Abstract

A multi-physics null medium that performs as a perfect endoscope for both electromagnetic and acoustic waves is designed by transformation optics, which opens a new way to control electromagnetic and acoustic waves simultaneously. Surface transformation multi-physics, which is a novel graphical method to design multi-physics devices, is proposed based on the directional projecting feature of a multi-physics null medium. Many multi-physics devices, including beam shifters, scattering reduction, imaging devices and beam steering devices, for both electromagnetic and acoustic waves can be simply designed in a surface-corresponding manner. All devices designed by surface transformation multi-physics only need one homogeneous anisotropic medium (null medium) to realize, which can be approximately implemented by a brass plate array without any artificial sub-wavelength structures. Numerical simulations are given to verify the performances of the designed multi-physics devices made of brass plate array.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermal surface transformation and its applications to heat flux manipulations

Fei Sun, Yichao Liu, Yibiao Yang, Zhihui Chen, and Sailing He
Opt. Express 27(23) 33757-33767 (2019)

Controlling electromagnetic scattering of a cavity by transformation media

Shenyun Wang and Shaobin Liu
Opt. Express 20(6) 6777-6787 (2012)

Multi-functional coding metasurface for dual-band independent electromagnetic wave control

Wen-Long Guo, Guang-Ming Wang, Hai-Sheng Hou, Ke Chen, and Yijun Feng
Opt. Express 27(14) 19196-19211 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref]
  3. J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
    [Crossref]
  4. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
    [Crossref]
  5. F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
    [Crossref]
  6. H. Chen and C. T. Chan, “Acoustic cloaking and transformation acoustics,” J. Phys. D: Appl. Phys. 43(11), 113001 (2010).
    [Crossref]
  7. F. Sun, S. Li, and S. He, “Translational illusion of acoustic sources by transformation acoustics,” J. Acoust. Soc. Am. 142(3), 1213–1218 (2017).
    [Crossref]
  8. S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
    [Crossref]
  9. F. Sun and S. He, “Remote cooling by a novel thermal lens with anisotropic positive thermal conductivity,” Sci. Rep. 7(1), 40949 (2017).
    [Crossref]
  10. M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
    [Crossref]
  11. T. Han and C. W. Qiu, “Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields,” J. Opt. 18(4), 044003 (2016).
    [Crossref]
  12. C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, “Concentrators for Water Waves,” Phys. Rev. Lett. 121(10), 104501 (2018).
    [Crossref]
  13. F. Sun and S. He, “Transformation magneto-statics and illusions for magnets,” Sci. Rep. 4(1), 6593 (2015).
    [Crossref]
  14. C. Navau, J. Prat-Camps, and A. Sanchez, “Magnetic energy harvesting and concentration at a distance by transformation optics,” Phys. Rev. Lett. 109(26), 263903 (2012).
    [Crossref]
  15. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8(10), 247 (2006).
    [Crossref]
  16. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, 1999).
  17. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref]
  18. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
    [Crossref]
  19. Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
    [Crossref]
  20. M. Raza, Y. Liu, and Y. Ma, “A multi-cloak bifunctional device,” J. Appl. Phys. 117(2), 024502 (2015).
    [Crossref]
  21. C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
    [Crossref]
  22. T. Stedman and L. M. Woods, “Cloaking of Thermoelectric Transport,” Sci. Rep. 7(1), 6988 (2017).
    [Crossref]
  23. J. Y. Li, Y. Gao, and J. P. Huang, “A bifunctional cloak using transformation media,” J. Appl. Phys. 108(7), 074504 (2010).
    [Crossref]
  24. L. Zhang and Y. Shi, “Bifunctional arbitrarily-shaped cloak for thermal and electric manipulations,” Opt. Mater. Express 8(9), 2600–2613 (2018).
    [Crossref]
  25. M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
    [Crossref]
  26. C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
    [Crossref]
  27. G. Xu, X. Zhou, H. Zhang, and H. P. Tan, “Creating illusion of discrete source array by simultaneously allocating thermal and DC fields with homogeneous media,” Energy Convers. Manage. 187, 546–553 (2019).
    [Crossref]
  28. C. Lan, B. Li, and J. Zhou, “Simultaneously concentrated electric and thermal fields using fan-shaped structure,” Opt. Express 23(19), 24475–24483 (2015).
    [Crossref]
  29. C. Zhang, W. K. Cao, J. Yang, J. C. Ke, M. Z. Chen, L. T. Wu, Q. Cheng, and T. J. Cui, “A Multiphysical Digital Coding Metamaterial for Independent Controls of Broadband Electromagnetic and Acoustic Waves with Large Variety of Functions,” ACS Appl. Mater. Interfaces 11(18), 17050–17055 (2019).
    [Crossref]
  30. G. Song, C. Zhang, Q. Cheng, Y. Jing, C. Qiu, and T. Cui, “Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction,” Opt. Express 26(18), 22916–22925 (2018).
    [Crossref]
  31. Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
    [Crossref]
  32. J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
    [Crossref]
  33. M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
    [Crossref]
  34. J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
    [Crossref]
  35. F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
    [Crossref]
  36. B. Li, F. Sun, and S. He, “Acoustic surface transformation realized by acoustic-null materials using bilayer natural materials,” Appl. Phys. Express 10(11), 114001 (2017).
    [Crossref]
  37. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
    [Crossref]
  38. M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
    [Crossref]
  39. J. Jung, F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Holey metal films make perfect endoscopes,” Phys. Rev. B 79(15), 153407 (2009).
    [Crossref]
  40. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  41. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
    [Crossref]
  42. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [Crossref]
  43. J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8(12), 931–934 (2009).
    [Crossref]
  44. Z. M. Gu, B. Liang, Y. Li, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Experimental realization of broadband acoustic omnidirectional absorber by homogeneous anisotropic metamaterials,” J. Appl. Phys. 117(7), 074502 (2015).
    [Crossref]
  45. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
    [Crossref]
  46. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref]
  47. J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7(1), 52–55 (2011).
    [Crossref]
  48. B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
    [Crossref]
  49. Y. Zhang, Y. Luo, J. B. Pendry, and B. Zhang, “Transformation-Invariant Metamaterials,” Phys. Rev. Lett. 123(6), 067701 (2019).
    [Crossref]
  50. F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
    [Crossref]
  51. S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
    [Crossref]
  52. L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
    [Crossref]
  53. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
    [Crossref]
  54. F. Sun and S. He, “Extending the scanning angle of a phased array antenna by using a null-space medium,” Sci. Rep. 4(1), 6832 (2015).
    [Crossref]
  55. J. Yi, S. N. Burokur, and A. de Lustrac, “Conceptual design of a beam steering lens through transformation electromagnetics,” Opt. Express 23(10), 12942–12951 (2015).
    [Crossref]
  56. J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
    [Crossref]
  57. P. Wei, F. Liu, Z. Liang, Y. Xu, S. T. Chu, and J. Li, “An acoustic beam shifter with enhanced transmission using perforated metamaterials,” Europhys. Lett. 109(1), 14004 (2015).
    [Crossref]
  58. X. Jiang, B. Liang, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Broadband field rotator based on acoustic metamaterials,” Appl. Phys. Lett. 104(8), 083510 (2014).
    [Crossref]

