [Crossref]
  11. Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).
    [Crossref]
  12. L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).
    [Crossref]
  13. X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).
    [Crossref]
  14. M. E. Yanik and M. Torlak, “Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data,” IEEE Access 7, 31801–31819 (2019).
    [Crossref]
  15. J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).
    [Crossref]
  16. G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).
    [Crossref]
  17. R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).
    [Crossref]
  18. Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).
    [Crossref]
  19. S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).
    [Crossref]
  20. D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).
    [Crossref]
  21. A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).
    [Crossref]
  22. H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.
  23. K. Lin, J. Deng, and K. Feng, “Time–frequency multiplex transceiver design with RX IQ imbalance, CFO, and multipath channel estimation and compensation for multicarrier systems,” Wireless Pers. Commun. 87(1), 107–123 (2016).
    [Crossref]
  24. A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).
    [Crossref]
  25. E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).
    [Crossref]
  26. P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” IEEE Trans. Signal Process. 63(18), 4814–4826 (2015).
    [Crossref]
  27. G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).
    [Crossref]
  28. S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).
    [Crossref]
  29. M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. on Image Process. 1(1), 64–76 (1992).
    [Crossref]
  30. J. Tsai and T. Huang, “35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Tech. 55(10), 2075–2085 (2007).
    [Crossref]
  31. F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).
    [Crossref]
  32. D. M. Sheen and T. E. Hall, “Calibration, reconstruction, and rendering of cylindrical millimeter-wave image data,” Proc. SPIE 8022, 80220H (2011).
    [Crossref]
  33. J. T. Logan, D. S. Reinhard, and K. E. Hauck, “Phased array calibration and diagnostics utilizing a student-built planar near-field system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 279–286.
  34. S. Mohapatra and J. Weisshaar, “Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells,” BMC Bioinformatics 19(1), 428 (2018).
    [Crossref]
  35. Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).
    [Crossref]

2019 (3)

M. Kazemi, Z. Kavehvash, and M. Shabany, “K-space aware multi-static millimeter-wave imaging,” IEEE Trans. on Image Process. 28(7), 3613–3623 (2019).
[Crossref]

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).
[Crossref]

M. E. Yanik and M. Torlak, “Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data,” IEEE Access 7, 31801–31819 (2019).
[Crossref]

2018 (5)

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).
[Crossref]

U. Alkus, A. B. Sahin, and H. Altan, “Stand-off through-the-wall W-band millimeter-wave imaging using compressive sensing,” IEEE Geosci. Remote Sensing Lett. 15(7), 1025–1029 (2018).
[Crossref]

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).
[Crossref]

E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).
[Crossref]

S. Mohapatra and J. Weisshaar, “Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells,” BMC Bioinformatics 19(1), 428 (2018).
[Crossref]

2017 (7)

R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).
[Crossref]

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).
[Crossref]

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).
[Crossref]

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).
[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).
[Crossref]

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).
[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).
[Crossref]

2016 (4)

V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).
[Crossref]

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).
[Crossref]

K. Lin, J. Deng, and K. Feng, “Time–frequency multiplex transceiver design with RX IQ imbalance, CFO, and multipath channel estimation and compensation for multicarrier systems,” Wireless Pers. Commun. 87(1), 107–123 (2016).
[Crossref]

Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).
[Crossref]

2015 (3)

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” IEEE Trans. Signal Process. 63(18), 4814–4826 (2015).
[Crossref]

L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).
[Crossref]

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).
[Crossref]

2014 (1)

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).
[Crossref]

2013 (1)

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).
[Crossref]

2012 (1)

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).
[Crossref]

2011 (2)

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sensing 49(1), 509–518 (2011).
[Crossref]

D. M. Sheen and T. E. Hall, “Calibration, reconstruction, and rendering of cylindrical millimeter-wave image data,” Proc. SPIE 8022, 80220H (2011).
[Crossref]

2008 (1)

A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).
[Crossref]

2007 (1)

J. Tsai and T. Huang, “35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Tech. 55(10), 2075–2085 (2007).
[Crossref]

2006 (1)

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).
[Crossref]

2004 (1)

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).
[Crossref]

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

1992 (1)

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. on Image Process. 1(1), 64–76 (1992).
[Crossref]

Alderman, B.

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).
[Crossref]

Alkus, U.

U. Alkus, A. B. Sahin, and H. Altan, “Stand-off through-the-wall W-band millimeter-wave imaging using compressive sensing,” IEEE Geosci. Remote Sensing Lett. 15(7), 1025–1029 (2018).
[Crossref]

Alsuraisry, H.

