Abstract

Holes through silicon substrates are used in silicon microsystems, for example in vertical electrical interconnects. In comparison to deep reactive ion etching, laser drilling is a versatile method for forming these holes, but laser drilling suffers from poor hole quality. In this article, water is used in the silicon drilling process to remove debris and the shape deformations of the holes. Water is introduced into the drilling process through the backside of the substrate to minimize negative effects to the drilling process. Drilling of inclined holes is also demonstrated. The inclined holes could find applications in radio frequency devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In situ imaging of hole shape evolution in ultrashort pulse laser drilling

Sven Döring, Sören Richter, Stefan Nolte, and Andreas Tünnermann
Opt. Express 18(19) 20395-20400 (2010)

Evolution of hole shape and size during short and ultrashort pulse laser deep drilling

Sven Döring, John Szilagyi, Sören Richter, Felix Zimmermann, Martin Richardson, Andreas Tünnermann, and Stefan Nolte
Opt. Express 20(24) 27147-27154 (2012)

Dynamic change process of a recast layer in Nd:YAG millisecond laser trepan drilling

Wenqiang Duan, Xuesong Mei, Zhengjie Fan, Jingmeng Chen, and Yifei Zhang
J. Opt. Soc. Am. B 37(3) 804-812 (2020)

References

  • View by:
  • |
  • |
  • |

  1. B. Tan, “Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses,” J. Micromech. Microeng. 16(1), 109–112 (2006).
    [Crossref]
  2. B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 µm diameter interconnection vias,” J. Phys. D: Appl. Phys. 42(6), 065102 (2009).
    [Crossref]
  3. F. Brandi, N. Burdet, R. Carzino, and A. Diaspro, “Very large spot size effect in nanosecond laser drilling efficiency of silicon,” Opt. Express 18(22), 23488 (2010).
    [Crossref]
  4. S. Ahn, D. J. Hwang, H. K. Park, and C. P. Grigoropoulos, “Femtosecond laser drilling of crystalline and multicrystalline silicon for advanced solar cell fabrication,” Appl. Phys. A 108(1), 113–120 (2012).
    [Crossref]
  5. S. Döring, J. Szilagyi, S. Richter, F. Zimmermann, M. Richardson, A. Tünnermann, and S. Nolte, “Evolution of hole shape and size during short and ultrashort pulse laser deep drilling,” Opt. Express 20(24), 27147 (2012).
    [Crossref]
  6. S. Döring, S. Richter, F. Heisler, T. Ullsperger, A. Tünnermann, and S. Nolte, “Influence of ambient pressure on the hole formation in laser deep drilling,” Appl. Phys. A 112(3), 623–629 (2013).
    [Crossref]
  7. S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole Formation Process in Ultrashort Pulse Laser Percussion Drilling,” Phys. Procedia 41, 431–440 (2013).
    [Crossref]
  8. C. W. Tang, H. T. Young, and K. M. Li, “Innovative through-silicon-via formation approach for wafer-level packaging applications,” J. Micromech. Microeng. 22(4), 045019 (2012).
    [Crossref]
  9. A. Pan, J. Si, T. Chen, Y. Ma, F. Chen, and X. Hou, “Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching,” Opt. Express 21(14), 16657 (2013).
    [Crossref]
  10. B. Gao, T. Chen, Y. Chen, and J. Si, “Fabrication of Micro-Hole Arrays in Silicon Using Femtosecond Laser Irradiation and Acid Etching,” in 2015 Int. Conf. Comput. Intell. Commun. Networks, (IEEE, 2015), pp. 1338–1340.
  11. Y. Li, T. Chen, A. Pan, C. Li, and L. Tang, “Parallel fabrication of high-aspect-ratio all-silicon grooves using femtosecond laser irradiation and wet etching,” J. Micromech. Microeng. 25(11), 115001 (2015).
    [Crossref]
  12. T. Chen, A. Pan, C. Li, J. Si, and X. Hou, “Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching,” Appl. Surf. Sci. 325, 145–150 (2015).
    [Crossref]
  13. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-Assisted Femtosecond Laser Pulse Ablation of High Aspect Ratio Holes,” Phys. Procedia 12, 89–93 (2011).
    [Crossref]
  14. K. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
    [Crossref]
  15. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26(23), 1912 (2001).
    [Crossref]
  16. D. Hwang, T. Choi, and C. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79(3), 605–612 (2004).
    [Crossref]
  17. R. An, Y. Li, Y. Dou, H. Yang, and Q. Gong, “Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses,” Opt. Express 13(6), 1855 (2005).
    [Crossref]
  18. X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys. A 104(2), 713–719 (2011).
    [Crossref]
  19. M. Chanal, V. Y. Fedorov, M. Chambonneau, R. Clady, S. Tzortzakis, and D. Grojo, “Crossing the threshold of ultrafast laser writing in bulk silicon,” Nat. Commun. 8(1), 773 (2017).
    [Crossref]
  20. V. V. Kononenko, V. V. Konov, and E. M. Dianov, “Delocalization of femtosecond radiation in silicon,” Opt. Lett. 37(16), 3369 (2012).
    [Crossref]
  21. A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
    [Crossref]
  22. H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys. A 124(4), 302 (2018).
    [Crossref]
  23. O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
    [Crossref]
  24. Q. Ma, H. Zhu, Z. Zhang, K. Xu, X. Dai, S. Zhu, and A. Wang, “An Investigation into Picosecond Laser Micro-Trepanning of Alumina Ceramics Employing a Semi-Water-Immersed Scheme,” Materials 12(11), 1812 (2019).
    [Crossref]
  25. S. Döring, “Analysis of the Hole Shape Evolution in Ultrashort Pulse Laser Drilling,” Ph.D. thesis, Friedrich-Schiller-University, Institute of Applied Physics (2014).
  26. R. Rieske, R. Landgraf, and K. J. Wolter, “Novel method for crystal defect analysis of laser drilled TSVs,” in Proc. - Electron. Components Technol. Conf., (2009), pp. 1139–1146.
  27. G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-μm Wavelength Region,” Appl. Opt. 12(3), 555 (1973).
    [Crossref]
  28. A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
    [Crossref]
  29. S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395 (2010).
    [Crossref]
  30. L. S. Jiao, E. Ng, H. Y. Zheng, and Y. L. Zhang, “Theoretical study of pre-formed hole geometries on femtosecond pulse energy distribution in laser drilling,” Opt. Express 23(4), 4927 (2015).
    [Crossref]
  31. H. Hidai, Y. Kuroki, S. Matsusaka, A. Chiba, and N. Morita, “Curved drilling via inner hole laser reflection,” Precis. Eng. 46, 96–103 (2016).
    [Crossref]
  32. F. He, J. Yu, Y. Tan, W. Chu, C. Zhou, Y. Cheng, and K. Sugioka, “Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias,” Sci. Rep. 7(1), 40785 (2017).
    [Crossref]
  33. B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853 (2015).
    [Crossref]
  34. K. V. Gubin, K. V. Lotov, V. I. Trunov, and E. V. Pestryakov, “Modification of narrow ablating capillaries under the influence of multiple femtosecond laser pulses,” J. Appl. Phys. 120(11), 113103 (2016).
    [Crossref]
  35. T. Matsumura, T. Nakatani, and T. Yagi, “Deep drilling on a silicon plate with a femtosecond laser: experiment and model analysis,” Appl. Phys. A 86(1), 107–114 (2006).
    [Crossref]
  36. S. Döring, S. Richter, A. Tünnermann, and S. Nolte, “Evolution of hole depth and shape in ultrashort pulse deep drilling in silicon,” Appl. Phys. A 105(1), 69–74 (2011).
    [Crossref]
  37. D. J. Hwang, K. Hiromatsu, H. Hidai, and C. P. Grigoropoulos, “Self-guided glass drilling by femtosecond laser pulses,” Appl. Phys. A 94(3), 555–558 (2009).
    [Crossref]
  38. H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, and X. Hou, “Influence of liquid environments on femtosecond laser ablation of silicon,” Thin Solid Films 518(18), 5188–5194 (2010).
    [Crossref]
  39. J. Ren, M. Kelly, and L. Hesselink, “Laser ablation of silicon in water with nanosecond and femtosecond pulses,” Opt. Lett. 30(13), 1740 (2005).
    [Crossref]
  40. A. Dupont, P. Caminat, P. Bournot, and J. P. Gauchon, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78(3), 2022–2028 (1995).
    [Crossref]
  41. J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
    [Crossref]
  42. L. L. Taylor, J. Qiao, and J. Qiao, “Optimization of femtosecond laser processing of silicon via numerical modeling,” Opt. Mater. Express 6(9), 2745 (2016).
    [Crossref]
  43. L. L. Taylor, R. E. Scott, and J. Qiao, “Integrating two-temperature and classical heat accumulation models to predict femtosecond laser processing of silicon,” Opt. Mater. Express 8(3), 648 (2018).
    [Crossref]
  44. M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel femtosecond laser ablation with individually controlled intensity,” Opt. Express 22(3), 2603 (2014).
    [Crossref]
  45. B. J. Kim, H. A. Man-Lyun, and Y. S. Kwon, “New through-wafer via interconnections with thick oxidized porous silicon sidewall via,” Jpn. J. Appl. Phys. 45(8A), 6141–6145 (2006).
    [Crossref]
  46. L. Yu, H. Yang, T. T. Jing, M. Xu, R. Geer, and W. Wang, “Electrical characterization of RF TSV for 3D multi-core and heterogeneous ICs,” in IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD, (2010), pp. 686–693.
  47. B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A: Mater. Sci. Process. 119(1), 61–68 (2015).
    [Crossref]
  48. A. C. Fischer, S. J. Bleiker, T. Haraldsson, N. Roxhed, G. Stemme, and F. Niklaus, “Very high aspect ratio through-silicon vias (TSVs) fabricated using automated magnetic assembly of nickel wires,” J. Micromech. Microeng. 22(10), 105001 (2012).
    [Crossref]
  49. S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, and F. Niklaus, “High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires,” IEEE Trans. Compon., Packag., Manuf. Technol. 5(1), 21–27 (2015).
    [Crossref]
  50. M. Asiatici, M. J. Laakso, A. C. Fischer, G. Stemme, and F. Niklaus, “Through Silicon Vias With Invar Metal Conductor for High-Temperature Applications,” J. Microelectromech. Syst. 26(1), 158–168 (2017).
    [Crossref]
  51. M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
    [Crossref]
  52. S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
    [Crossref]
  53. S. W. Ho, S. W. Yoon, Q. Zhou, K. Pasad, V. Kripesh, and J. H. Lau, “High RF performance TSV silicon carrier for high frequency application,” in Proc. - Electron. Components Technol. Conf., (2008), pp. 1946–1952.