2019 (5)

G. Xu, X. Zhou, H. Zhang, and H. P. Tan, “Creating illusion of discrete source array by simultaneously allocating thermal and DC fields with homogeneous media,” Energy Convers. Manage. 187, 546–553 (2019).
[Crossref]

C. Zhang, W. K. Cao, J. Yang, J. C. Ke, M. Z. Chen, L. T. Wu, Q. Cheng, and T. J. Cui, “A Multiphysical Digital Coding Metamaterial for Independent Controls of Broadband Electromagnetic and Acoustic Waves with Large Variety of Functions,” ACS Appl. Mater. Interfaces 11(18), 17050–17055 (2019).
[Crossref]

B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
[Crossref]

Y. Zhang, Y. Luo, J. B. Pendry, and B. Zhang, “Transformation-Invariant Metamaterials,” Phys. Rev. Lett. 123(6), 067701 (2019).
[Crossref]

F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
[Crossref]

2018 (4)

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

G. Song, C. Zhang, Q. Cheng, Y. Jing, C. Qiu, and T. Cui, “Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction,” Opt. Express 26(18), 22916–22925 (2018).
[Crossref]

L. Zhang and Y. Shi, “Bifunctional arbitrarily-shaped cloak for thermal and electric manipulations,” Opt. Mater. Express 8(9), 2600–2613 (2018).
[Crossref]

C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, “Concentrators for Water Waves,” Phys. Rev. Lett. 121(10), 104501 (2018).
[Crossref]

2017 (6)

F. Sun and S. He, “Remote cooling by a novel thermal lens with anisotropic positive thermal conductivity,” Sci. Rep. 7(1), 40949 (2017).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun, S. Li, and S. He, “Translational illusion of acoustic sources by transformation acoustics,” J. Acoust. Soc. Am. 142(3), 1213–1218 (2017).
[Crossref]

T. Stedman and L. M. Woods, “Cloaking of Thermoelectric Transport,” Sci. Rep. 7(1), 6988 (2017).
[Crossref]

B. Li, F. Sun, and S. He, “Acoustic surface transformation realized by acoustic-null materials using bilayer natural materials,” Appl. Phys. Express 10(11), 114001 (2017).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

2016 (5)

C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
[Crossref]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
[Crossref]

M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
[Crossref]

T. Han and C. W. Qiu, “Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields,” J. Opt. 18(4), 044003 (2016).
[Crossref]

2015 (11)

F. Sun and S. He, “Transformation magneto-statics and illusions for magnets,” Sci. Rep. 4(1), 6593 (2015).
[Crossref]

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref]

M. Raza, Y. Liu, and Y. Ma, “A multi-cloak bifunctional device,” J. Appl. Phys. 117(2), 024502 (2015).
[Crossref]

C. Lan, B. Li, and J. Zhou, “Simultaneously concentrated electric and thermal fields using fan-shaped structure,” Opt. Express 23(19), 24475–24483 (2015).
[Crossref]

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref]

F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
[Crossref]

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

Z. M. Gu, B. Liang, Y. Li, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Experimental realization of broadband acoustic omnidirectional absorber by homogeneous anisotropic metamaterials,” J. Appl. Phys. 117(7), 074502 (2015).
[Crossref]

P. Wei, F. Liu, Z. Liang, Y. Xu, S. T. Chu, and J. Li, “An acoustic beam shifter with enhanced transmission using perforated metamaterials,” Europhys. Lett. 109(1), 14004 (2015).
[Crossref]

F. Sun and S. He, “Extending the scanning angle of a phased array antenna by using a null-space medium,” Sci. Rep. 4(1), 6832 (2015).
[Crossref]

J. Yi, S. N. Burokur, and A. de Lustrac, “Conceptual design of a beam steering lens through transformation electromagnetics,” Opt. Express 23(10), 12942–12951 (2015).
[Crossref]

2014 (3)

X. Jiang, B. Liang, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Broadband field rotator based on acoustic metamaterials,” Appl. Phys. Lett. 104(8), 083510 (2014).
[Crossref]

