Abstract

We designed, fabricated and characterized parallel-plate capacitor lumped-element kinetic inductance detectors (LEKIDs) to operate at near-infrared and optical wavelengths (0.3 −1 μm). The widely used interdigitated capacitor is replaced by a parallel-plate capacitor which, for a given resonance frequency, has a larger capacitance value within a much smaller space allowing to strongly reduce the size of the pixels. The parallel-plate capacitor LEKID array comprises 10 × 10 pixels. The inductive meander is patterned from stoichiometric 52 nm-thick TiN film (Tc ≈4.6 K). The parallel-plate capacitor is made of a TiN base electrode, Al2O3 dielectric and Nb upper electrode. More than 90 resonances out of 100 within the 0.994-1.278 GHz band were identified. The resonances exhibit internal Q-factors up to ∼370 000 at 72 mK. The array was illuminated using a white light and 890 nm monochromatic near infrared LEDs. The estimated quasiparticle lifetime is τqp≈13 µs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin
Opt. Express 25(21) 25894-25909 (2017)

A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics

Benjamin A. Mazin, Bruce Bumble, Seth R. Meeker, Kieran O’Brien, Sean McHugh, and Eric Langman
Opt. Express 20(2) 1503-1511 (2012)

Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity

Alessandro Pitanti, Johannes M. Fink, Amir H. Safavi-Naeini, Jeff T. Hill, Chan U. Lei, Alessandro Tredicucci, and Oskar Painter
Opt. Express 23(3) 3196-3208 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Mazin, B. Bumble, S. R. Meeker, K. O’Brien, S. McHugh, and E. Langman, “A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics,” Opt. Express 20(2), 1503–1511 (2012).
    [Crossref] [PubMed]
  2. P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
    [Crossref] [PubMed]
  3. P. Szypryt, B. A. Mazin, G. Ulbricht, B. Bumble, S. R. Meeker, C. Bockstiegel, and A. B. Walter, “High quality factor platinum silicide microwave kinetic inductance detectors,” Appl. Phys. Lett. 109(15), 151102 (2016).
    [Crossref]
  4. B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).
  5. S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
    [Crossref]
  6. S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1-2), 530–536 (2008).
    [Crossref]
  7. T. R. Lauer, “The photometry of undersampled point-spread functions,” Astronomical Soc. Pacific. 111(765), 1434–1443 (1999).
    [Crossref]
  8. S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
    [Crossref]
  9. J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92(15), 152505 (2008).
    [Crossref]
  10. G. Coiffard, B.Mazin, Paul Szypryt, G. Ulbricht, M. Daaland, and N. Zobris, “Parallel plate microwave kinetic inductance detectors,” Low Temperature Detectors (LTD) workshop, Japan, July (2017).
  11. O. Noroozian, J. Gao, J. Zmuidzinas, H. G. LeDuc, B. A Mazin, B. Young, B. Cabrera, and A. Miller, “Two‐level system noise reduction for microwave kinetic inductance detectors,” AIP Conf. Proc.1185, 148–151 (2009).
  12. P. Szypryt, “Development of Microwave Kinetic Inductance Detectors for Applications in Optical to Near-IR Astronomy,” PhD dissertation, University of California - Santa Barbara (2017).
  13. S. Doyle, “Lumped Element Kinetic Inductance Detectors,” PhD dissertation, Cardiff University (2008).
    [Crossref]
  14. G. Coiffard, K. F. Schuster, E. F. C. Driessen, S. Pignard, M. Calvo, A. Catalano, J. Goupy, and A. Monfardini, “Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector arrays,” J. Low Temp. Phys. 184(3-4), 654–660 (2016).
    [Crossref]
  15. M. R. Vissers, J. Gao, J. S. Kline, M. Sandberg, M. P. Weides, D. S. Wisbey, and D. P. Pappas, “Characterization and in-situ monitoring of sub-stoichiometric adjustable superconducting critical temperature titanium nitride growth,” Thin Solid Films 548, 485–488 (2013).
    [Crossref]
  16. http://www.sonnetsoftware.com/
  17. S. J. Weber, K. W. Murch, D. H. Slichter, R. Vijay, and I. Siddiqi, “Single crystal silicon capacitors with low microwave loss in the single photon regime,” Appl. Phys. Lett. 98(17), 172510 (2011).
    [Crossref]
  18. H. Paik and K. D. Osborn, “Reducing quantum-regime dielectric loss of silicon nitride for superconducting quantum circuits,” Appl. Phys. Lett. 96(7), 072505 (2010).
    [Crossref]
  19. K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96(9), 093502 (2010).
    [Crossref]
  20. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
    [Crossref] [PubMed]
  21. H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
    [Crossref]
  22. J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
    [Crossref] [PubMed]