2019 (1)

Q. Ma, H. Zhu, Z. Zhang, K. Xu, X. Dai, S. Zhu, and A. Wang, “An Investigation into Picosecond Laser Micro-Trepanning of Alumina Ceramics Employing a Semi-Water-Immersed Scheme,” Materials 12(11), 1812 (2019).
[Crossref]

2018 (3)

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys. A 124(4), 302 (2018).
[Crossref]

L. L. Taylor, R. E. Scott, and J. Qiao, “Integrating two-temperature and classical heat accumulation models to predict femtosecond laser processing of silicon,” Opt. Mater. Express 8(3), 648 (2018).
[Crossref]

M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
[Crossref]

2017 (4)

M. Asiatici, M. J. Laakso, A. C. Fischer, G. Stemme, and F. Niklaus, “Through Silicon Vias With Invar Metal Conductor for High-Temperature Applications,” J. Microelectromech. Syst. 26(1), 158–168 (2017).
[Crossref]

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

F. He, J. Yu, Y. Tan, W. Chu, C. Zhou, Y. Cheng, and K. Sugioka, “Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias,” Sci. Rep. 7(1), 40785 (2017).
[Crossref]

M. Chanal, V. Y. Fedorov, M. Chambonneau, R. Clady, S. Tzortzakis, and D. Grojo, “Crossing the threshold of ultrafast laser writing in bulk silicon,” Nat. Commun. 8(1), 773 (2017).
[Crossref]

2016 (3)

H. Hidai, Y. Kuroki, S. Matsusaka, A. Chiba, and N. Morita, “Curved drilling via inner hole laser reflection,” Precis. Eng. 46, 96–103 (2016).
[Crossref]

K. V. Gubin, K. V. Lotov, V. I. Trunov, and E. V. Pestryakov, “Modification of narrow ablating capillaries under the influence of multiple femtosecond laser pulses,” J. Appl. Phys. 120(11), 113103 (2016).
[Crossref]

L. L. Taylor, J. Qiao, and J. Qiao, “Optimization of femtosecond laser processing of silicon via numerical modeling,” Opt. Mater. Express 6(9), 2745 (2016).
[Crossref]

2015 (6)

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A: Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, and F. Niklaus, “High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires,” IEEE Trans. Compon., Packag., Manuf. Technol. 5(1), 21–27 (2015).
[Crossref]

L. S. Jiao, E. Ng, H. Y. Zheng, and Y. L. Zhang, “Theoretical study of pre-formed hole geometries on femtosecond pulse energy distribution in laser drilling,” Opt. Express 23(4), 4927 (2015).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853 (2015).
[Crossref]

Y. Li, T. Chen, A. Pan, C. Li, and L. Tang, “Parallel fabrication of high-aspect-ratio all-silicon grooves using femtosecond laser irradiation and wet etching,” J. Micromech. Microeng. 25(11), 115001 (2015).
[Crossref]

T. Chen, A. Pan, C. Li, J. Si, and X. Hou, “Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching,” Appl. Surf. Sci. 325, 145–150 (2015).
[Crossref]

2014 (2)

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel femtosecond laser ablation with individually controlled intensity,” Opt. Express 22(3), 2603 (2014).
[Crossref]

2013 (3)

S. Döring, S. Richter, F. Heisler, T. Ullsperger, A. Tünnermann, and S. Nolte, “Influence of ambient pressure on the hole formation in laser deep drilling,” Appl. Phys. A 112(3), 623–629 (2013).
[Crossref]

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole Formation Process in Ultrashort Pulse Laser Percussion Drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

A. Pan, J. Si, T. Chen, Y. Ma, F. Chen, and X. Hou, “Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching,” Opt. Express 21(14), 16657 (2013).
[Crossref]

2012 (5)

C. W. Tang, H. T. Young, and K. M. Li, “Innovative through-silicon-via formation approach for wafer-level packaging applications,” J. Micromech. Microeng. 22(4), 045019 (2012).
[Crossref]

S. Ahn, D. J. Hwang, H. K. Park, and C. P. Grigoropoulos, “Femtosecond laser drilling of crystalline and multicrystalline silicon for advanced solar cell fabrication,” Appl. Phys. A 108(1), 113–120 (2012).
[Crossref]

S. Döring, J. Szilagyi, S. Richter, F. Zimmermann, M. Richardson, A. Tünnermann, and S. Nolte, “Evolution of hole shape and size during short and ultrashort pulse laser deep drilling,” Opt. Express 20(24), 27147 (2012).
[Crossref]

V. V. Kononenko, V. V. Konov, and E. M. Dianov, “Delocalization of femtosecond radiation in silicon,” Opt. Lett. 37(16), 3369 (2012).
[Crossref]

A. C. Fischer, S. J. Bleiker, T. Haraldsson, N. Roxhed, G. Stemme, and F. Niklaus, “Very high aspect ratio through-silicon vias (TSVs) fabricated using automated magnetic assembly of nickel wires,” J. Micromech. Microeng. 22(10), 105001 (2012).
[Crossref]

2011 (3)

J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-Assisted Femtosecond Laser Pulse Ablation of High Aspect Ratio Holes,” Phys. Procedia 12, 89–93 (2011).
[Crossref]

X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys. A 104(2), 713–719 (2011).
[Crossref]

S. Döring, S. Richter, A. Tünnermann, and S. Nolte, “Evolution of hole depth and shape in ultrashort pulse deep drilling in silicon,” Appl. Phys. A 105(1), 69–74 (2011).
[Crossref]

2010 (3)

2009 (2)

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 µm diameter interconnection vias,” J. Phys. D: Appl. Phys. 42(6), 065102 (2009).
[Crossref]

D. J. Hwang, K. Hiromatsu, H. Hidai, and C. P. Grigoropoulos, “Self-guided glass drilling by femtosecond laser pulses,” Appl. Phys. A 94(3), 555–558 (2009).
[Crossref]

2006 (3)

T. Matsumura, T. Nakatani, and T. Yagi, “Deep drilling on a silicon plate with a femtosecond laser: experiment and model analysis,” Appl. Phys. A 86(1), 107–114 (2006).
[Crossref]

B. Tan, “Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses,” J. Micromech. Microeng. 16(1), 109–112 (2006).
[Crossref]

B. J. Kim, H. A. Man-Lyun, and Y. S. Kwon, “New through-wafer via interconnections with thick oxidized porous silicon sidewall via,” Jpn. J. Appl. Phys. 45(8A), 6141–6145 (2006).
[Crossref]

2005 (3)

2004 (4)

D. Hwang, T. Choi, and C. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79(3), 605–612 (2004).
[Crossref]

K. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
[Crossref]

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

2001 (1)

1995 (1)

A. Dupont, P. Caminat, P. Bournot, and J. P. Gauchon, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78(3), 2022–2028 (1995).
[Crossref]

1973 (1)

Ahn, S.