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

2013 (4)

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref]

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref]

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref]

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref]

2012 (2)

C. Navau, J. Prat-Camps, and A. Sanchez, “Magnetic energy harvesting and concentration at a distance by transformation optics,” Phys. Rev. Lett. 109(26), 263903 (2012).
[Crossref]

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
[Crossref]

2011 (2)

J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7(1), 52–55 (2011).
[Crossref]

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[Crossref]

2010 (4)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

H. Chen and C. T. Chan, “Acoustic cloaking and transformation acoustics,” J. Phys. D: Appl. Phys. 43(11), 113001 (2010).
[Crossref]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref]

J. Y. Li, Y. Gao, and J. P. Huang, “A bifunctional cloak using transformation media,” J. Appl. Phys. 108(7), 074504 (2010).
[Crossref]

2009 (2)

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8(12), 931–934 (2009).
[Crossref]

J. Jung, F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Holey metal films make perfect endoscopes,” Phys. Rev. B 79(15), 153407 (2009).
[Crossref]

2008 (1)

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref]

2006 (4)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8(10), 247 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

2005 (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

2004 (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

2002 (2)

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[Crossref]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[Crossref]

Abdeddaim, R.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref]

Amra, C.

Bagci, H.

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref]

Bartal, G.

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8(12), 931–934 (2009).
[Crossref]

Bi, K.

C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
[Crossref]

C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
[Crossref]

Burokur, S. N.

Calle, F.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref]

Cao, W. K.

C. Zhang, W. K. Cao, J. Yang, J. C. Ke, M. Z. Chen, L. T. Wu, Q. Cheng, and T. J. Cui, “A Multiphysical Digital Coding Metamaterial for Independent Controls of Broadband Electromagnetic and Acoustic Waves with Large Variety of Functions,” ACS Appl. Mater. Interfaces 11(18), 17050–17055 (2019).
[Crossref]

Castaldi, G.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Cervera, F.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref]

Chan, C. T.

H. Chen and C. T. Chan, “Acoustic cloaking and transformation acoustics,” J. Phys. D: Appl. Phys. 43(11), 113001 (2010).
[Crossref]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref]

Chen, H.

B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
[Crossref]

C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, “Concentrators for Water Waves,” Phys. Rev. Lett. 121(10), 104501 (2018).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref]

H. Chen and C. T. Chan, “Acoustic cloaking and transformation acoustics,” J. Phys. D: Appl. Phys. 43(11), 113001 (2010).
[Crossref]

Chen, M. Z.

C. Zhang, W. K. Cao, J. Yang, J. C. Ke, M. Z. Chen, L. T. Wu, Q. Cheng, and T. J. Cui, “A Multiphysical Digital Coding Metamaterial for Independent Controls of Broadband Electromagnetic and Acoustic Waves with Large Variety of Functions,” ACS Appl. Mater. Interfaces 11(18), 17050–17055 (2019).
[Crossref]

Chen, X.

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

Cheng, J. C.

Z. M. Gu, B. Liang, Y. Li, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Experimental realization of broadband acoustic omnidirectional absorber by homogeneous anisotropic metamaterials,” J. Appl. Phys. 117(7), 074502 (2015).
[Crossref]

X. Jiang, B. Liang, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Broadband field rotator based on acoustic metamaterials,” Appl. Phys. Lett. 104(8), 083510 (2014).
[Crossref]

Cheng, Q.

C. Zhang, W. K. Cao, J. Yang, J. C. Ke, M. Z. Chen, L. T. Wu, Q. Cheng, and T. J. Cui, “A Multiphysical Digital Coding Metamaterial for Independent Controls of Broadband Electromagnetic and Acoustic Waves with Large Variety of Functions,” ACS Appl. Mater. Interfaces 11(18), 17050–17055 (2019).
[Crossref]

G. Song, C. Zhang, Q. Cheng, Y. Jing, C. Qiu, and T. Cui, “Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction,” Opt. Express 26(18), 22916–22925 (2018).
[Crossref]

Christensen, J.

J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7(1), 52–55 (2011).
[Crossref]

Chu, S. T.

P. Wei, F. Liu, Z. Liang, Y. Xu, S. T. Chu, and J. Li, “An acoustic beam shifter with enhanced transmission using perforated metamaterials,” Europhys. Lett. 109(1), 14004 (2015).
[Crossref]

Climente, A.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref]

Cui, T.

Cui, T. J.

C. Zhang, W. K. Cao, J. Yang, J. C. Ke, M. Z. Chen, L. T. Wu, Q. Cheng, and T. J. Cui, “A Multiphysical Digital Coding Metamaterial for Independent Controls of Broadband Electromagnetic and Acoustic Waves with Large Variety of Functions,” ACS Appl. Mater. Interfaces 11(18), 17050–17055 (2019).
[Crossref]

Cummer, S. A.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

de Lustrac, A.

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Engheta, N.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Enoch, S.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref]

Evans, J.

F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
[Crossref]

Fang, N.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref]

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[Crossref]

Farhat, M.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref]

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref]

Fok, L.

J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7(1), 52–55 (2011).
[Crossref]

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8(12), 931–934 (2009).
[Crossref]

Fu, G.

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

Fu, X.

Galdi, V.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Gao, Y.

J. Y. Li, Y. Gao, and J. P. Huang, “A bifunctional cloak using transformation media,” J. Appl. Phys. 108(7), 074504 (2010).
[Crossref]

Gao, Z.

C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
[Crossref]

García-Chocano, V. M.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref]

Garcia-Vidal, F. J.