H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.

Altan, H.

U. Alkus, A. B. Sahin, and H. Altan, “Stand-off through-the-wall W-band millimeter-wave imaging using compressive sensing,” IEEE Geosci. Remote Sensing Lett. 15(7), 1025–1029 (2018).
[Crossref]

Austin, R.

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).
[Crossref]

Bao, Z.

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).
[Crossref]

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).
[Crossref]

Beck, A.

E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).
[Crossref]

Bi, D.

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).
[Crossref]

Capozzoli, A.

A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).
[Crossref]

Carroll, B.

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).
[Crossref]

Chen, J.

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).
[Crossref]

Chen, R.

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).
[Crossref]

Chen, Z.

L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).
[Crossref]

Cheon, C.

Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).
[Crossref]

Cho, Y.

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).
[Crossref]

Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).
[Crossref]

Chung, Y.

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).
[Crossref]

Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).
[Crossref]

Curcio, C.

A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).
[Crossref]

D’Elia, G.

A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).
[Crossref]

Demirci, S.

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).
[Crossref]

Deng, B.

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).
[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).
[Crossref]

Deng, J.

K. Lin, J. Deng, and K. Feng, “Time–frequency multiplex transceiver design with RX IQ imbalance, CFO, and multipath channel estimation and compensation for multicarrier systems,” Wireless Pers. Commun. 87(1), 107–123 (2016).
[Crossref]

Ding, S.

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).
[Crossref]

Duff, C. I.

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).
[Crossref]

Eldar, Y. C.

E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).
[Crossref]

Farsaei, A. A.

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).
[Crossref]

Feng, K.

K. Lin, J. Deng, and K. Feng, “Time–frequency multiplex transceiver design with RX IQ imbalance, CFO, and multipath channel estimation and compensation for multicarrier systems,” Wireless Pers. Commun. 87(1), 107–123 (2016).
[Crossref]

Firdaus, M.

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).
[Crossref]

Fu, Q.

R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).
[Crossref]

Gao, J.

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).
[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).
[Crossref]

Garay, E.

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).
[Crossref]

Ghasr, M. T.

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).
[Crossref]

Guo, R.

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).
[Crossref]

Hall, T. E.

D. M. Sheen and T. E. Hall, “Calibration, reconstruction, and rendering of cylindrical millimeter-wave image data,” Proc. SPIE 8022, 80220H (2011).
[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Han, C.

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).
[Crossref]

Hauck, K. E.

J. T. Logan, D. S. Reinhard, and K. E. Hauck, “Phased array calibration and diagnostics utilizing a student-built planar near-field system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 279–286.

Hedden, A. S.

V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).
[Crossref]

Hong, W.

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).
[Crossref]

Hu, X.

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).
[Crossref]

Hu, Y.

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).
[Crossref]

Huang, P.

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).
[Crossref]

Huang, T.

J. Tsai and T. Huang, “35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Tech. 55(10), 2075–2085 (2007).
[Crossref]

H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.

Huang, Z.

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).
[Crossref]

Huggard, P. G.

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).
[Crossref]

Jain, P.

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” IEEE Trans. Signal Process. 63(18), 4814–4826 (2015).
[Crossref]

Javad Seyed-Talebi, S. M.

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).
[Crossref]

Jiang, G.

R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).
[Crossref]

Jiang, S.

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).
[Crossref]

Jiang, X.

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).
[Crossref]

Jing, G.

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).
[Crossref]

Jung, H.

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).
[Crossref]

Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).
[Crossref]

Jung, S.

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).
[Crossref]

Kavehvash, Z.

M. Kazemi, Z. Kavehvash, and M. Shabany, “K-space aware multi-static millimeter-wave imaging,” IEEE Trans. on Image Process. 28(7), 3613–3623 (2019).
[Crossref]

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).
[Crossref]

Kazemi, M.

M. Kazemi, Z. Kavehvash, and M. Shabany, “K-space aware multi-static millimeter-wave imaging,” IEEE Trans. on Image Process. 28(7), 3613–3623 (2019).
[Crossref]

Kharkovsky, S.

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).
[Crossref]

Kim, J.

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).
[Crossref]

Li, S.

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).
[Crossref]

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).
[Crossref]

Li, X.

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).
[Crossref]

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).
[Crossref]

Lin, K.