S. Ahn, D. J. Hwang, H. K. Park, and C. P. Grigoropoulos, “Femtosecond laser drilling of crystalline and multicrystalline silicon for advanced solar cell fabrication,” Appl. Phys. A 108(1), 113–120 (2012).
[Crossref]

An, R.

Asiatici, M.

M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
[Crossref]

M. Asiatici, M. J. Laakso, A. C. Fischer, G. Stemme, and F. Niklaus, “Through Silicon Vias With Invar Metal Conductor for High-Temperature Applications,” J. Microelectromech. Syst. 26(1), 158–168 (2017).
[Crossref]

Axente, E.

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[Crossref]

Bek, A.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Ben-Yakar, A.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
[Crossref]

Bian, H.

H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, and X. Hou, “Influence of liquid environments on femtosecond laser ablation of silicon,” Thin Solid Films 518(18), 5188–5194 (2010).
[Crossref]

Bleiker, S. J.

M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
[Crossref]

S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, and F. Niklaus, “High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires,” IEEE Trans. Compon., Packag., Manuf. Technol. 5(1), 21–27 (2015).
[Crossref]

A. C. Fischer, S. J. Bleiker, T. Haraldsson, N. Roxhed, G. Stemme, and F. Niklaus, “Very high aspect ratio through-silicon vias (TSVs) fabricated using automated magnetic assembly of nickel wires,” J. Micromech. Microeng. 22(10), 105001 (2012).
[Crossref]

Bournot, P.

A. Dupont, P. Caminat, P. Bournot, and J. P. Gauchon, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78(3), 2022–2028 (1995).
[Crossref]

Brandi, F.

Bruneau, S.

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[Crossref]

Burdet, N.

Byer, R. L.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
[Crossref]

Caminat, P.

A. Dupont, P. Caminat, P. Bournot, and J. P. Gauchon, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78(3), 2022–2028 (1995).
[Crossref]

Carzino, R.

Chambonneau, M.

M. Chanal, V. Y. Fedorov, M. Chambonneau, R. Clady, S. Tzortzakis, and D. Grojo, “Crossing the threshold of ultrafast laser writing in bulk silicon,” Nat. Commun. 8(1), 773 (2017).
[Crossref]

Chanal, M.

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys. A 124(4), 302 (2018).
[Crossref]

M. Chanal, V. Y. Fedorov, M. Chambonneau, R. Clady, S. Tzortzakis, and D. Grojo, “Crossing the threshold of ultrafast laser writing in bulk silicon,” Nat. Commun. 8(1), 773 (2017).
[Crossref]

Chen, F.

A. Pan, J. Si, T. Chen, Y. Ma, F. Chen, and X. Hou, “Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching,” Opt. Express 21(14), 16657 (2013).
[Crossref]

H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, and X. Hou, “Influence of liquid environments on femtosecond laser ablation of silicon,” Thin Solid Films 518(18), 5188–5194 (2010).
[Crossref]

Chen, T.

Y. Li, T. Chen, A. Pan, C. Li, and L. Tang, “Parallel fabrication of high-aspect-ratio all-silicon grooves using femtosecond laser irradiation and wet etching,” J. Micromech. Microeng. 25(11), 115001 (2015).
[Crossref]

T. Chen, A. Pan, C. Li, J. Si, and X. Hou, “Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching,” Appl. Surf. Sci. 325, 145–150 (2015).
[Crossref]

A. Pan, J. Si, T. Chen, Y. Ma, F. Chen, and X. Hou, “Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching,” Opt. Express 21(14), 16657 (2013).
[Crossref]

B. Gao, T. Chen, Y. Chen, and J. Si, “Fabrication of Micro-Hole Arrays in Silicon Using Femtosecond Laser Irradiation and Acid Etching,” in 2015 Int. Conf. Comput. Intell. Commun. Networks, (IEEE, 2015), pp. 1338–1340.

Chen, X.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Chen, Y.

B. Gao, T. Chen, Y. Chen, and J. Si, “Fabrication of Micro-Hole Arrays in Silicon Using Femtosecond Laser Irradiation and Acid Etching,” in 2015 Int. Conf. Comput. Intell. Commun. Networks, (IEEE, 2015), pp. 1338–1340.

Cheng, Y.

F. He, J. Yu, Y. Tan, W. Chu, C. Zhou, Y. Cheng, and K. Sugioka, “Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias,” Sci. Rep. 7(1), 40785 (2017).
[Crossref]

Chiba, A.

H. Hidai, Y. Kuroki, S. Matsusaka, A. Chiba, and N. Morita, “Curved drilling via inner hole laser reflection,” Precis. Eng. 46, 96–103 (2016).
[Crossref]

Choi, T.

D. Hwang, T. Choi, and C. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79(3), 605–612 (2004).
[Crossref]

Choo, K.

K. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Chu, W.

F. He, J. Yu, Y. Tan, W. Chu, C. Zhou, Y. Cheng, and K. Sugioka, “Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias,” Sci. Rep. 7(1), 40785 (2017).
[Crossref]

Clady, R.

M. Chanal, V. Y. Fedorov, M. Chambonneau, R. Clady, S. Tzortzakis, and D. Grojo, “Crossing the threshold of ultrafast laser writing in bulk silicon,” Nat. Commun. 8(1), 773 (2017).
[Crossref]

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Çolakoglu, T.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Dai, X.

Q. Ma, H. Zhu, Z. Zhang, K. Xu, X. Dai, S. Zhu, and A. Wang, “An Investigation into Picosecond Laser Micro-Trepanning of Alumina Ceramics Employing a Semi-Water-Immersed Scheme,” Materials 12(11), 1812 (2019).
[Crossref]

Dianov, E. M.

Diaspro, A.

Döring, S.

S. Döring, S. Richter, F. Heisler, T. Ullsperger, A. Tünnermann, and S. Nolte, “Influence of ambient pressure on the hole formation in laser deep drilling,” Appl. Phys. A 112(3), 623–629 (2013).
[Crossref]

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole Formation Process in Ultrashort Pulse Laser Percussion Drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

S. Döring, J. Szilagyi, S. Richter, F. Zimmermann, M. Richardson, A. Tünnermann, and S. Nolte, “Evolution of hole shape and size during short and ultrashort pulse laser deep drilling,” Opt. Express 20(24), 27147 (2012).
[Crossref]

S. Döring, S. Richter, A. Tünnermann, and S. Nolte, “Evolution of hole depth and shape in ultrashort pulse deep drilling in silicon,” Appl. Phys. A 105(1), 69–74 (2011).
[Crossref]

S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395 (2010).
[Crossref]

S. Döring, “Analysis of the Hole Shape Evolution in Ultrashort Pulse Laser Drilling,” Ph.D. thesis, Friedrich-Schiller-University, Institute of Applied Physics (2014).

Dou, Y.

Dumitru, G.

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[Crossref]

Dupont, A.

A. Dupont, P. Caminat, P. Bournot, and J. P. Gauchon, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78(3), 2022–2028 (1995).
[Crossref]

Ebefors, T.

M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
[Crossref]

Elahi, P.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Ergeçen, E.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Fedorov, V. Y.

M. Chanal, V. Y. Fedorov, M. Chambonneau, R. Clady, S. Tzortzakis, and D. Grojo, “Crossing the threshold of ultrafast laser writing in bulk silicon,” Nat. Commun. 8(1), 773 (2017).
[Crossref]

Fischer, A. C.