2018 (2)

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
[Crossref]

2017 (1)

2016 (2)

P. Szypryt, B. A. Mazin, G. Ulbricht, B. Bumble, S. R. Meeker, C. Bockstiegel, and A. B. Walter, “High quality factor platinum silicide microwave kinetic inductance detectors,” Appl. Phys. Lett. 109(15), 151102 (2016).
[Crossref]

G. Coiffard, K. F. Schuster, E. F. C. Driessen, S. Pignard, M. Calvo, A. Catalano, J. Goupy, and A. Monfardini, “Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector arrays,” J. Low Temp. Phys. 184(3-4), 654–660 (2016).
[Crossref]

2013 (2)

M. R. Vissers, J. Gao, J. S. Kline, M. Sandberg, M. P. Weides, D. S. Wisbey, and D. P. Pappas, “Characterization and in-situ monitoring of sub-stoichiometric adjustable superconducting critical temperature titanium nitride growth,” Thin Solid Films 548, 485–488 (2013).
[Crossref]

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).

2012 (1)

2011 (1)

S. J. Weber, K. W. Murch, D. H. Slichter, R. Vijay, and I. Siddiqi, “Single crystal silicon capacitors with low microwave loss in the single photon regime,” Appl. Phys. Lett. 98(17), 172510 (2011).
[Crossref]

2010 (3)

H. Paik and K. D. Osborn, “Reducing quantum-regime dielectric loss of silicon nitride for superconducting quantum circuits,” Appl. Phys. Lett. 96(7), 072505 (2010).
[Crossref]

K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96(9), 093502 (2010).
[Crossref]

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

2008 (2)

J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92(15), 152505 (2008).
[Crossref]

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1-2), 530–536 (2008).
[Crossref]

2005 (1)

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

2003 (1)

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

1999 (1)

T. R. Lauer, “The photometry of undersampled point-spread functions,” Astronomical Soc. Pacific. 111(765), 1434–1443 (1999).
[Crossref]

Allman, M. S.

K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96(9), 093502 (2010).
[Crossref]

Altomare, F.

K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96(9), 093502 (2010).
[Crossref]

Ansmann, M.

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

Beldi, S.

S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
[Crossref]

Bockstiegel, C.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

P. Szypryt, B. A. Mazin, G. Ulbricht, B. Bumble, S. R. Meeker, C. Bockstiegel, and A. B. Walter, “High quality factor platinum silicide microwave kinetic inductance detectors,” Appl. Phys. Lett. 109(15), 151102 (2016).
[Crossref]

Bonifacio, P.

S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
[Crossref]

Bottom, M.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Boussaha, F.

S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
[Crossref]

Bumble, B.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

P. Szypryt, B. A. Mazin, G. Ulbricht, B. Bumble, S. R. Meeker, C. Bockstiegel, and A. B. Walter, “High quality factor platinum silicide microwave kinetic inductance detectors,” Appl. Phys. Lett. 109(15), 151102 (2016).
[Crossref]

B. A. Mazin, B. Bumble, S. R. Meeker, K. O’Brien, S. McHugh, and E. Langman, “A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics,” Opt. Express 20(2), 1503–1511 (2012).
[Crossref] [PubMed]

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

Cabrera, B.

O. Noroozian, J. Gao, J. Zmuidzinas, H. G. LeDuc, B. A Mazin, B. Young, B. Cabrera, and A. Miller, “Two‐level system noise reduction for microwave kinetic inductance detectors,” AIP Conf. Proc.1185, 148–151 (2009).

Calvo, M.

G. Coiffard, K. F. Schuster, E. F. C. Driessen, S. Pignard, M. Calvo, A. Catalano, J. Goupy, and A. Monfardini, “Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector arrays,” J. Low Temp. Phys. 184(3-4), 654–660 (2016).
[Crossref]

Cancelo, G.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Catalano, A.

G. Coiffard, K. F. Schuster, E. F. C. Driessen, S. Pignard, M. Calvo, A. Catalano, J. Goupy, and A. Monfardini, “Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector arrays,” J. Low Temp. Phys. 184(3-4), 654–660 (2016).
[Crossref]

Chaumont, C.