J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7(1), 52–55 (2011).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

J. Jung, F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Holey metal films make perfect endoscopes,” Phys. Rev. B 79(15), 153407 (2009).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[Crossref]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[Crossref]

Geffrin, J. M.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref]

Georget, E.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref]

Gu, Z. M.

Z. M. Gu, B. Liang, Y. Li, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Experimental realization of broadband acoustic omnidirectional absorber by homogeneous anisotropic metamaterials,” J. Appl. Phys. 117(7), 074502 (2015).
[Crossref]

Guenneau, S.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref]

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref]

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
[Crossref]

Guinea, F.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref]

Guo, S.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Han, T.

T. Han and C. W. Qiu, “Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields,” J. Opt. 18(4), 044003 (2016).
[Crossref]

Hao, Y.

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

He, S.

F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
[Crossref]

B. Li, F. Sun, and S. He, “Acoustic surface transformation realized by acoustic-null materials using bilayer natural materials,” Appl. Phys. Express 10(11), 114001 (2017).
[Crossref]

F. Sun and S. He, “Remote cooling by a novel thermal lens with anisotropic positive thermal conductivity,” Sci. Rep. 7(1), 40949 (2017).
[Crossref]

F. Sun, S. Li, and S. He, “Translational illusion of acoustic sources by transformation acoustics,” J. Acoust. Soc. Am. 142(3), 1213–1218 (2017).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun and S. He, “Transformation magneto-statics and illusions for magnets,” Sci. Rep. 4(1), 6593 (2015).
[Crossref]

F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
[Crossref]

F. Sun and S. He, “Extending the scanning angle of a phased array antenna by using a null-space medium,” Sci. Rep. 4(1), 6832 (2015).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

Hou, B.

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

Huang, J. P.

J. Y. Li, Y. Gao, and J. P. Huang, “A bifunctional cloak using transformation media,” J. Appl. Phys. 108(7), 074504 (2010).
[Crossref]

Jiang, W.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Jiang, X.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref]

X. Jiang, B. Liang, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Broadband field rotator based on acoustic metamaterials,” Appl. Phys. Lett. 104(8), 083510 (2014).
[Crossref]

Jing, Y.

Jung, J.

J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7(1), 52–55 (2011).
[Crossref]

J. Jung, F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Holey metal films make perfect endoscopes,” Phys. Rev. B 79(15), 153407 (2009).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Ke, J. C.

C. Zhang, W. K. Cao, J. Yang, J. C. Ke, M. Z. Chen, L. T. Wu, Q. Cheng, and T. J. Cui, “A Multiphysical Digital Coding Metamaterial for Independent Controls of Broadband Electromagnetic and Acoustic Waves with Large Variety of Functions,” ACS Appl. Mater. Interfaces 11(18), 17050–17055 (2019).
[Crossref]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Lan, C.

Landy, N.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref]

Lee, E. H.

M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
[Crossref]

Lei, J.

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8(10), 247 (2006).
[Crossref]

Li, B.

B. Li, F. Sun, and S. He, “Acoustic surface transformation realized by acoustic-null materials using bilayer natural materials,” Appl. Phys. Express 10(11), 114001 (2017).
[Crossref]

C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
[Crossref]

C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
[Crossref]

C. Lan, B. Li, and J. Zhou, “Simultaneously concentrated electric and thermal fields using fan-shaped structure,” Opt. Express 23(19), 24475–24483 (2015).
[Crossref]

Li, C.

C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, “Concentrators for Water Waves,” Phys. Rev. Lett. 121(10), 104501 (2018).
[Crossref]

Li, E.

B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
[Crossref]

Li, J.

P. Wei, F. Liu, Z. Liang, Y. Xu, S. T. Chu, and J. Li, “An acoustic beam shifter with enhanced transmission using perforated metamaterials,” Europhys. Lett. 109(1), 14004 (2015).
[Crossref]

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8(12), 931–934 (2009).
[Crossref]

Li, J. Y.

J. Y. Li, Y. Gao, and J. P. Huang, “A bifunctional cloak using transformation media,” J. Appl. Phys. 108(7), 074504 (2010).
[Crossref]

Li, S.

F. Sun, S. Li, and S. He, “Translational illusion of acoustic sources by transformation acoustics,” J. Acoust. Soc. Am. 142(3), 1213–1218 (2017).
[Crossref]

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

Li, Y.

Z. M. Gu, B. Liang, Y. Li, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Experimental realization of broadband acoustic omnidirectional absorber by homogeneous anisotropic metamaterials,” J. Appl. Phys. 117(7), 074502 (2015).
[Crossref]

Liang, B.

Z. M. Gu, B. Liang, Y. Li, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Experimental realization of broadband acoustic omnidirectional absorber by homogeneous anisotropic metamaterials,” J. Appl. Phys. 117(7), 074502 (2015).
[Crossref]

X. Jiang, B. Liang, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Broadband field rotator based on acoustic metamaterials,” Appl. Phys. Lett. 104(8), 083510 (2014).
[Crossref]

Liang, Z.

P. Wei, F. Liu, Z. Liang, Y. Xu, S. T. Chu, and J. Li, “An acoustic beam shifter with enhanced transmission using perforated metamaterials,” Europhys. Lett. 109(1), 14004 (2015).
[Crossref]

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Liu, F.

P. Wei, F. Liu, Z. Liang, Y. Xu, S. T. Chu, and J. Li, “An acoustic beam shifter with enhanced transmission using perforated metamaterials,” Europhys. Lett. 109(1), 14004 (2015).
[Crossref]

Liu, Q. H.