M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
[Crossref]

M. Asiatici, M. J. Laakso, A. C. Fischer, G. Stemme, and F. Niklaus, “Through Silicon Vias With Invar Metal Conductor for High-Temperature Applications,” J. Microelectromech. Syst. 26(1), 158–168 (2017).
[Crossref]

S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, and F. Niklaus, “High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires,” IEEE Trans. Compon., Packag., Manuf. Technol. 5(1), 21–27 (2015).
[Crossref]

A. C. Fischer, S. J. Bleiker, T. Haraldsson, N. Roxhed, G. Stemme, and F. Niklaus, “Very high aspect ratio through-silicon vias (TSVs) fabricated using automated magnetic assembly of nickel wires,” J. Micromech. Microeng. 22(10), 105001 (2012).
[Crossref]

Gao, B.

B. Gao, T. Chen, Y. Chen, and J. Si, “Fabrication of Micro-Hole Arrays in Silicon Using Femtosecond Laser Irradiation and Acid Etching,” in 2015 Int. Conf. Comput. Intell. Commun. Networks, (IEEE, 2015), pp. 1338–1340.

Gao, C. M.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Gauchon, J. P.

A. Dupont, P. Caminat, P. Bournot, and J. P. Gauchon, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78(3), 2022–2028 (1995).
[Crossref]

Geer, R.

L. Yu, H. Yang, T. T. Jing, M. Xu, R. Geer, and W. Wang, “Electrical characterization of RF TSV for 3D multi-core and heterogeneous ICs,” in IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD, (2010), pp. 686–693.

Gong, Q.

Grigoropoulos, C.

D. Hwang, T. Choi, and C. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79(3), 605–612 (2004).
[Crossref]

Grigoropoulos, C. P.

S. Ahn, D. J. Hwang, H. K. Park, and C. P. Grigoropoulos, “Femtosecond laser drilling of crystalline and multicrystalline silicon for advanced solar cell fabrication,” Appl. Phys. A 108(1), 113–120 (2012).
[Crossref]

D. J. Hwang, K. Hiromatsu, H. Hidai, and C. P. Grigoropoulos, “Self-guided glass drilling by femtosecond laser pulses,” Appl. Phys. A 94(3), 555–558 (2009).
[Crossref]

Grojo, D.

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys. A 124(4), 302 (2018).
[Crossref]

M. Chanal, V. Y. Fedorov, M. Chambonneau, R. Clady, S. Tzortzakis, and D. Grojo, “Crossing the threshold of ultrafast laser writing in bulk silicon,” Nat. Commun. 8(1), 773 (2017).
[Crossref]

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Gubin, K. V.

K. V. Gubin, K. V. Lotov, V. I. Trunov, and E. V. Pestryakov, “Modification of narrow ablating capillaries under the influence of multiple femtosecond laser pulses,” J. Appl. Phys. 120(11), 113103 (2016).
[Crossref]

Hale, G. M.

Haraldsson, T.

S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, and F. Niklaus, “High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires,” IEEE Trans. Compon., Packag., Manuf. Technol. 5(1), 21–27 (2015).
[Crossref]

A. C. Fischer, S. J. Bleiker, T. Haraldsson, N. Roxhed, G. Stemme, and F. Niklaus, “Very high aspect ratio through-silicon vias (TSVs) fabricated using automated magnetic assembly of nickel wires,” J. Micromech. Microeng. 22(10), 105001 (2012).
[Crossref]

He, F.

F. He, J. Yu, Y. Tan, W. Chu, C. Zhou, Y. Cheng, and K. Sugioka, “Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias,” Sci. Rep. 7(1), 40785 (2017).
[Crossref]

Heisler, F.

S. Döring, S. Richter, F. Heisler, T. Ullsperger, A. Tünnermann, and S. Nolte, “Influence of ambient pressure on the hole formation in laser deep drilling,” Appl. Phys. A 112(3), 623–629 (2013).
[Crossref]

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole Formation Process in Ultrashort Pulse Laser Percussion Drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

Hermann, J.

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[Crossref]

Hesselink, L.

Hidai, H.

H. Hidai, Y. Kuroki, S. Matsusaka, A. Chiba, and N. Morita, “Curved drilling via inner hole laser reflection,” Precis. Eng. 46, 96–103 (2016).
[Crossref]

D. J. Hwang, K. Hiromatsu, H. Hidai, and C. P. Grigoropoulos, “Self-guided glass drilling by femtosecond laser pulses,” Appl. Phys. A 94(3), 555–558 (2009).
[Crossref]

Hiromatsu, K.

D. J. Hwang, K. Hiromatsu, H. Hidai, and C. P. Grigoropoulos, “Self-guided glass drilling by femtosecond laser pulses,” Appl. Phys. A 94(3), 555–558 (2009).
[Crossref]

Ho, S. W.

S. W. Ho, S. W. Yoon, Q. Zhou, K. Pasad, V. Kripesh, and J. H. Lau, “High RF performance TSV silicon carrier for high frequency application,” in Proc. - Electron. Components Technol. Conf., (2008), pp. 1946–1952.

Hou, X.

T. Chen, A. Pan, C. Li, J. Si, and X. Hou, “Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching,” Appl. Surf. Sci. 325, 145–150 (2015).
[Crossref]

A. Pan, J. Si, T. Chen, Y. Ma, F. Chen, and X. Hou, “Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching,” Opt. Express 21(14), 16657 (2013).
[Crossref]

H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, and X. Hou, “Influence of liquid environments on femtosecond laser ablation of silicon,” Thin Solid Films 518(18), 5188–5194 (2010).
[Crossref]

Hübner, R.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Hwang, D.

D. Hwang, T. Choi, and C. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79(3), 605–612 (2004).
[Crossref]

Hwang, D. J.

S. Ahn, D. J. Hwang, H. K. Park, and C. P. Grigoropoulos, “Femtosecond laser drilling of crystalline and multicrystalline silicon for advanced solar cell fabrication,” Appl. Phys. A 108(1), 113–120 (2012).
[Crossref]

D. J. Hwang, K. Hiromatsu, H. Hidai, and C. P. Grigoropoulos, “Self-guided glass drilling by femtosecond laser pulses,” Appl. Phys. A 94(3), 555–558 (2009).
[Crossref]

Ilday, F. Ö.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Ilday, S.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Itoh, K.

Jiang, L.

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853 (2015).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A: Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

Jiang, Y.

Jiao, L. S.

Jing, T. T.

L. Yu, H. Yang, T. T. Jing, M. Xu, R. Geer, and W. Wang, “Electrical characterization of RF TSV for 3D multi-core and heterogeneous ICs,” in IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD, (2010), pp. 686–693.

Kaakkunen, J.

M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel femtosecond laser ablation with individually controlled intensity,” Opt. Express 22(3), 2603 (2014).
[Crossref]

J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-Assisted Femtosecond Laser Pulse Ablation of High Aspect Ratio Holes,” Phys. Procedia 12, 89–93 (2011).
[Crossref]

Kämmer, H.

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys. A 124(4), 302 (2018).
[Crossref]

Kanbargi, G.

K. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Kelly, M.

Kesim, D. K.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Kim, B. J.

B. J. Kim, H. A. Man-Lyun, and Y. S. Kwon, “New through-wafer via interconnections with thick oxidized porous silicon sidewall via,” Jpn. J. Appl. Phys. 45(8A), 6141–6145 (2006).
[Crossref]

Komanduri, R.

K. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Kononenko, V. V.

Konov, V. V.

Kripesh, V.

S. W. Ho, S. W. Yoon, Q. Zhou, K. Pasad, V. Kripesh, and J. H. Lau, “High RF performance TSV silicon carrier for high frequency application,” in Proc. - Electron. Components Technol. Conf., (2008), pp. 1946–1952.

Kuroda, D.

Kuroki, Y.

H. Hidai, Y. Kuroki, S. Matsusaka, A. Chiba, and N. Morita, “Curved drilling via inner hole laser reflection,” Precis. Eng. 46, 96–103 (2016).
[Crossref]

Kwon, Y. S.

B. J. Kim, H. A. Man-Lyun, and Y. S. Kwon, “New through-wafer via interconnections with thick oxidized porous silicon sidewall via,” Jpn. J. Appl. Phys. 45(8A), 6141–6145 (2006).
[Crossref]

Laakso, M. J.