S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
[Crossref]

Cicak, K.

K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96(9), 093502 (2010).
[Crossref]

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

Coiffard, G.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

G. Coiffard, K. F. Schuster, E. F. C. Driessen, S. Pignard, M. Calvo, A. Catalano, J. Goupy, and A. Monfardini, “Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector arrays,” J. Low Temp. Phys. 184(3-4), 654–660 (2016).
[Crossref]

Collura, G.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

Cooper, K. B.

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

Daal, M.

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92(15), 152505 (2008).
[Crossref]

Day, P. K.

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92(15), 152505 (2008).
[Crossref]

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

Dodkins, R.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Doyle, S.

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1-2), 530–536 (2008).
[Crossref]

Driessen, E. F. C.

G. Coiffard, K. F. Schuster, E. F. C. Driessen, S. Pignard, M. Calvo, A. Catalano, J. Goupy, and A. Monfardini, “Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector arrays,” J. Low Temp. Phys. 184(3-4), 654–660 (2016).
[Crossref]

Duggan, G. E.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).

Duncombe, C.

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1-2), 530–536 (2008).
[Crossref]

Eom, B. H.

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

Eyken, J. C. V.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).

Fruitwala, N.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

Gao, J.

M. R. Vissers, J. Gao, J. S. Kline, M. Sandberg, M. P. Weides, D. S. Wisbey, and D. P. Pappas, “Characterization and in-situ monitoring of sub-stoichiometric adjustable superconducting critical temperature titanium nitride growth,” Thin Solid Films 548, 485–488 (2013).
[Crossref]

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92(15), 152505 (2008).
[Crossref]

O. Noroozian, J. Gao, J. Zmuidzinas, H. G. LeDuc, B. A Mazin, B. Young, B. Cabrera, and A. Miller, “Two‐level system noise reduction for microwave kinetic inductance detectors,” AIP Conf. Proc.1185, 148–151 (2009).

Golwala, S.

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

Goupy, J.

G. Coiffard, K. F. Schuster, E. F. C. Driessen, S. Pignard, M. Calvo, A. Catalano, J. Goupy, and A. Monfardini, “Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector arrays,” J. Low Temp. Phys. 184(3-4), 654–660 (2016).
[Crossref]

Johnson, M.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).

Kline, J. S.

M. R. Vissers, J. Gao, J. S. Kline, M. Sandberg, M. P. Weides, D. S. Wisbey, and D. P. Pappas, “Characterization and in-situ monitoring of sub-stoichiometric adjustable superconducting critical temperature titanium nitride growth,” Thin Solid Films 548, 485–488 (2013).
[Crossref]

Kumar, S.

J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92(15), 152505 (2008).
[Crossref]

Langman, E.

Lauer, T. R.

T. R. Lauer, “The photometry of undersampled point-spread functions,” Astronomical Soc. Pacific. 111(765), 1434–1443 (1999).
[Crossref]

Leduc, H. G.

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92(15), 152505 (2008).
[Crossref]

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

O. Noroozian, J. Gao, J. Zmuidzinas, H. G. LeDuc, B. A Mazin, B. Young, B. Cabrera, and A. Miller, “Two‐level system noise reduction for microwave kinetic inductance detectors,” AIP Conf. Proc.1185, 148–151 (2009).

Li, D.

K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96(9), 093502 (2010).
[Crossref]

Lipartito, I.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

Marsden, D.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).

Martinis, J. M.

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

Mauskopf, P.

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1-2), 530–536 (2008).
[Crossref]

Mawet, D.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Mazin, B. A

O. Noroozian, J. Gao, J. Zmuidzinas, H. G. LeDuc, B. A Mazin, B. Young, B. Cabrera, and A. Miller, “Two‐level system noise reduction for microwave kinetic inductance detectors,” AIP Conf. Proc.1185, 148–151 (2009).

Mazin, B. A.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

P. Szypryt, B. A. Mazin, G. Ulbricht, B. Bumble, S. R. Meeker, C. Bockstiegel, and A. B. Walter, “High quality factor platinum silicide microwave kinetic inductance detectors,” Appl. Phys. Lett. 109(15), 151102 (2016).
[Crossref]

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).

B. A. Mazin, B. Bumble, S. R. Meeker, K. O’Brien, S. McHugh, and E. Langman, “A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics,” Opt. Express 20(2), 1503–1511 (2012).
[Crossref] [PubMed]

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92(15), 152505 (2008).
[Crossref]

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

McDermott, R.