C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, “Concentrators for Water Waves,” Phys. Rev. Lett. 121(10), 104501 (2018).
[Crossref]

Liu, Y.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
[Crossref]

M. Raza, Y. Liu, and Y. Ma, “A multi-cloak bifunctional device,” J. Appl. Phys. 117(2), 024502 (2015).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

Llopis-Pontiveros, R.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref]

Luo, Y.

Y. Zhang, Y. Luo, J. B. Pendry, and B. Zhang, “Transformation-Invariant Metamaterials,” Phys. Rev. Lett. 123(6), 067701 (2019).
[Crossref]

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref]

Ma, Y.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
[Crossref]

M. Raza, Y. Liu, and Y. Ma, “A multi-cloak bifunctional device,” J. Appl. Phys. 117(2), 024502 (2015).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

Martínez-Pastor, J.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref]

Martin-Moreno, L.

J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7(1), 52–55 (2011).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

J. Jung, F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Holey metal films make perfect endoscopes,” Phys. Rev. B 79(15), 153407 (2009).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[Crossref]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[Crossref]

Misner, C. W.

C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, 1999).

Moccia, M.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Navau, C.

C. Navau, J. Prat-Camps, and A. Sanchez, “Magnetic energy harvesting and concentration at a distance by transformation optics,” Phys. Rev. Lett. 109(26), 263903 (2012).
[Crossref]

Pedrós, J.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref]

Pendry, J.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref]

Pendry, J. B.

Y. Zhang, Y. Luo, J. B. Pendry, and B. Zhang, “Transformation-Invariant Metamaterials,” Phys. Rev. Lett. 123(6), 067701 (2019).
[Crossref]

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref]

J. Jung, F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Holey metal films make perfect endoscopes,” Phys. Rev. B 79(15), 153407 (2009).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8(10), 247 (2006).
[Crossref]

Popa, B. I.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref]

Prat-Camps, J.

C. Navau, J. Prat-Camps, and A. Sanchez, “Magnetic energy harvesting and concentration at a distance by transformation optics,” Phys. Rev. Lett. 109(26), 263903 (2012).
[Crossref]

Qiu, C.

Qiu, C. W.

T. Han and C. W. Qiu, “Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields,” J. Opt. 18(4), 044003 (2016).
[Crossref]

Rahm, M.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref]

Raza, M.

M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
[Crossref]

M. Raza, Y. Liu, and Y. Ma, “A multi-cloak bifunctional device,” J. Appl. Phys. 117(2), 024502 (2015).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

Sabouroux, P.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref]

Sadeghi, M. M.

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

Sanchez, A.

C. Navau, J. Prat-Camps, and A. Sanchez, “Magnetic energy harvesting and concentration at a distance by transformation optics,” Phys. Rev. Lett. 109(26), 263903 (2012).
[Crossref]

Sánchez-Dehesa, J.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref]

Sanchis, L.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref]

Sato, Y.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Savo, S.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Schiefele, J.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref]

Schurig, D.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Shao, Z.

B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
[Crossref]

Shen, L.

B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
[Crossref]

Shen, N. H.

B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
[Crossref]

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref]

Shi, Y.

Smith, D. R.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Sols, F.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref]

Song, G.

Soukoulis, C. M.

B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
[Crossref]

Starr, A.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Stedman, T.

T. Stedman and L. M. Woods, “Cloaking of Thermoelectric Transport,” Sci. Rep. 7(1), 6988 (2017).
[Crossref]

Sun, F.

F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
[Crossref]

B. Li, F. Sun, and S. He, “Acoustic surface transformation realized by acoustic-null materials using bilayer natural materials,” Appl. Phys. Express 10(11), 114001 (2017).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun and S. He, “Remote cooling by a novel thermal lens with anisotropic positive thermal conductivity,” Sci. Rep. 7(1), 40949 (2017).
[Crossref]

F. Sun, S. Li, and S. He, “Translational illusion of acoustic sources by transformation acoustics,” J. Acoust. Soc. Am. 142(3), 1213–1218 (2017).
[Crossref]

F. Sun and S. He, “Transformation magneto-statics and illusions for magnets,” Sci. Rep. 4(1), 6593 (2015).
[Crossref]

F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
[Crossref]

F. Sun and S. He, “Extending the scanning angle of a phased array antenna by using a null-space medium,” Sci. Rep. 4(1), 6832 (2015).
[Crossref]

Tan, H. P.

G. Xu, X. Zhou, H. Zhang, and H. P. Tan, “Creating illusion of discrete source array by simultaneously allocating thermal and DC fields with homogeneous media,” Energy Convers. Manage. 187, 546–553 (2019).
[Crossref]

Thorne, K. S.

C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, 1999).

Veynante, D.

Wang, H.

B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
[Crossref]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

Wang, Y.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

Wang, Z.

C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, “Concentrators for Water Waves,” Phys. Rev. Lett. 121(10), 104501 (2018).
[Crossref]

Wei, P.

P. Wei, F. Liu, Z. Liang, Y. Xu, S. T. Chu, and J. Li, “An acoustic beam shifter with enhanced transmission using perforated metamaterials,” Europhys. Lett. 109(1), 14004 (2015).
[Crossref]

Wheeler, J. A.

C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, 1999).

Woods, L. M.

T. Stedman and L. M. Woods, “Cloaking of Thermoelectric Transport,” Sci. Rep. 7(1), 6988 (2017).
[Crossref]

Wu, L. T.

C. Zhang, W. K. Cao, J. Yang, J. C. Ke, M. Z. Chen, L. T. Wu, Q. Cheng, and T. J. Cui, “A Multiphysical Digital Coding Metamaterial for Independent Controls of Broadband Electromagnetic and Acoustic Waves with Large Variety of Functions,” ACS Appl. Mater. Interfaces 11(18), 17050–17055 (2019).
[Crossref]

Xia, C.