M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
[Crossref]

M. Asiatici, M. J. Laakso, A. C. Fischer, G. Stemme, and F. Niklaus, “Through Silicon Vias With Invar Metal Conductor for High-Temperature Applications,” J. Microelectromech. Syst. 26(1), 158–168 (2017).
[Crossref]

Landgraf, R.

R. Rieske, R. Landgraf, and K. J. Wolter, “Novel method for crystal defect analysis of laser drilled TSVs,” in Proc. - Electron. Components Technol. Conf., (2009), pp. 1139–1146.

Lau, J. H.

S. W. Ho, S. W. Yoon, Q. Zhou, K. Pasad, V. Kripesh, and J. H. Lau, “High RF performance TSV silicon carrier for high frequency application,” in Proc. - Electron. Components Technol. Conf., (2008), pp. 1946–1952.

Li, C.

T. Chen, A. Pan, C. Li, J. Si, and X. Hou, “Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching,” Appl. Surf. Sci. 325, 145–150 (2015).
[Crossref]

Y. Li, T. Chen, A. Pan, C. Li, and L. Tang, “Parallel fabrication of high-aspect-ratio all-silicon grooves using femtosecond laser irradiation and wet etching,” J. Micromech. Microeng. 25(11), 115001 (2015).
[Crossref]

Li, K. M.

C. W. Tang, H. T. Young, and K. M. Li, “Innovative through-silicon-via formation approach for wafer-level packaging applications,” J. Micromech. Microeng. 22(4), 045019 (2012).
[Crossref]

Li, X.

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A: Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853 (2015).
[Crossref]

Li, Y.

Liljeholm, J.

M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
[Crossref]

Liu, H.

H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, and X. Hou, “Influence of liquid environments on femtosecond laser ablation of silicon,” Thin Solid Films 518(18), 5188–5194 (2010).
[Crossref]

Lotov, K. V.

K. V. Gubin, K. V. Lotov, V. I. Trunov, and E. V. Pestryakov, “Modification of narrow ablating capillaries under the influence of multiple femtosecond laser pulses,” J. Appl. Phys. 120(11), 113103 (2016).
[Crossref]

Lu, J.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Lu, Y.

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853 (2015).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A: Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

Ma, Q.

Q. Ma, H. Zhu, Z. Zhang, K. Xu, X. Dai, S. Zhu, and A. Wang, “An Investigation into Picosecond Laser Micro-Trepanning of Alumina Ceramics Employing a Semi-Water-Immersed Scheme,” Materials 12(11), 1812 (2019).
[Crossref]

Ma, Y.

Makey, G.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Man-Lyun, H. A.

B. J. Kim, H. A. Man-Lyun, and Y. S. Kwon, “New through-wafer via interconnections with thick oxidized porous silicon sidewall via,” Jpn. J. Appl. Phys. 45(8A), 6141–6145 (2006).
[Crossref]

Mårtensson, G. E.

M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
[Crossref]

Matsumura, T.

T. Matsumura, T. Nakatani, and T. Yagi, “Deep drilling on a silicon plate with a femtosecond laser: experiment and model analysis,” Appl. Phys. A 86(1), 107–114 (2006).
[Crossref]

Matsusaka, S.

H. Hidai, Y. Kuroki, S. Matsusaka, A. Chiba, and N. Morita, “Curved drilling via inner hole laser reflection,” Precis. Eng. 46, 96–103 (2016).
[Crossref]

Matthäus, G.

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys. A 124(4), 302 (2018).
[Crossref]

Morita, N.

H. Hidai, Y. Kuroki, S. Matsusaka, A. Chiba, and N. Morita, “Curved drilling via inner hole laser reflection,” Precis. Eng. 46, 96–103 (2016).
[Crossref]

Mouskeftaras, A.

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Nakatani, T.

T. Matsumura, T. Nakatani, and T. Yagi, “Deep drilling on a silicon plate with a femtosecond laser: experiment and model analysis,” Appl. Phys. A 86(1), 107–114 (2006).
[Crossref]

Ng, E.

Ni, X. W.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Niklaus, F.

M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
[Crossref]

M. Asiatici, M. J. Laakso, A. C. Fischer, G. Stemme, and F. Niklaus, “Through Silicon Vias With Invar Metal Conductor for High-Temperature Applications,” J. Microelectromech. Syst. 26(1), 158–168 (2017).
[Crossref]

S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, and F. Niklaus, “High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires,” IEEE Trans. Compon., Packag., Manuf. Technol. 5(1), 21–27 (2015).
[Crossref]

A. C. Fischer, S. J. Bleiker, T. Haraldsson, N. Roxhed, G. Stemme, and F. Niklaus, “Very high aspect ratio through-silicon vias (TSVs) fabricated using automated magnetic assembly of nickel wires,” J. Micromech. Microeng. 22(10), 105001 (2012).
[Crossref]

Nishii, J.

Nolte, S.

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys. A 124(4), 302 (2018).
[Crossref]

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole Formation Process in Ultrashort Pulse Laser Percussion Drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

S. Döring, S. Richter, F. Heisler, T. Ullsperger, A. Tünnermann, and S. Nolte, “Influence of ambient pressure on the hole formation in laser deep drilling,” Appl. Phys. A 112(3), 623–629 (2013).
[Crossref]

S. Döring, J. Szilagyi, S. Richter, F. Zimmermann, M. Richardson, A. Tünnermann, and S. Nolte, “Evolution of hole shape and size during short and ultrashort pulse laser deep drilling,” Opt. Express 20(24), 27147 (2012).
[Crossref]

S. Döring, S. Richter, A. Tünnermann, and S. Nolte, “Evolution of hole depth and shape in ultrashort pulse deep drilling in silicon,” Appl. Phys. A 105(1), 69–74 (2011).
[Crossref]

S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395 (2010).
[Crossref]

Oberhammer, J.

S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, and F. Niklaus, “High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires,” IEEE Trans. Compon., Packag., Manuf. Technol. 5(1), 21–27 (2015).
[Crossref]

Ogawa, Y.

K. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Otra, V.

K. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Paivasaari, K.

M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel femtosecond laser ablation with individually controlled intensity,” Opt. Express 22(3), 2603 (2014).
[Crossref]

J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-Assisted Femtosecond Laser Pulse Ablation of High Aspect Ratio Holes,” Phys. Procedia 12, 89–93 (2011).
[Crossref]

Pan, A.

Y. Li, T. Chen, A. Pan, C. Li, and L. Tang, “Parallel fabrication of high-aspect-ratio all-silicon grooves using femtosecond laser irradiation and wet etching,” J. Micromech. Microeng. 25(11), 115001 (2015).
[Crossref]

T. Chen, A. Pan, C. Li, J. Si, and X. Hou, “Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching,” Appl. Surf. Sci. 325, 145–150 (2015).
[Crossref]

A. Pan, J. Si, T. Chen, Y. Ma, F. Chen, and X. Hou, “Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching,” Opt. Express 21(14), 16657 (2013).
[Crossref]

Panchatsharam, S.

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 µm diameter interconnection vias,” J. Phys. D: Appl. Phys. 42(6), 065102 (2009).
[Crossref]

Park, H. K.

S. Ahn, D. J. Hwang, H. K. Park, and C. P. Grigoropoulos, “Femtosecond laser drilling of crystalline and multicrystalline silicon for advanced solar cell fabrication,” Appl. Phys. A 108(1), 113–120 (2012).
[Crossref]

Pasad, K.

S. W. Ho, S. W. Yoon, Q. Zhou, K. Pasad, V. Kripesh, and J. H. Lau, “High RF performance TSV silicon carrier for high frequency application,” in Proc. - Electron. Components Technol. Conf., (2008), pp. 1946–1952.

Pavlov, I.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Pestryakov, E. V.

K. V. Gubin, K. V. Lotov, V. I. Trunov, and E. V. Pestryakov, “Modification of narrow ablating capillaries under the influence of multiple femtosecond laser pulses,” J. Appl. Phys. 120(11), 113103 (2016).
[Crossref]

Qiao, J.

Querry, M. R.

Raff, L.

K. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Ren, J.

Richardson, M.

Richter, S.