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

McHugh, S.

B. A. Mazin, B. Bumble, S. R. Meeker, K. O’Brien, S. McHugh, and E. Langman, “A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics,” Opt. Express 20(2), 1503–1511 (2012).
[Crossref] [PubMed]

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

Meeker, S. R.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

P. Szypryt, B. A. Mazin, G. Ulbricht, B. Bumble, S. R. Meeker, C. Bockstiegel, and A. B. Walter, “High quality factor platinum silicide microwave kinetic inductance detectors,” Appl. Phys. Lett. 109(15), 151102 (2016).
[Crossref]

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).

B. A. Mazin, B. Bumble, S. R. Meeker, K. O’Brien, S. McHugh, and E. Langman, “A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics,” Opt. Express 20(2), 1503–1511 (2012).
[Crossref] [PubMed]

Merrill, A.

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

Mignot, S.

S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
[Crossref]

Miller, A.

O. Noroozian, J. Gao, J. Zmuidzinas, H. G. LeDuc, B. A Mazin, B. Young, B. Cabrera, and A. Miller, “Two‐level system noise reduction for microwave kinetic inductance detectors,” AIP Conf. Proc.1185, 148–151 (2009).

Monfardini, A.

G. Coiffard, K. F. Schuster, E. F. C. Driessen, S. Pignard, M. Calvo, A. Catalano, J. Goupy, and A. Monfardini, “Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector arrays,” J. Low Temp. Phys. 184(3-4), 654–660 (2016).
[Crossref]

Moore, D. C.

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

Murch, K. W.

S. J. Weber, K. W. Murch, D. H. Slichter, R. Vijay, and I. Siddiqi, “Single crystal silicon capacitors with low microwave loss in the single photon regime,” Appl. Phys. Lett. 98(17), 172510 (2011).
[Crossref]

Naylon, J.

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1-2), 530–536 (2008).
[Crossref]

Noroozian, O.

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

O. Noroozian, J. Gao, J. Zmuidzinas, H. G. LeDuc, B. A Mazin, B. Young, B. Cabrera, and A. Miller, “Two‐level system noise reduction for microwave kinetic inductance detectors,” AIP Conf. Proc.1185, 148–151 (2009).

O’Brien, K.

Oh, S.

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

Osborn, K. D.

H. Paik and K. D. Osborn, “Reducing quantum-regime dielectric loss of silicon nitride for superconducting quantum circuits,” Appl. Phys. Lett. 96(7), 072505 (2010).
[Crossref]

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

Paik, H.

H. Paik and K. D. Osborn, “Reducing quantum-regime dielectric loss of silicon nitride for superconducting quantum circuits,” Appl. Phys. Lett. 96(7), 072505 (2010).
[Crossref]

Pappas, D. P.

M. R. Vissers, J. Gao, J. S. Kline, M. Sandberg, M. P. Weides, D. S. Wisbey, and D. P. Pappas, “Characterization and in-situ monitoring of sub-stoichiometric adjustable superconducting critical temperature titanium nitride growth,” Thin Solid Films 548, 485–488 (2013).
[Crossref]

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

Piat, M.

S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
[Crossref]

Pignard, S.

G. Coiffard, K. F. Schuster, E. F. C. Driessen, S. Pignard, M. Calvo, A. Catalano, J. Goupy, and A. Monfardini, “Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector arrays,” J. Low Temp. Phys. 184(3-4), 654–660 (2016).
[Crossref]

Porch, A.

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1-2), 530–536 (2008).
[Crossref]

Reix, F.

S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
[Crossref]

Sadoulet, B.

J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92(15), 152505 (2008).
[Crossref]

Sandberg, M.

M. R. Vissers, J. Gao, J. S. Kline, M. Sandberg, M. P. Weides, D. S. Wisbey, and D. P. Pappas, “Characterization and in-situ monitoring of sub-stoichiometric adjustable superconducting critical temperature titanium nitride growth,” Thin Solid Films 548, 485–488 (2013).
[Crossref]

Schuster, K. F.

G. Coiffard, K. F. Schuster, E. F. C. Driessen, S. Pignard, M. Calvo, A. Catalano, J. Goupy, and A. Monfardini, “Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector arrays,” J. Low Temp. Phys. 184(3-4), 654–660 (2016).
[Crossref]

Serabyn, E.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Shelton, J. C.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Siddiqi, I.