K. Lin, J. Deng, and K. Feng, “Time–frequency multiplex transceiver design with RX IQ imbalance, CFO, and multipath channel estimation and compensation for multicarrier systems,” Wireless Pers. Commun. 87(1), 107–123 (2016).
[Crossref]

Lin, W.

H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.

Liseno, A.

A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).
[Crossref]

Liu, H.

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).
[Crossref]

Liu, Y.

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).
[Crossref]

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).
[Crossref]

Logan, J. T.

J. T. Logan, D. S. Reinhard, and K. E. Hauck, “Phased array calibration and diagnostics utilizing a student-built planar near-field system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 279–286.

Ma, L.

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).
[Crossref]

Mait, J. N.

V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).
[Crossref]

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Meng, Q.

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).
[Crossref]

Mirbeik-Sabzevari, A.

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).
[Crossref]

Mohapatra, S.

S. Mohapatra and J. Weisshaar, “Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells,” BMC Bioinformatics 19(1), 428 (2018).
[Crossref]

Mokhtari-Koushyar, F.

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).
[Crossref]

Netrapalli, P.

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” IEEE Trans. Signal Process. 63(18), 4814–4826 (2015).
[Crossref]

Nguyen, H.

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).
[Crossref]

Ozdemir, C.

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).
[Crossref]

Park, R.

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).
[Crossref]

Parow-Souchon, K.

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).
[Crossref]

Patel, V. M.

V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).
[Crossref]

Pauwels, E. J. R.

E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).
[Crossref]

Powell, J.

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).
[Crossref]

Prather, D. W.

V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).
[Crossref]

Qi, Y.

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).
[Crossref]

Qiao, L.

L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).
[Crossref]

Qin, Y.

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).
[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).
[Crossref]

Qiu, Q.

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).
[Crossref]

Reinhard, D. S.

J. T. Logan, D. S. Reinhard, and K. E. Hauck, “Phased array calibration and diagnostics utilizing a student-built planar near-field system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 279–286.

Ren, B.

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).
[Crossref]

Sabach, S.

E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).
[Crossref]

Sahin, A. B.

U. Alkus, A. B. Sahin, and H. Altan, “Stand-off through-the-wall W-band millimeter-wave imaging using compressive sensing,” IEEE Geosci. Remote Sensing Lett. 15(7), 1025–1029 (2018).
[Crossref]

Sanghavi, S.

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” IEEE Trans. Signal Process. 63(18), 4814–4826 (2015).
[Crossref]

Shabany, M.

M. Kazemi, Z. Kavehvash, and M. Shabany, “K-space aware multi-static millimeter-wave imaging,” IEEE Trans. on Image Process. 28(7), 3613–3623 (2019).
[Crossref]

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).
[Crossref]

Sheen, D. M.

D. M. Sheen and T. E. Hall, “Calibration, reconstruction, and rendering of cylindrical millimeter-wave image data,” Proc. SPIE 8022, 80220H (2011).
[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Sloan, R.

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).
[Crossref]

Soumekh, M.

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. on Image Process. 1(1), 64–76 (1992).
[Crossref]

Sun, G.

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).
[Crossref]

Sun, H.

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).
[Crossref]

Tan, W.

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).
[Crossref]

Tavassolian, N.

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).
[Crossref]

Tong, N.

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).
[Crossref]

Torlak, M.

M. E. Yanik and M. Torlak, “Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data,” IEEE Access 7, 31801–31819 (2019).
[Crossref]

Tsai, J.

J. Tsai and T. Huang, “35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Tech. 55(10), 2075–2085 (2007).
[Crossref]

H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.

Unal, A.

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).
[Crossref]

Vertiy, A.

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).
[Crossref]

Viegas, C.

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).
[Crossref]

Wang, H.

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).
[Crossref]

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).
[Crossref]

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).
[Crossref]

Wang, J.

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).
[Crossref]

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).
[Crossref]

Wang, W.

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).
[Crossref]

Wang, Y.

L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).
[Crossref]

Weisshaar, J.

S. Mohapatra and J. Weisshaar, “Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells,” BMC Bioinformatics 19(1), 428 (2018).
[Crossref]

Wu, K.

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).
[Crossref]

Wu, M.

H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.

Xia, X.

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).
[Crossref]

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).
[Crossref]

Xie, Y.

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).
[Crossref]

Xing, M.

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).
[Crossref]

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).
[Crossref]

Yan, P.

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).
[Crossref]

Yang, Q.

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).
[Crossref]

Yang, X.

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).
[Crossref]

Yanik, M. E.