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole Formation Process in Ultrashort Pulse Laser Percussion Drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

S. Döring, S. Richter, F. Heisler, T. Ullsperger, A. Tünnermann, and S. Nolte, “Influence of ambient pressure on the hole formation in laser deep drilling,” Appl. Phys. A 112(3), 623–629 (2013).
[Crossref]

S. Döring, J. Szilagyi, S. Richter, F. Zimmermann, M. Richardson, A. Tünnermann, and S. Nolte, “Evolution of hole shape and size during short and ultrashort pulse laser deep drilling,” Opt. Express 20(24), 27147 (2012).
[Crossref]

S. Döring, S. Richter, A. Tünnermann, and S. Nolte, “Evolution of hole depth and shape in ultrashort pulse deep drilling in silicon,” Appl. Phys. A 105(1), 69–74 (2011).
[Crossref]

S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395 (2010).
[Crossref]

Rieske, R.

R. Rieske, R. Landgraf, and K. J. Wolter, “Novel method for crystal defect analysis of laser drilled TSVs,” in Proc. - Electron. Components Technol. Conf., (2009), pp. 1139–1146.

Rode, A. V.

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Roxhed, N.

S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, and F. Niklaus, “High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires,” IEEE Trans. Compon., Packag., Manuf. Technol. 5(1), 21–27 (2015).
[Crossref]

A. C. Fischer, S. J. Bleiker, T. Haraldsson, N. Roxhed, G. Stemme, and F. Niklaus, “Very high aspect ratio through-silicon vias (TSVs) fabricated using automated magnetic assembly of nickel wires,” J. Micromech. Microeng. 22(10), 105001 (2012).
[Crossref]

Scott, R. E.

Sentis, M.

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[Crossref]

Shah, U.

S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, and F. Niklaus, “High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires,” IEEE Trans. Compon., Packag., Manuf. Technol. 5(1), 21–27 (2015).
[Crossref]

Shen, Z. H.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Shin, Y. C.

X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys. A 104(2), 713–719 (2011).
[Crossref]

Si, J.

T. Chen, A. Pan, C. Li, J. Si, and X. Hou, “Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching,” Appl. Surf. Sci. 325, 145–150 (2015).
[Crossref]

A. Pan, J. Si, T. Chen, Y. Ma, F. Chen, and X. Hou, “Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching,” Opt. Express 21(14), 16657 (2013).
[Crossref]

H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, and X. Hou, “Influence of liquid environments on femtosecond laser ablation of silicon,” Thin Solid Films 518(18), 5188–5194 (2010).
[Crossref]

B. Gao, T. Chen, Y. Chen, and J. Si, “Fabrication of Micro-Hole Arrays in Silicon Using Femtosecond Laser Irradiation and Acid Etching,” in 2015 Int. Conf. Comput. Intell. Commun. Networks, (IEEE, 2015), pp. 1338–1340.

Silvennoinen, M.

M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel femtosecond laser ablation with individually controlled intensity,” Opt. Express 22(3), 2603 (2014).
[Crossref]

J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-Assisted Femtosecond Laser Pulse Ablation of High Aspect Ratio Holes,” Phys. Procedia 12, 89–93 (2011).
[Crossref]

Somjit, N.

S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, and F. Niklaus, “High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires,” IEEE Trans. Compon., Packag., Manuf. Technol. 5(1), 21–27 (2015).
[Crossref]

Stemme, G.

M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
[Crossref]

M. Asiatici, M. J. Laakso, A. C. Fischer, G. Stemme, and F. Niklaus, “Through Silicon Vias With Invar Metal Conductor for High-Temperature Applications,” J. Microelectromech. Syst. 26(1), 158–168 (2017).
[Crossref]

S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, and F. Niklaus, “High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires,” IEEE Trans. Compon., Packag., Manuf. Technol. 5(1), 21–27 (2015).
[Crossref]

A. C. Fischer, S. J. Bleiker, T. Haraldsson, N. Roxhed, G. Stemme, and F. Niklaus, “Very high aspect ratio through-silicon vias (TSVs) fabricated using automated magnetic assembly of nickel wires,” J. Micromech. Microeng. 22(10), 105001 (2012).
[Crossref]

Sugioka, K.

F. He, J. Yu, Y. Tan, W. Chu, C. Zhou, Y. Cheng, and K. Sugioka, “Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias,” Sci. Rep. 7(1), 40785 (2017).
[Crossref]

Szilagyi, J.

Tan, B.

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 µm diameter interconnection vias,” J. Phys. D: Appl. Phys. 42(6), 065102 (2009).
[Crossref]

B. Tan, “Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses,” J. Micromech. Microeng. 16(1), 109–112 (2006).
[Crossref]

Tan, Y.

F. He, J. Yu, Y. Tan, W. Chu, C. Zhou, Y. Cheng, and K. Sugioka, “Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias,” Sci. Rep. 7(1), 40785 (2017).
[Crossref]

Tang, C. W.

C. W. Tang, H. T. Young, and K. M. Li, “Innovative through-silicon-via formation approach for wafer-level packaging applications,” J. Micromech. Microeng. 22(4), 045019 (2012).
[Crossref]

Tang, L.

Y. Li, T. Chen, A. Pan, C. Li, and L. Tang, “Parallel fabrication of high-aspect-ratio all-silicon grooves using femtosecond laser irradiation and wet etching,” J. Micromech. Microeng. 25(11), 115001 (2015).
[Crossref]

Taylor, L. L.

Tokel, O.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Tozburun, S.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Trunov, V. I.

K. V. Gubin, K. V. Lotov, V. I. Trunov, and E. V. Pestryakov, “Modification of narrow ablating capillaries under the influence of multiple femtosecond laser pulses,” J. Appl. Phys. 120(11), 113103 (2016).
[Crossref]

Tünnermann, A.

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole Formation Process in Ultrashort Pulse Laser Percussion Drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

S. Döring, S. Richter, F. Heisler, T. Ullsperger, A. Tünnermann, and S. Nolte, “Influence of ambient pressure on the hole formation in laser deep drilling,” Appl. Phys. A 112(3), 623–629 (2013).
[Crossref]

S. Döring, J. Szilagyi, S. Richter, F. Zimmermann, M. Richardson, A. Tünnermann, and S. Nolte, “Evolution of hole shape and size during short and ultrashort pulse laser deep drilling,” Opt. Express 20(24), 27147 (2012).
[Crossref]

S. Döring, S. Richter, A. Tünnermann, and S. Nolte, “Evolution of hole depth and shape in ultrashort pulse deep drilling in silicon,” Appl. Phys. A 105(1), 69–74 (2011).
[Crossref]

S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395 (2010).
[Crossref]

Turan, R.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Turnali, A.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Tzortzakis, S.

M. Chanal, V. Y. Fedorov, M. Chambonneau, R. Clady, S. Tzortzakis, and D. Grojo, “Crossing the threshold of ultrafast laser writing in bulk silicon,” Nat. Commun. 8(1), 773 (2017).
[Crossref]

Ullsperger, T.

S. Döring, S. Richter, F. Heisler, T. Ullsperger, A. Tünnermann, and S. Nolte, “Influence of ambient pressure on the hole formation in laser deep drilling,” Appl. Phys. A 112(3), 623–629 (2013).
[Crossref]

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole Formation Process in Ultrashort Pulse Laser Percussion Drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

Utéza, O.

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys. A 124(4), 302 (2018).
[Crossref]

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Vahimaa, P.

M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel femtosecond laser ablation with individually controlled intensity,” Opt. Express 22(3), 2603 (2014).
[Crossref]

J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-Assisted Femtosecond Laser Pulse Ablation of High Aspect Ratio Holes,” Phys. Procedia 12, 89–93 (2011).
[Crossref]

Venkatakrishnan, K.

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 µm diameter interconnection vias,” J. Phys. D: Appl. Phys. 42(6), 065102 (2009).
[Crossref]

Wang, A.

Q. Ma, H. Zhu, Z. Zhang, K. Xu, X. Dai, S. Zhu, and A. Wang, “An Investigation into Picosecond Laser Micro-Trepanning of Alumina Ceramics Employing a Semi-Water-Immersed Scheme,” Materials 12(11), 1812 (2019).
[Crossref]

Wang, W.

L. Yu, H. Yang, T. T. Jing, M. Xu, R. Geer, and W. Wang, “Electrical characterization of RF TSV for 3D multi-core and heterogeneous ICs,” in IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD, (2010), pp. 686–693.

Wang, X.