S. J. Weber, K. W. Murch, D. H. Slichter, R. Vijay, and I. Siddiqi, “Single crystal silicon capacitors with low microwave loss in the single photon regime,” Appl. Phys. Lett. 98(17), 172510 (2011).
[Crossref]

Simmonds, R. W.

K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96(9), 093502 (2010).
[Crossref]

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

Sirois, A. J.

K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96(9), 093502 (2010).
[Crossref]

Slichter, D. H.

S. J. Weber, K. W. Murch, D. H. Slichter, R. Vijay, and I. Siddiqi, “Single crystal silicon capacitors with low microwave loss in the single photon regime,” Appl. Phys. Lett. 98(17), 172510 (2011).
[Crossref]

Steffen, M.

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

Strader, M. J.

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).

Strader, P.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Strong, J. A.

K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96(9), 093502 (2010).
[Crossref]

Szypryt, P.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

P. Szypryt, B. A. Mazin, G. Ulbricht, B. Bumble, S. R. Meeker, C. Bockstiegel, and A. B. Walter, “High quality factor platinum silicide microwave kinetic inductance detectors,” Appl. Phys. Lett. 109(15), 151102 (2016).
[Crossref]

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).

Tartari, A.

S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
[Crossref]

Teufel, J. D.

K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96(9), 093502 (2010).
[Crossref]

Traini, A.

S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
[Crossref]

Treptow, K.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Turner, A. D.

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

Ulbricht, G.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

P. Szypryt, B. A. Mazin, G. Ulbricht, B. Bumble, S. R. Meeker, C. Bockstiegel, and A. B. Walter, “High quality factor platinum silicide microwave kinetic inductance detectors,” Appl. Phys. Lett. 109(15), 151102 (2016).
[Crossref]

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).

Vacelet, T.

S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
[Crossref]

van Eyken, J. C.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Vasisht, G.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Vayonakis, A.

J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92(15), 152505 (2008).
[Crossref]

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

Vijay, R.

S. J. Weber, K. W. Murch, D. H. Slichter, R. Vijay, and I. Siddiqi, “Single crystal silicon capacitors with low microwave loss in the single photon regime,” Appl. Phys. Lett. 98(17), 172510 (2011).
[Crossref]

Vissers, M. R.

M. R. Vissers, J. Gao, J. S. Kline, M. Sandberg, M. P. Weides, D. S. Wisbey, and D. P. Pappas, “Characterization and in-situ monitoring of sub-stoichiometric adjustable superconducting critical temperature titanium nitride growth,” Thin Solid Films 548, 485–488 (2013).
[Crossref]

Walter, A. B.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

P. Szypryt, B. A. Mazin, G. Ulbricht, B. Bumble, S. R. Meeker, C. Bockstiegel, and A. B. Walter, “High quality factor platinum silicide microwave kinetic inductance detectors,” Appl. Phys. Lett. 109(15), 151102 (2016).
[Crossref]

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).

Weber, S. J.

S. J. Weber, K. W. Murch, D. H. Slichter, R. Vijay, and I. Siddiqi, “Single crystal silicon capacitors with low microwave loss in the single photon regime,” Appl. Phys. Lett. 98(17), 172510 (2011).
[Crossref]

Weides, M. P.

M. R. Vissers, J. Gao, J. S. Kline, M. Sandberg, M. P. Weides, D. S. Wisbey, and D. P. Pappas, “Characterization and in-situ monitoring of sub-stoichiometric adjustable superconducting critical temperature titanium nitride growth,” Thin Solid Films 548, 485–488 (2013).
[Crossref]

Whittaker, J. D.

K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96(9), 093502 (2010).
[Crossref]

Wilcer, N.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Wisbey, D. S.

M. R. Vissers, J. Gao, J. S. Kline, M. Sandberg, M. P. Weides, D. S. Wisbey, and D. P. Pappas, “Characterization and in-situ monitoring of sub-stoichiometric adjustable superconducting critical temperature titanium nitride growth,” Thin Solid Films 548, 485–488 (2013).
[Crossref]

Young, B.

O. Noroozian, J. Gao, J. Zmuidzinas, H. G. LeDuc, B. A Mazin, B. Young, B. Cabrera, and A. Miller, “Two‐level system noise reduction for microwave kinetic inductance detectors,” AIP Conf. Proc.1185, 148–151 (2009).