M. E. Yanik and M. Torlak, “Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data,” IEEE Access 7, 31801–31819 (2019).
[Crossref]

Yarovoy, A. G.

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sensing 49(1), 509–518 (2011).
[Crossref]

Yigit, E.

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).
[Crossref]

Zhang, S.

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).
[Crossref]

Zhao, G.

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).
[Crossref]

Zhao, X.

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).
[Crossref]

Zhao, Z.

L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).
[Crossref]

Zheng, Y. R.

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).
[Crossref]

Zhou, J.

R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).
[Crossref]

Zhu, F.

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).
[Crossref]

Zhu, R.

R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).
[Crossref]

Zhuge, X.

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sensing 49(1), 509–518 (2011).
[Crossref]

Zoughi, R.

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).
[Crossref]

BMC Bioinformatics (1)

S. Mohapatra and J. Weisshaar, “Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells,” BMC Bioinformatics 19(1), 428 (2018).
[Crossref]

IEEE Access (1)

M. E. Yanik and M. Torlak, “Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data,” IEEE Access 7, 31801–31819 (2019).
[Crossref]

IEEE Geosci. Remote Sensing Lett. (3)

R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sensing Lett. 14(12), 2280–2284 (2017).
[Crossref]

U. Alkus, A. B. Sahin, and H. Altan, “Stand-off through-the-wall W-band millimeter-wave imaging using compressive sensing,” IEEE Geosci. Remote Sensing Lett. 15(7), 1025–1029 (2018).
[Crossref]

G. Jing, G. Sun, X. Xia, M. Xing, and Z. Bao, “A novel two-step approach of error estimation for stepped-frequency MIMO-SAR,” IEEE Geosci. Remote Sensing Lett. 14(12), 2290–2294 (2017).
[Crossref]

IEEE Signal Process. Mag. (1)

V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computational millimeter wave imaging: problems, progress, and prospects,” IEEE Signal Process. Mag. 33(5), 109–118 (2016).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

A. Mirbeik-Sabzevari, S. Li, E. Garay, H. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng. 66(1), 61–71 (2019).
[Crossref]

IEEE Trans. Circuits Syst. II (1)

F. Zhu, W. Hong, J. Chen, X. Jiang, K. Wu, P. Yan, and C. Han, “A broadband low-power millimeter-wave CMOS down-conversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II 61(3), 138–142 (2014).
[Crossref]

IEEE Trans. Geosci. Remote Sensing (1)

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sensing 49(1), 509–518 (2011).
[Crossref]

IEEE Trans. Instrum. Meas. (3)

M. T. Ghasr, B. Carroll, S. Kharkovsky, R. Austin, and R. Zoughi, “Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting,” IEEE Trans. Instrum. Meas. 55(5), 1620–1627 (2006).
[Crossref]

A. Capozzoli, C. Curcio, G. D’Elia, and A. Liseno, “Millimeter-wave phaseless antenna characterization,” IEEE Trans. Instrum. Meas. 57(7), 1330–1337 (2008).
[Crossref]

D. Bi, Y. Xie, L. Ma, X. Li, X. Yang, and Y. R. Zheng, “Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction,” IEEE Trans. Instrum. Meas. 66(4), 777–791 (2017).
[Crossref]

IEEE Trans. Magn. (2)

Y. Cho, H. Jung, C. Cheon, and Y. Chung, “Adaptive back-projection algorithm based on climb method for microwave imaging,” IEEE Trans. Magn. 52(3), 1–4 (2016).
[Crossref]

S. Jung, Y. Cho, R. Park, J. Kim, H. Jung, and Y. Chung, “High-resolution millimeter-wave ground-based SAR imaging via compressed sensing,” IEEE Trans. Magn. 54(3), 1–4 (2018).
[Crossref]

IEEE Trans. Microwave Theory Tech. (4)

J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microwave Theory Tech. 66(11), 1–10 (2018).
[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon, M. Firdaus, H. Liu, C. I. Duff, and R. Sloan, “"Active millimeter-wave radiometry for nondestructive testing/evaluation of composites-glass fiber reinforced polymer,” IEEE Trans. Microwave Theory Tech. 65(2), 641–650 (2017).
[Crossref]

J. Tsai and T. Huang, “35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Tech. 55(10), 2075–2085 (2007).
[Crossref]

IEEE Trans. on Image Process. (3)