H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, and X. Hou, “Influence of liquid environments on femtosecond laser ablation of silicon,” Thin Solid Films 518(18), 5188–5194 (2010).
[Crossref]

Watanabe, W.

Wolter, K. J.

R. Rieske, R. Landgraf, and K. J. Wolter, “Novel method for crystal defect analysis of laser drilled TSVs,” in Proc. - Electron. Components Technol. Conf., (2009), pp. 1139–1146.

Xia, B.

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853 (2015).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A: Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

Xu, K.

Q. Ma, H. Zhu, Z. Zhang, K. Xu, X. Dai, S. Zhu, and A. Wang, “An Investigation into Picosecond Laser Micro-Trepanning of Alumina Ceramics Employing a Semi-Water-Immersed Scheme,” Materials 12(11), 1812 (2019).
[Crossref]

Xu, M.

L. Yu, H. Yang, T. T. Jing, M. Xu, R. Geer, and W. Wang, “Electrical characterization of RF TSV for 3D multi-core and heterogeneous ICs,” in IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD, (2010), pp. 686–693.

Xu, R. Q.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Yagi, T.

T. Matsumura, T. Nakatani, and T. Yagi, “Deep drilling on a silicon plate with a femtosecond laser: experiment and model analysis,” Appl. Phys. A 86(1), 107–114 (2006).
[Crossref]

Yamada, K.

Yan, X.

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853 (2015).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A: Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

Yang, H.

R. An, Y. Li, Y. Dou, H. Yang, and Q. Gong, “Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses,” Opt. Express 13(6), 1855 (2005).
[Crossref]

L. Yu, H. Yang, T. T. Jing, M. Xu, R. Geer, and W. Wang, “Electrical characterization of RF TSV for 3D multi-core and heterogeneous ICs,” in IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD, (2010), pp. 686–693.

Yang, Q.

H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, and X. Hou, “Influence of liquid environments on femtosecond laser ablation of silicon,” Thin Solid Films 518(18), 5188–5194 (2010).
[Crossref]

Yavuz, Ö.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Yoon, S. W.

S. W. Ho, S. W. Yoon, Q. Zhou, K. Pasad, V. Kripesh, and J. H. Lau, “High RF performance TSV silicon carrier for high frequency application,” in Proc. - Electron. Components Technol. Conf., (2008), pp. 1946–1952.

Young, H. T.

C. W. Tang, H. T. Young, and K. M. Li, “Innovative through-silicon-via formation approach for wafer-level packaging applications,” J. Micromech. Microeng. 22(4), 045019 (2012).
[Crossref]

Yu, J.

F. He, J. Yu, Y. Tan, W. Chu, C. Zhou, Y. Cheng, and K. Sugioka, “Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias,” Sci. Rep. 7(1), 40785 (2017).
[Crossref]

Yu, L.

L. Yu, H. Yang, T. T. Jing, M. Xu, R. Geer, and W. Wang, “Electrical characterization of RF TSV for 3D multi-core and heterogeneous ICs,” in IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD, (2010), pp. 686–693.

Zhang, S. Y.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

Zhang, Y. L.

Zhang, Z.

Q. Ma, H. Zhu, Z. Zhang, K. Xu, X. Dai, S. Zhu, and A. Wang, “An Investigation into Picosecond Laser Micro-Trepanning of Alumina Ceramics Employing a Semi-Water-Immersed Scheme,” Materials 12(11), 1812 (2019).
[Crossref]

Zhao, W.

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A: Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

Zhao, X.

X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys. A 104(2), 713–719 (2011).
[Crossref]

Zheng, H. Y.

Zhou, C.

F. He, J. Yu, Y. Tan, W. Chu, C. Zhou, Y. Cheng, and K. Sugioka, “Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias,” Sci. Rep. 7(1), 40785 (2017).
[Crossref]

Zhou, Q.

S. W. Ho, S. W. Yoon, Q. Zhou, K. Pasad, V. Kripesh, and J. H. Lau, “High RF performance TSV silicon carrier for high frequency application,” in Proc. - Electron. Components Technol. Conf., (2008), pp. 1946–1952.

Zhu, H.

Q. Ma, H. Zhu, Z. Zhang, K. Xu, X. Dai, S. Zhu, and A. Wang, “An Investigation into Picosecond Laser Micro-Trepanning of Alumina Ceramics Employing a Semi-Water-Immersed Scheme,” Materials 12(11), 1812 (2019).
[Crossref]

Zhu, S.

Q. Ma, H. Zhu, Z. Zhang, K. Xu, X. Dai, S. Zhu, and A. Wang, “An Investigation into Picosecond Laser Micro-Trepanning of Alumina Ceramics Employing a Semi-Water-Immersed Scheme,” Materials 12(11), 1812 (2019).
[Crossref]

Zimmermann, F.

Zolfaghari Borra, M.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (8)

S. Ahn, D. J. Hwang, H. K. Park, and C. P. Grigoropoulos, “Femtosecond laser drilling of crystalline and multicrystalline silicon for advanced solar cell fabrication,” Appl. Phys. A 108(1), 113–120 (2012).
[Crossref]

S. Döring, S. Richter, F. Heisler, T. Ullsperger, A. Tünnermann, and S. Nolte, “Influence of ambient pressure on the hole formation in laser deep drilling,” Appl. Phys. A 112(3), 623–629 (2013).
[Crossref]

D. Hwang, T. Choi, and C. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79(3), 605–612 (2004).
[Crossref]

X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys. A 104(2), 713–719 (2011).
[Crossref]

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys. A 124(4), 302 (2018).
[Crossref]

T. Matsumura, T. Nakatani, and T. Yagi, “Deep drilling on a silicon plate with a femtosecond laser: experiment and model analysis,” Appl. Phys. A 86(1), 107–114 (2006).
[Crossref]

S. Döring, S. Richter, A. Tünnermann, and S. Nolte, “Evolution of hole depth and shape in ultrashort pulse deep drilling in silicon,” Appl. Phys. A 105(1), 69–74 (2011).
[Crossref]

D. J. Hwang, K. Hiromatsu, H. Hidai, and C. P. Grigoropoulos, “Self-guided glass drilling by femtosecond laser pulses,” Appl. Phys. A 94(3), 555–558 (2009).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A: Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

Appl. Phys. Lett. (1)

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Appl. Surf. Sci. (2)

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[Crossref]

T. Chen, A. Pan, C. Li, J. Si, and X. Hou, “Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching,” Appl. Surf. Sci. 325, 145–150 (2015).
[Crossref]

IEEE Access (1)

M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
[Crossref]

IEEE Trans. Compon., Packag., Manuf. Technol. (1)

S. J. Bleiker, A. C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, and F. Niklaus, “High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires,” IEEE Trans. Compon., Packag., Manuf. Technol. 5(1), 21–27 (2015).
[Crossref]

J. Appl. Phys. (4)

K. V. Gubin, K. V. Lotov, V. I. Trunov, and E. V. Pestryakov, “Modification of narrow ablating capillaries under the influence of multiple femtosecond laser pulses,” J. Appl. Phys. 120(11), 113103 (2016).
[Crossref]

A. Dupont, P. Caminat, P. Bournot, and J. P. Gauchon, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78(3), 2022–2028 (1995).
[Crossref]

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, S. Y. Zhang, and C. M. Gao, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95(8), 3890–3894 (2004).
[Crossref]

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
[Crossref]

J. Microelectromech. Syst. (1)

M. Asiatici, M. J. Laakso, A. C. Fischer, G. Stemme, and F. Niklaus, “Through Silicon Vias With Invar Metal Conductor for High-Temperature Applications,” J. Microelectromech. Syst. 26(1), 158–168 (2017).
[Crossref]

J. Micromech. Microeng. (4)

A. C. Fischer, S. J. Bleiker, T. Haraldsson, N. Roxhed, G. Stemme, and F. Niklaus, “Very high aspect ratio through-silicon vias (TSVs) fabricated using automated magnetic assembly of nickel wires,” J. Micromech. Microeng. 22(10), 105001 (2012).
[Crossref]

C. W. Tang, H. T. Young, and K. M. Li, “Innovative through-silicon-via formation approach for wafer-level packaging applications,” J. Micromech. Microeng. 22(4), 045019 (2012).
[Crossref]

B. Tan, “Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses,” J. Micromech. Microeng. 16(1), 109–112 (2006).
[Crossref]