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[Crossref]

Xu, G.

G. Xu, X. Zhou, H. Zhang, and H. P. Tan, “Creating illusion of discrete source array by simultaneously allocating thermal and DC fields with homogeneous media,” Energy Convers. Manage. 187, 546–553 (2019).
[Crossref]

Xu, J.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref]

Xu, L.

C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, “Concentrators for Water Waves,” Phys. Rev. Lett. 121(10), 104501 (2018).
[Crossref]

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

Xu, Y.

P. Wei, F. Liu, Z. Liang, Y. Xu, S. T. Chu, and J. Li, “An acoustic beam shifter with enhanced transmission using perforated metamaterials,” Europhys. Lett. 109(1), 14004 (2015).
[Crossref]

Xu, Z.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

Yan, Q.

B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
[Crossref]

Yang, J.

C. Zhang, W. K. Cao, J. Yang, J. C. Ke, M. Z. Chen, L. T. Wu, Q. Cheng, and T. J. Cui, “A Multiphysical Digital Coding Metamaterial for Independent Controls of Broadband Electromagnetic and Acoustic Waves with Large Variety of Functions,” ACS Appl. Mater. Interfaces 11(18), 17050–17055 (2019).
[Crossref]

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

Yang, Y.

B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
[Crossref]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

Yi, J.

Yin, L. L.

Z. M. Gu, B. Liang, Y. Li, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Experimental realization of broadband acoustic omnidirectional absorber by homogeneous anisotropic metamaterials,” J. Appl. Phys. 117(7), 074502 (2015).
[Crossref]

X. Jiang, B. Liang, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Broadband field rotator based on acoustic metamaterials,” Appl. Phys. Lett. 104(8), 083510 (2014).
[Crossref]

Yin, X.

J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7(1), 52–55 (2011).
[Crossref]

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8(12), 931–934 (2009).
[Crossref]

Yu, F.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

Zhang, B.

Y. Zhang, Y. Luo, J. B. Pendry, and B. Zhang, “Transformation-Invariant Metamaterials,” Phys. Rev. Lett. 123(6), 067701 (2019).
[Crossref]

Zhang, C.

C. Zhang, W. K. Cao, J. Yang, J. C. Ke, M. Z. Chen, L. T. Wu, Q. Cheng, and T. J. Cui, “A Multiphysical Digital Coding Metamaterial for Independent Controls of Broadband Electromagnetic and Acoustic Waves with Large Variety of Functions,” ACS Appl. Mater. Interfaces 11(18), 17050–17055 (2019).
[Crossref]

G. Song, C. Zhang, Q. Cheng, Y. Jing, C. Qiu, and T. Cui, “Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction,” Opt. Express 26(18), 22916–22925 (2018).
[Crossref]

Zhang, H.

G. Xu, X. Zhou, H. Zhang, and H. P. Tan, “Creating illusion of discrete source array by simultaneously allocating thermal and DC fields with homogeneous media,” Energy Convers. Manage. 187, 546–553 (2019).
[Crossref]

Zhang, L.

Zhang, S.

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[Crossref]

Zhang, X.

J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7(1), 52–55 (2011).
[Crossref]

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8(12), 931–934 (2009).
[Crossref]

Zhang, Y.

F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
[Crossref]

Y. Zhang, Y. Luo, J. B. Pendry, and B. Zhang, “Transformation-Invariant Metamaterials,” Phys. Rev. Lett. 123(6), 067701 (2019).
[Crossref]

Zhang, Z.

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

Zhao, R.

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref]

Zheng, B.

B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Zhou, J.

Zhou, X.

G. Xu, X. Zhou, H. Zhang, and H. P. Tan, “Creating illusion of discrete source array by simultaneously allocating thermal and DC fields with homogeneous media,” Energy Convers. Manage. 187, 546–553 (2019).
[Crossref]

Zhu, J.

J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7(1), 52–55 (2011).
[Crossref]

Zhu, L.

C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, “Concentrators for Water Waves,” Phys. Rev. Lett. 121(10), 104501 (2018).
[Crossref]

Zou, S.

C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, “Concentrators for Water Waves,” Phys. Rev. Lett. 121(10), 104501 (2018).
[Crossref]

Zou, X. Y.

Z. M. Gu, B. Liang, Y. Li, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Experimental realization of broadband acoustic omnidirectional absorber by homogeneous anisotropic metamaterials,” J. Appl. Phys. 117(7), 074502 (2015).
[Crossref]

X. Jiang, B. Liang, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Broadband field rotator based on acoustic metamaterials,” Appl. Phys. Lett. 104(8), 083510 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

C. Zhang, W. K. Cao, J. Yang, J. C. Ke, M. Z. Chen, L. T. Wu, Q. Cheng, and T. J. Cui, “A Multiphysical Digital Coding Metamaterial for Independent Controls of Broadband Electromagnetic and Acoustic Waves with Large Variety of Functions,” ACS Appl. Mater. Interfaces 11(18), 17050–17055 (2019).
[Crossref]

Appl. Phys. Express (1)

B. Li, F. Sun, and S. He, “Acoustic surface transformation realized by acoustic-null materials using bilayer natural materials,” Appl. Phys. Express 10(11), 114001 (2017).
[Crossref]

Appl. Phys. Lett. (2)

C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
[Crossref]

X. Jiang, B. Liang, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Broadband field rotator based on acoustic metamaterials,” Appl. Phys. Lett. 104(8), 083510 (2014).
[Crossref]

Energy Convers. Manage. (1)