M. Kazemi, Z. Kavehvash, and M. Shabany, “K-space aware multi-static millimeter-wave imaging,” IEEE Trans. on Image Process. 28(7), 3613–3623 (2019).
[Crossref]

S. Zhang, M. Xing, X. Xia, Y. Liu, R. Guo, and Z. Bao, “A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy,” IEEE Trans. on Image Process. 22(12), 5294–5305 (2013).
[Crossref]

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. on Image Process. 1(1), 64–76 (1992).
[Crossref]

IEEE Trans. Signal Process. (2)

E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup methods for sparse phase retrieval,” IEEE Trans. Signal Process. 66(4), 982–991 (2018).
[Crossref]

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” IEEE Trans. Signal Process. 63(18), 4814–4826 (2015).
[Crossref]

Int. J. Antenn. Propag. (2)

W. Tan, P. Huang, Z. Huang, Y. Qi, and W. Wang, “Three-dimensional microwave imaging for concealed weapon detection using range stacking technique,” Int. J. Antenn. Propag. 2017, 1–11 (2017).
[Crossref]

G. Zhao, S. Li, B. Ren, Q. Qiu, and H. Sun, “Cylindrical three-dimensional millimeter-wave imaging via compressive sensing,” Int. J. Antenn. Propag. 2015, 1–6 (2015).
[Crossref]

J. Chromatogr. Sci. (1)

Y. Liu, Q. Meng, R. Chen, J. Wang, S. Jiang, and Y. Hu, “A new method to evaluate the similarity of chromatographic fingerprints: weighted Pearson product-moment correlation coefficient,” J. Chromatogr. Sci. 42(10), 545–550 (2004).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (3)

A. A. Farsaei, F. Mokhtari-Koushyar, S. M. Javad Seyed-Talebi, Z. Kavehvash, and M. Shabany, “Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial fourier sampling,” J. Infrared, Millimeter, Terahertz Waves 37(3), 267–280 (2016).
[Crossref]

L. Qiao, Y. Wang, Z. Zhao, and Z. Chen, “Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1221–1236 (2015).
[Crossref]

E. Yigit, S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, “Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: experimental studies at short ranges,” J. Infrared, Millimeter, Terahertz Waves 33(12), 1227–1238 (2012).
[Crossref]

Proc. SPIE (1)

D. M. Sheen and T. E. Hall, “Calibration, reconstruction, and rendering of cylindrical millimeter-wave image data,” Proc. SPIE 8022, 80220H (2011).
[Crossref]

Sensors (1)

Y. Zhang, B. Deng, Q. Yang, J. Gao, Y. Qin, and H. Wang, “Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm,” Sensors 17(10), 2438 (2017).
[Crossref]

Signal Process. (1)

X. Hu, N. Tong, J. Wang, S. Ding, and X. Zhao, “Matrix completion-based MIMO radar imaging with sparse planar array,” Signal Process. 131, 49–57 (2017).
[Crossref]

Wireless Pers. Commun. (1)

K. Lin, J. Deng, and K. Feng, “Time–frequency multiplex transceiver design with RX IQ imbalance, CFO, and multipath channel estimation and compensation for multicarrier systems,” Wireless Pers. Commun. 87(1), 107–123 (2016).
[Crossref]

Other (2)

H. Alsuraisry, M. Wu, W. Lin, J. Tsai, and T. Huang, “Millimeter-wave ultra-broadband IQ transceiver design - current status and future outlook,” in Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (IEEE, 2017), pp. 19–22.

J. T. Logan, D. S. Reinhard, and K. E. Hauck, “Phased array calibration and diagnostics utilizing a student-built planar near-field system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 279–286.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. System configuration of SFCW SAR imaging.
Fig. 2.
Fig. 2. Schematics of the transceivers. (a) is used in the proposed system only measuring in-phase signal; (b) and (c) are used in the conventional system measuring both in-phase signal and quadrature signal, (b) has two VCOs; (c) has one VCO and a tunable BPF.
Fig. 3.
Fig. 3. Result of inverse Fourier transform of ${P_1}({x^{\prime},y^{\prime},\omega } )$.
Fig. 4.
Fig. 4. Result of inverse Fourier transform of $P({x^{\prime},y^{\prime},\omega } )$.
Fig. 5.
Fig. 5. Geometry of error multiplier measurement.
Fig. 6.
Fig. 6. Result of error multiplier measurement.
Fig. 7.
Fig. 7. Simulation of estimation of the scattering waves. (a) estimation of the in-phase signal, ${f_\textrm{s}} = 100\textrm{MHz}$; (b) estimation of the quadrature signal, ${f_\textrm{s}} = 100\textrm{MHz}$; (c) estimation of the in-phase signal, ${f_\textrm{s}} = 20\textrm{MHz}$; (d) estimation of the quadrature signal, ${f_\textrm{s}} = 20\textrm{MHz}$.
Fig. 8.
Fig. 8. Simulation of SFCW SAR imaging. The upper images are from the proposed system, and the lower images are from the conventional system, (a) ${f_\textrm{s}} = 100\textrm{MHz}$; (b) ${f_\textrm{s}} = 20\textrm{MHz}$.
Fig. 9.
Fig. 9. Experiment system for SFCW SAR imaging. (a) system model; (b) photograph.
Fig. 10.
Fig. 10. Antennas and channels. (a) layout; (b) photograph.
Fig. 11.
Fig. 11. (a) and (c) are photograph of target 1 and target 2; (b) and (d) are 3d imaging results of target 1 and target 2.