Yu, C. C.

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

Zmuda, T.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Zmuidzinas, J.

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92(15), 152505 (2008).
[Crossref]

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

O. Noroozian, J. Gao, J. Zmuidzinas, H. G. LeDuc, B. A Mazin, B. Young, B. Cabrera, and A. Miller, “Two‐level system noise reduction for microwave kinetic inductance detectors,” AIP Conf. Proc.1185, 148–151 (2009).

Zobrist, N.

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

P. Szypryt, S. R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A. B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, and B. A. Mazin, “Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,” Opt. Express 25(21), 25894–25909 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

P. Szypryt, B. A. Mazin, G. Ulbricht, B. Bumble, S. R. Meeker, C. Bockstiegel, and A. B. Walter, “High quality factor platinum silicide microwave kinetic inductance detectors,” Appl. Phys. Lett. 109(15), 151102 (2016).
[Crossref]

J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92(15), 152505 (2008).
[Crossref]

S. J. Weber, K. W. Murch, D. H. Slichter, R. Vijay, and I. Siddiqi, “Single crystal silicon capacitors with low microwave loss in the single photon regime,” Appl. Phys. Lett. 98(17), 172510 (2011).
[Crossref]

H. Paik and K. D. Osborn, “Reducing quantum-regime dielectric loss of silicon nitride for superconducting quantum circuits,” Appl. Phys. Lett. 96(7), 072505 (2010).
[Crossref]

K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96(9), 093502 (2010).
[Crossref]

H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Tianium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97(10), 102509 (2010).
[Crossref]

Astronomical Soc. Pacific (1)

S. R. Meeker, B. A. Mazin, A. B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J. C. Shelton, D. Mawet, J. C. van Eyken, G. Vasisht, and E. Serabyn, “DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,” Astronomical Soc. Pacific 130(988), 065001 (2018).
[Crossref]

Astronomical Soc. Pacific. (1)

T. R. Lauer, “The photometry of undersampled point-spread functions,” Astronomical Soc. Pacific. 111(765), 1434–1443 (1999).
[Crossref]

J. Low Temp. Phys. (3)

S. Beldi, F. Boussaha, C. Chaumont, S. Mignot, F. Reix, A. Tartari, T. Vacelet, A. Traini, M. Piat, and P. Bonifacio, “Design of near infrared and visible kinetic inductance detectors using MIM capacitors,” J. Low Temp. Phys. 193(3-4), 184–188 (2018).
[Crossref]

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1-2), 530–536 (2008).
[Crossref]

G. Coiffard, K. F. Schuster, E. F. C. Driessen, S. Pignard, M. Calvo, A. Catalano, J. Goupy, and A. Monfardini, “Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector arrays,” J. Low Temp. Phys. 184(3-4), 654–660 (2016).
[Crossref]

Nature (1)

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. Lett. (1)

J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95(21), 210503 (2005).
[Crossref] [PubMed]

Pub Astronomical Soc. Pacific (1)

B. A. Mazin, S. R. Meeker, M. J. Strader, P. Szypryt, D. Marsden, J. C. V. Eyken, G. E. Duggan, A. B. Walter, G. Ulbricht, and M. Johnson, “ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer,” Pub Astronomical Soc. Pacific 125, 1348–1361 (2013).

Thin Solid Films (1)

M. R. Vissers, J. Gao, J. S. Kline, M. Sandberg, M. P. Weides, D. S. Wisbey, and D. P. Pappas, “Characterization and in-situ monitoring of sub-stoichiometric adjustable superconducting critical temperature titanium nitride growth,” Thin Solid Films 548, 485–488 (2013).
[Crossref]

Other (5)

http://www.sonnetsoftware.com/

G. Coiffard, B.Mazin, Paul Szypryt, G. Ulbricht, M. Daaland, and N. Zobris, “Parallel plate microwave kinetic inductance detectors,” Low Temperature Detectors (LTD) workshop, Japan, July (2017).

O. Noroozian, J. Gao, J. Zmuidzinas, H. G. LeDuc, B. A Mazin, B. Young, B. Cabrera, and A. Miller, “Two‐level system noise reduction for microwave kinetic inductance detectors,” AIP Conf. Proc.1185, 148–151 (2009).

P. Szypryt, “Development of Microwave Kinetic Inductance Detectors for Applications in Optical to Near-IR Astronomy,” PhD dissertation, University of California - Santa Barbara (2017).