G. Xu, X. Zhou, H. Zhang, and H. P. Tan, “Creating illusion of discrete source array by simultaneously allocating thermal and DC fields with homogeneous media,” Energy Convers. Manage. 187, 546–553 (2019).
[Crossref]

Europhys. Lett. (1)

P. Wei, F. Liu, Z. Liang, Y. Xu, S. T. Chu, and J. Li, “An acoustic beam shifter with enhanced transmission using perforated metamaterials,” Europhys. Lett. 109(1), 14004 (2015).
[Crossref]

J. Acoust. Soc. Am. (1)

F. Sun, S. Li, and S. He, “Translational illusion of acoustic sources by transformation acoustics,” J. Acoust. Soc. Am. 142(3), 1213–1218 (2017).
[Crossref]

J. Appl. Phys. (3)

M. Raza, Y. Liu, and Y. Ma, “A multi-cloak bifunctional device,” J. Appl. Phys. 117(2), 024502 (2015).
[Crossref]

J. Y. Li, Y. Gao, and J. P. Huang, “A bifunctional cloak using transformation media,” J. Appl. Phys. 108(7), 074504 (2010).
[Crossref]

Z. M. Gu, B. Liang, Y. Li, X. Y. Zou, L. L. Yin, and J. C. Cheng, “Experimental realization of broadband acoustic omnidirectional absorber by homogeneous anisotropic metamaterials,” J. Appl. Phys. 117(7), 074502 (2015).
[Crossref]

J. Opt. (2)

M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
[Crossref]

T. Han and C. W. Qiu, “Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields,” J. Opt. 18(4), 044003 (2016).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Phys. D: Appl. Phys. (1)

H. Chen and C. T. Chan, “Acoustic cloaking and transformation acoustics,” J. Phys. D: Appl. Phys. 43(11), 113001 (2010).
[Crossref]

Laser Photonics Rev. (1)

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Nat. Mater. (3)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref]

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8(12), 931–934 (2009).
[Crossref]

Nat. Photonics (1)

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Nat. Phys. (1)

J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7(1), 52–55 (2011).
[Crossref]

New J. Phys. (1)

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8(10), 247 (2006).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (1)

Phys. Rev. B (3)

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[Crossref]

J. Jung, F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Holey metal films make perfect endoscopes,” Phys. Rev. B 79(15), 153407 (2009).
[Crossref]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[Crossref]

Phys. Rev. Lett. (9)

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref]

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref]

C. Navau, J. Prat-Camps, and A. Sanchez, “Magnetic energy harvesting and concentration at a distance by transformation optics,” Phys. Rev. Lett. 109(26), 263903 (2012).
[Crossref]

C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, “Concentrators for Water Waves,” Phys. Rev. Lett. 121(10), 104501 (2018).
[Crossref]

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[Crossref]

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[Crossref]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref]

Y. Zhang, Y. Luo, J. B. Pendry, and B. Zhang, “Transformation-Invariant Metamaterials,” Phys. Rev. Lett. 123(6), 067701 (2019).
[Crossref]

Phys. Rev. X (1)

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Prog. Electromagn. Res. (1)

F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
[Crossref]

Research (1)

B. Zheng, Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, “Experimental Realization of an Extreme-Parameter Omnidirectional Cloak,” Research 2019, 1–8 (2019).
[Crossref]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Sci. Rep. (9)

F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
[Crossref]

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref]

T. Stedman and L. M. Woods, “Cloaking of Thermoelectric Transport,” Sci. Rep. 7(1), 6988 (2017).
[Crossref]

F. Sun and S. He, “Transformation magneto-statics and illusions for magnets,” Sci. Rep. 4(1), 6593 (2015).
[Crossref]

F. Sun and S. He, “Remote cooling by a novel thermal lens with anisotropic positive thermal conductivity,” Sci. Rep. 7(1), 40949 (2017).
[Crossref]

F. Sun and S. He, “Extending the scanning angle of a phased array antenna by using a null-space medium,” Sci. Rep. 4(1), 6832 (2015).
[Crossref]

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

Science (5)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref]

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Other (1)

C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, 1999).

Supplementary Material (10)

NameDescription
» Visualization 1       Visualization 1
» Visualization 2       Visualization 2
» Visualization 3       Visualization 3
» Visualization 4       Visualization 4
» Visualization 5       Visualization 5
» Visualization 6       Visualization 6
» Visualization 7       Visualization 7
» Visualization 8       Visualization 8
» Visualization 9       Visualization 9
» Visualization 10       Visualization 10