Tables (1)

Tables Icon

Table 1. Correlation coefficients of images of two systems with different frequency steps

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , ω ) = Real [ S ( x , y , ω ) ] = Real { A ( x , y , ω ) exp [ j φ ( x , y , ω ) ] }
S ( x , y , ω ) = S theo ( x , y , ω ) S err ( x , y , ω ) = A theo ( x , y , ω ) exp [ j φ theo ( x , y , ω ) ] × A err ( x , y , ω ) exp [ j φ err ( x , y , ω ) ]
S theo ( x , y , ω ) = σ ( x , y , z ) exp { 2 j ω [ ( x x ) 2 + ( y y ) 2 + ( z L ) 2 ] 1 / 2 / c } d x d y d z
σ ( x , y , z ) = FT ( k x , k y , k z ) 1 { FT ( x , y ) [ S theo ( x , y , ω ) ] exp [ j L ( 4 k 2 k x 2 k y 2 ) 1 / 2 ] }
Δ x , y λ c 4 sin ( θ x , y / 2 ) Δ z c 2 B
I ( x , y , ω ) = 1 2 A theo ( x , y , ω ) exp [ j φ theo ( x , y , ω ) ] × A err ( x , y , ω ) exp [ j φ err ( x , y , ω ) ] + 1 2 A theo ( x , y , ω ) exp [ j φ theo ( x , y , ω ) ] × A err ( x , y , ω ) exp [ j φ err ( x , y , ω ) ]
P ( x , y , ω ) = I ( x , y , ω ) A err 1 ( x , y , ω ) exp [ j φ err ( x , y , ω ) ] = 1 2 S theo ( x , y , ω ) + 1 2 A theo ( x , y , ω ) exp [ j φ theo ( x , y , ω ) 2 j φ err ( x , y , ω ) ] = P 1 ( x , y , ω ) + P 2 ( x , y , ω )
P 1 ( x , y , ω ) = 1 2 S theo ( x , y , ω ) P 2 ( x , y , ω ) = 1 2 A theo ( x , y , ω ) exp [ j φ theo ( x , y , ω ) 2 j φ err ( x , y , ω ) ]
P 1 ( x , y , ω ) = 1 2 r min r max σ ( r ) exp ( 2 j ω r / c ) d r
FT ( ω ) 1 [ P ( x , y , ω ) ] = FT ( ω ) 1 [ P 1 ( x , y , ω ) ] + FT ( ω ) 1 [ P 2 ( x , y , ω ) ]
η loss = 2 f s ( r max r min ) c
P 2 ( x , y , ω ) = FT ( r ) { Trunc { FT ( ω ) 1 [ P ( x , y , ω ) ] } } P 2 ( x , y , ω )
S theo ( x , y , ω ) = 2 Conj { P 2 ( x , y , ω ) exp [ 2 j φ err ( x , y , ω ) ] } S theo ( x , y , ω )
S e ( h , ω ) = A e ( h , ω ) exp [ j φ e ( h , ω ) ] = S ( h , ω ) S theo ( h , ω ) = I max ( h , ω ) exp ( 2 j n π ) 1 × exp [ 2 j ω D ref ( h , ω ) / c ] = I max ( h , ω ) exp [ 2 j ω D ref ( h , ω ) / c ]
Cr ( A , B ) = Cov ( A , B ) [ Var ( A ) Var ( B ) ] 1 / 2
S err ( x , y , ω ) = S e ( h , ω ) | h = 1 + y / 0.005

Metrics