Y. Li, T. Chen, A. Pan, C. Li, and L. Tang, “Parallel fabrication of high-aspect-ratio all-silicon grooves using femtosecond laser irradiation and wet etching,” J. Micromech. Microeng. 25(11), 115001 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 µm diameter interconnection vias,” J. Phys. D: Appl. Phys. 42(6), 065102 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

B. J. Kim, H. A. Man-Lyun, and Y. S. Kwon, “New through-wafer via interconnections with thick oxidized porous silicon sidewall via,” Jpn. J. Appl. Phys. 45(8A), 6141–6145 (2006).
[Crossref]

Mater. Sci. Eng., A (1)

K. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Materials (1)

Q. Ma, H. Zhu, Z. Zhang, K. Xu, X. Dai, S. Zhu, and A. Wang, “An Investigation into Picosecond Laser Micro-Trepanning of Alumina Ceramics Employing a Semi-Water-Immersed Scheme,” Materials 12(11), 1812 (2019).
[Crossref]

Nat. Commun. (1)

M. Chanal, V. Y. Fedorov, M. Chambonneau, R. Clady, S. Tzortzakis, and D. Grojo, “Crossing the threshold of ultrafast laser writing in bulk silicon,” Nat. Commun. 8(1), 773 (2017).
[Crossref]

Nat. Photonics (1)

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref]

Opt. Express (8)

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853 (2015).
[Crossref]

A. Pan, J. Si, T. Chen, Y. Ma, F. Chen, and X. Hou, “Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching,” Opt. Express 21(14), 16657 (2013).
[Crossref]

L. S. Jiao, E. Ng, H. Y. Zheng, and Y. L. Zhang, “Theoretical study of pre-formed hole geometries on femtosecond pulse energy distribution in laser drilling,” Opt. Express 23(4), 4927 (2015).
[Crossref]

F. Brandi, N. Burdet, R. Carzino, and A. Diaspro, “Very large spot size effect in nanosecond laser drilling efficiency of silicon,” Opt. Express 18(22), 23488 (2010).
[Crossref]

S. Döring, J. Szilagyi, S. Richter, F. Zimmermann, M. Richardson, A. Tünnermann, and S. Nolte, “Evolution of hole shape and size during short and ultrashort pulse laser deep drilling,” Opt. Express 20(24), 27147 (2012).
[Crossref]

S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395 (2010).
[Crossref]

M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel femtosecond laser ablation with individually controlled intensity,” Opt. Express 22(3), 2603 (2014).
[Crossref]

R. An, Y. Li, Y. Dou, H. Yang, and Q. Gong, “Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses,” Opt. Express 13(6), 1855 (2005).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (2)

Phys. Procedia (2)

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole Formation Process in Ultrashort Pulse Laser Percussion Drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaa, “Water-Assisted Femtosecond Laser Pulse Ablation of High Aspect Ratio Holes,” Phys. Procedia 12, 89–93 (2011).
[Crossref]

Precis. Eng. (1)

H. Hidai, Y. Kuroki, S. Matsusaka, A. Chiba, and N. Morita, “Curved drilling via inner hole laser reflection,” Precis. Eng. 46, 96–103 (2016).
[Crossref]

Sci. Rep. (1)

F. He, J. Yu, Y. Tan, W. Chu, C. Zhou, Y. Cheng, and K. Sugioka, “Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias,” Sci. Rep. 7(1), 40785 (2017).
[Crossref]

Thin Solid Films (1)

H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, and X. Hou, “Influence of liquid environments on femtosecond laser ablation of silicon,” Thin Solid Films 518(18), 5188–5194 (2010).
[Crossref]

Other (5)

L. Yu, H. Yang, T. T. Jing, M. Xu, R. Geer, and W. Wang, “Electrical characterization of RF TSV for 3D multi-core and heterogeneous ICs,” in IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD, (2010), pp. 686–693.

S. W. Ho, S. W. Yoon, Q. Zhou, K. Pasad, V. Kripesh, and J. H. Lau, “High RF performance TSV silicon carrier for high frequency application,” in Proc. - Electron. Components Technol. Conf., (2008), pp. 1946–1952.

B. Gao, T. Chen, Y. Chen, and J. Si, “Fabrication of Micro-Hole Arrays in Silicon Using Femtosecond Laser Irradiation and Acid Etching,” in 2015 Int. Conf. Comput. Intell. Commun. Networks, (IEEE, 2015), pp. 1338–1340.

S. Döring, “Analysis of the Hole Shape Evolution in Ultrashort Pulse Laser Drilling,” Ph.D. thesis, Friedrich-Schiller-University, Institute of Applied Physics (2014).

R. Rieske, R. Landgraf, and K. J. Wolter, “Novel method for crystal defect analysis of laser drilled TSVs,” in Proc. - Electron. Components Technol. Conf., (2009), pp. 1139–1146.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Setup for water-assisted laser drilling. The silicon substrate is kept in contact with the holder using vacuum. Water is circulated through the holder using a pump. A suitable water level is maintained in the holder by a holder wall that allows the overflow of excess water.
Fig. 2.
Fig. 2. Cross-sectional SEM images showing debris-free and well-defined holes through a silicon substrate drilled with water in contact with the backside of the substrate. (a) A vertical hole drilled using 100 000 laser pulses. (b) An inclined hole drilled with a 30° angle to the surface normal using 1 000 000 laser pulses. The tenfold increase in the number of pulses was required for the inclined holes because they are longer than the vertical holes. This increase did not disproportionately widen the hole.
Fig. 3.
Fig. 3. X-ray computed tomography (CT) images of holes drilled in a silicon substrate (a) without water and (b) with water. When the number of applied laser pulses reaches around 10 000 or more, the holes drilled with water behind the substrate develop differently from the ones drilled without water. Each image is from a separate set of holes.
Fig. 4.
Fig. 4. SEM images of the backsides of silicon substrates showing the exit openings of dry-drilled and wet-drilled holes. (a) Debris covers the dry-drilled exit holes. The insets show the same holes after removing the debris by mechanical grinding and wet etching for approximately 15 minutes in a 4.9 wt% solution of potassium hydroxide in deionized water. The exit openings of the dry-drilled holes have an irregular shape and show evidence of branching of the holes into separate channels. (b) The wet-drilled holes are free from debris even though the substrate was not cleaned after wet drilling. The shape of the exit opening after 40 000 pulses is not regular, but nonetheless the opening is clearly larger than the opening of the dry-drilled hole with the same amount of laser pulses. Increasing the number of laser pulses to 100 000 increases the opening diameter and brings the opening shape closer to a regular elliptical shape. The images of the wet-drilled holes were created by stacking SEM images with different focuses in order to create composite images with a greater depth of field.
Fig. 5.
Fig. 5. SEM images of the cross sections of dry-drilled holes after substrate cleaving. A number above a hole depicts the amount of laser pulses used to drill the hole. Each image is taken from a separate hole. Branching of the holes is visible. Debris builds up on the sidewalls of the holes when the number of laser pulses increases. Even increasing the number of laser pulses to 50 000 does not widen the dry-drilled holes significantly.
Fig. 6.
Fig. 6. SEM images of the cross sections of wet-drilled holes after substrate cleaving. A number above a hole depicts the amount of laser pulses used to drill the hole. Each image is taken from a separate hole. Branching is visible at the bottom of the holes, especially after exposure to 7 500 and 10 000 laser pulses, but increasing the number of laser pulses expands the holes, thus eventually removing branching. Debris built inside the holes is removed, progressing upwards from the bottom of the holes as demonstrated in the inset. The removal of debris leaves a clean sidewall surface with sub-micron structures. Exposure to 2 500 laser pulses leaves small marks at the lower part of the substrate, which indicates that the damaged volume in silicon extends deeply into the substrate at this stage, a conclusion supported by the CT images in Fig. 3.
Fig. 7.
Fig. 7. SEM images of the two sides of a single hole after cleaving the silicon substrate. The hole was drilled with water in contact with the backside of the substrate. The repetition rate of laser pulses was 100 Hz, and the number of pulses was 8 000. The hole significantly differs in shape from those drilled using a 100 kHz repetition rate.
Fig. 8.
Fig. 8. A simulation of the radio-frequency performance of TSVs with different inclinations. (a) An illustration of the coplanar-waveguide model used in the simulation. (b) The simulation results show an improvement in the return loss S11 and insertion loss S21 when the TSV angle to the surface normal is increased

Metrics