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The coordinate transformation relation between the real space (a) and the reference space (b). The yellow region between surfaces S1 and S2 of arbitrarily shapes is compressed into a thin yellow slab of thickness Δ in the reference space. The yellow regions in the real space and in the reference space are divided into many small trapezoid regions of height hi. Representative small trapezoid regions in the real space (c) and in the reference space (d).
Fig. 2.
Fig. 2. The structures of metal plate array (a) and a metal plate with periodic sub-wavelength square holes (b) to effectively realize the 2D and 3D reduced null media, respectively. The metals are indicated by the blue color. d is the lattice constant. a is the height of the air gaps in (a) and side length of square air cylinders.
Fig. 3.
Fig. 3. (a) Structure of the brass plate array used to achieve a multi-physics shifter for both electromagnetic wave and acoustic wave simultaneously (the thick black lines are brass and all other white regions are air). The length of each brass plate is h =mλ0 (the Fabry-Pérot resonance condition) and m = 2 here. The thickness of brass plate and air gap are both λ0/10, which means the filling factor of brass and air is 0.5. The angle between the brass plates and x axis is α=30 degree. The structure is designed at working wavelength λ0=3cm: corresponding frequencies are 10 GHz for electromagnetic wave and 11.433kHz for acoustic wave, respectively. (b) and (c) are distributions of normalized magnetic field’s z component for the TM polarized waves when a Gaussian electromagnetic beam incidents onto the brass plate array by 0 degree and -30 degree, respectively (see Visualization 1). (d) and (e) are normalized acoustic pressure distributions when a Gaussian acoustic beam incidents onto the brass plate array by 0 degree and -30 degree, respectively (see Visualization 2). (e) and (f) show the reflectivity of the multi-physics shifter in (a) when the wavelength deviates from the designed value λ0=3 cm for EM wave and acoustic wave, respectively (see Visualization 3 and Visualization 4).
Fig. 4.
Fig. 4. (a) The structure of the brass plate array for multi-physics scattering reduction. The thick black lines are brass plates of thickness λ0/10 and length h= 2λ0. (b)-(d) The normalized magnetic field’s z component for the TM polarized waves when a Gaussian electromagnetic beam incidents onto the brass plate array by 0, 20 and 40 degrees (see Visualization 5). (e)-(g) The normalized acoustic pressure when a Gaussian acoustic beam incidents onto the brass plate array by 0, 20 and 40 degrees (see Visualization 6). The boundaries of the central object of strong scattering are set as PEC and hard walls for electromagnetic wave and acoustic wave, respectively. All other parameters are the same as those in Fig. 3. Visualization 7 and Visualization 8 show Gaussian beam normally incidents onto the multi-physics scattering reduction device in Fig. 4(a) when the wavelength of incident Gaussian beam changes from λ0/3 to 2λ0 for electromagnetic case and acoustic case, respectively.
Fig. 5.
Fig. 5. Scattering when a Gaussian beam incidents onto the strongly scattering object by 0, 20 and 40 degrees. (a)-(c) The corresponding normalized magnetic field’s z component when the brass plates are removed from Figs. 4(b)–4(d) (only the central object of strong scattering is left in air). (d)-(f) The corresponding normalized acoustic pressure when the brass plates are removed from Figs. 4(e)–4(g). Other parameters are the same as those in Fig. 3. Visualization 9 and Visualization 10 show Gaussian beam normally incidents onto the strongly scattering object in the center of Fig. 4(a) (scattering reduction device is removed) when the wavelength of incident Gaussian beam changes from λ0/3 to 2λ0 for electromagnetic case and acoustic case, respectively.
Fig. 6.
Fig. 6. (a) Structure of the beam steering device. (b) and (c) are normalized amplitude of acoustic pressure and z component of the magnetic field in 2D numerical simulations when acoustic wave and TM polarized electromagnetic wave incident onto the beam steering device, respectively.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

{ ε = J ε J T det ( J ) μ = J μ J T det ( J ) ,   { ρ 1 = J ρ 1 J T det ( J ) κ = det ( J ) κ .
x = { d 1 / ( Δ / 2 ) x , x [ 0 , d 1 ] tan ( π α 1 ) ( x Δ 2 ) / tan ( π θ 1 ) + d 1 , x [ d 1 , d 1 + h i / tan ( π θ 1 ) ] d 2 / ( Δ / 2 ) x , x [ d 2 , 0 ) tan α 2 ( x + Δ 2 ) / tan θ 2 d 2 , x [ d 2 h i / tan θ 2 , d 2 ] x , e l s e ; y = y ; z = z .
ε ε 0 = μ μ 0 = ρ 0 ρ = { d i a g ( 2 d 1 / Δ , Δ / 2 d 1 , Δ / 2 d 1 ) , x [ 0 , d 1 ] d i a g ( tan ( π α 1 ) / tan ( π θ 1 ) , tan ( π θ 1 ) / tan ( π α 1 ) , tan ( π θ 1 ) / tan ( π α 1 ) ) , x [ d 1 , d 1 + h i / tan ( π θ 1 ) ] d i a g ( 2 d 2 / Δ , Δ / 2 d 2 , Δ / 2 d 2 ) , x [ d 2 , 0 ) d i a g ( tan α 2 / tan θ 2 , tan θ 2 / tan α 2 , tan θ 2 / tan α 2 ) , x [ d 2 h i / tan θ 2 , d 2 ] 1 , e s l e .
κ / κ 0 = { 2 d 1 / Δ , x [ 0 , d 1 ] tan ( π α 1 ) / tan ( π θ 1 ) , x [ d 1 , d 1 + h i / tan ( π θ 1 ) ] 2 d 2 / Δ , x [ d 2 , 0 ) tan α 2 / tan θ 2 , x [ d 2 h i / tan θ 2 , d 2 ] 1 , e s l e .
ε ε 0 = μ μ 0 = ρ 0 ρ α 1 π / 2 α 2 π / 2 Δ 0 { d i a g ( , 0 , 0 ) , d 1 x d 2 1 , e l s e .
κ κ 0 α 1 π / 2 α 2 π / 2 Δ 0 { , d 1 x d 2 1 , e l s e .
{ ε = μ = d i a g ( , 0 , 0 ) ρ = d i a g ( 0 , , ) κ = , d 1 x d 2 .
{ ε y = d a ε h , ε x = ε z μ y = μ h , μ x = μ z = a d μ h .
ε y = d a ε h , μ z = a d μ h , ε x .
1 ρ x = f h ρ h + f m ρ m ,   ρ y = f h ρ h + f m ρ m ,   1 κ = f h κ h + f m κ m .
{ ε y = 2 ε 0 , μ z = 0.5 μ 0 , ε x ρ x = 2.58 k g / m 3 , ρ y = 4250.6 k g / m 3 , = 0.3 M P a .

Metrics