S. Doyle, “Lumped Element Kinetic Inductance Detectors,” PhD dissertation, Cardiff University (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (Left) Sketch of a classical interdigitated capacitor-based LEKID and (right) our parallel-plate capacitor based LEKID. For comparison, both use the same meander and are designed to resonate at the same frequency of 0.942 GHz. At this frequency, a parallel-plate capacitor LEKID using a 25 nm-thick Al2O3 dielectric allows to strongly reduce the size of pixels by a factor 26.
Fig. 2
Fig. 2 SONNET simulation of a parallel-plate capacitor based LEKID with a full upper electrode. The left panel presents the forward transmission (S21) signal of the 50 Ω feedline showing the LEKID resonance at 0.947 GHz. The right panel shows the current density within the meander along with the parallel-plate capacitor. The current is almost entirely confined in the meander.
Fig. 3
Fig. 3 LEKID fabrication sequence which consists in (a) TiN meander and bottom electrode deposition. The TiN layer is deposited at a rate ~1 nm/s using Ar and N2 flow rates of respectively 50 sccm and 6 sccm at a total pressure of 0.6 Pa with a 700 W DC power. These deposition conditions lead to a desired Tc of ∼4.6 K. (b) Nb feedline and ground plane deposition. The Nb layer is deposited using a 50 sccm Ar flow rate, 1.1 Pa total pressure and 500 W DC power. (c) Al2O3 dielectric deposition using an atomic layer deposition technique. (d) Nb top electrode deposition using the same parameters as for the CPW feedline. Before each deposition, the substrate is cleaned for 2 min with a 50 sccm Ar flow rate, 1.1 Pa total pressure and 50 W RF power. TiN and Nb are deposited in a sputtering system equipped with a high vacuum load-lock and 6-inch (Ti, Nb) targets. A base pressure of ∼2.8 × 10−8 mbar is reached before deposition. The substrate is positioned at 80 mm from the target.
Fig. 4
Fig. 4 (a) Optical microscope picture of the 10 × 10 pixel array and zoom-in picture of four pixels. Upper electrodes feature different window sizes to tune the resonance frequency. (b) Parallel-plate capacitor array mounted in a gold-plated copper box and wire-bonded to two 50 Ω SMA connectors.
Fig. 5
Fig. 5 (a) Forward transmission S21 of the CPW feedline showing 96 resonances out of 100 at 72 mK measured with a power on the feedline of Pf = 105 dBm. (b) Isolated resonance at f0 ≈1.009 GHz with Qi_max ≈378 000 when a feedline power of Pf = −90 dBm is applied.
Fig. 6
Fig. 6 Histograms of internal Qi (top) and coupling Qc (bottom) quality factors for 91 resonators out of 100. Qi and Qc are obtained by fitting the resonance plots. The power on the feedline is Pf = −100 dBm.
Fig. 7
Fig. 7 (a) Layout of the cryogenic test bench used to estimate the quasiparticule lifetime with our parallel-plate capacitor LEKIDs. It operates as follows: a 17 dBm signal generated by a local oscillator (LO) is attenuated to −80 dBm using a voltage-controlled attenuator and a −20 dB attenuator before reaching the LEKIDs into the 300 mK fridge. The signal modified by the resonators is then amplified by a 30 dB-gain cryogenic low noise amplifier (a Narda-MITEQ amplifier) and two room temperature amplifiers that feature a total gain of 35 dB. The amplified signal is then mixed with the reference signal (the LO signal) and down converted to a DC signal by an IQ Mixer in order to extract the amplitude and phase. These two components are amplified then digitalized by an oscilloscope at a 2.5 GSPS/s sample rate. (b) All resonances illuminated with a 890 nm monochromatic LED at 320 mK when a feedline power of around −80 dBm is applied. At this temperature, the average internal quality factors decrease to ~8.7 × 104 with a maximum of ∼1 × 105. The slope is due to the readout system. (c) Quasiparticle lifetime estimate. The inset shows one of the resonances (f0 = 1.0152GHz, Qi ≈50 000, Qc ≈17 400) when the array is illuminated by the 890 nm monochromatic LED leading to a frequency shift up to Δf0 ≈100 kHz. The low Qi compared to the average value at 320 mK is due to the high power (around −80 dBm) on the feedline.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C N = ε 0 ε r ( S F S N )/d
f N =1/ 2π C N ( L k + L geo )

Metrics