Abstract

There has been recent interest in diode pumped metastable rare gas lasers (DPRGLs) and their scaling to higher powers, due to the advantages of excellent beam quality and high quantum efficiency. In this paper, a cw diode pumped rare gas amplifier (DPRGA) with single-pass longitudinally pumped configuration is studied theoretically based on master oscillator and power amplifier (MOPA). A five-level kinetic model of DPRGAs is first established. Then, the influences of gain medium density, pump and seed laser intensities and gain length on DPRGA performance are simulated and analyzed. The results of numerical simulation agree well with those of Rawlins et al.’s experiment. With the best set of working parameters, the amplification factor reaches 22.18 dB, at pump intensity of 50 kW/cm2 and seed laser intensity of 100 W/cm2. Parameter optimization is helpful for design of a relatively high-power DPRGL system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of diode pumped metastable rare gas lasers

Zining Yang, Guangqi Yu, Hongyan Wang, Qisheng Lu, and Xiaojun Xu
Opt. Express 23(11) 13823-13832 (2015)

Two-stage excitation model of diode pumped rare gas atoms lasers

Sichen Long, Yingxiong Qin, Hanyuan Chen, Xiangxi Wu, Meigui Li, Xiahui Tang, and Tao Wen
Opt. Express 27(3) 2771-2782 (2019)

Simulations for transversely diode-pumped metastable rare gas lasers

Jun Gao, Yongle He, Pengfei Sun, Zhifan Zhang, Xinbing Wang, and Duluo Zuo
J. Opt. Soc. Am. B 34(4) 814-823 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, “Diode pumped alkali lasers (DPALs) - A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
    [Crossref]
  2. B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
    [Crossref]
  3. J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
    [Crossref]
  4. B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
    [Crossref]
  5. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
    [Crossref]
  6. B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
    [Crossref] [PubMed]
  7. Z. Li, R. Tan, W. Huang, and D. Zhang, “Quasicontinuous wave linearly polarized rubidium vapor laser pumped by a 5-bar laser diode stack,” Opt. Eng. 53(11), 116113 (2014).
    [Crossref]
  8. J. Han and M. C. Heaven, “Gain and lasing of optically pumped metastable rare gas atoms,” Opt. Lett. 37(11), 2157–2159 (2012).
    [Crossref] [PubMed]
  9. J. Han, L. Glebov, G. Venus, and M. C. Heaven, “Demonstration of a diode-pumped metastable Ar laser,” Opt. Lett. 38(24), 5458–5461 (2013).
    [Crossref] [PubMed]
  10. W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
    [Crossref] [PubMed]
  11. P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).
  12. A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
    [Crossref]
  13. Z. Yang, G. Yu, H. Wang, Q. Lu, and X. Xu, “Modeling of diode pumped metastable rare gas lasers,” Opt. Express 23(11), 13823–13832 (2015).
    [Crossref] [PubMed]
  14. J. Gao, Y. He, P. Sun, Z. Zhang, X. Wang, and D. Zuo, “Simulations for transversely diode-pumped metastable rare gas lasers,” J. Opt. Soc. Am. B 34(4), 814–823 (2017).
    [Crossref]
  15. S. Long, Y. Qin, H. Chen, X. Wu, M. Li, X. Tang, and T. Wen, “Two-stage excitation model of diode pumped rare gas atoms lasers,” Opt. Express 27(3), 2771–2782 (2019).
    [Crossref] [PubMed]
  16. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
    [Crossref] [PubMed]
  17. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output Power,” Electron. Lett. 44(9), 582–583 (2008).
    [Crossref]
  18. B. V. Zhdanov and R. J. Knize, “Efficiency diode pumped cesium vapor amplifier,” Opt. Commun. 281(15–16), 4068–4070 (2008).
    [Crossref]
  19. D. A. Hostutler and W. L. Klennert, “Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier,” Opt. Express 16(11), 8050–8053 (2008).
    [Crossref] [PubMed]
  20. B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581(75810F), 75810F (2010).
    [Crossref]
  21. P. Bai-Liang, W. Ya-Juan, Z. Qi, and Y. Jing, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
    [Crossref]
  22. Z. Yang, H. Wang, Q. Lu, W. Hua, and X. Xu, “Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission,” Opt. Express 19(23), 23118–23131 (2011).
    [Crossref] [PubMed]
  23. A. I. Parkhomenko and A. M. Shalagin, “An alkali metal vapor laser amplifier,” J. Exp. Theor. Phys. 119(1), 24–35 (2014).
    [Crossref]
  24. A. Kramida and Y. Ralchenko, J. Reader, and NIST ASD Team (2018), “NIST atomic spectra database,” https://physics.nist.gov/asd .
  25. J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
    [Crossref]
  26. W. Wieme and J. Lenaerts, “Excimer formation in argon, krypton, and xenon discharge afterglows between 200 and 400 K,” J. Chem. Phys. 74(1), 483–493 (1981).
    [Crossref]
  27. P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
    [Crossref]
  28. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [Crossref]
  29. C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, and H. Schmidt-Böcking, “Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy,” Plasma Sources Sci. Technol. 11(4), 476–483 (2002).
    [Crossref]

2019 (1)

2017 (1)

2016 (1)

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

2015 (3)

2014 (3)

A. I. Parkhomenko and A. M. Shalagin, “An alkali metal vapor laser amplifier,” J. Exp. Theor. Phys. 119(1), 24–35 (2014).
[Crossref]

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
[Crossref]

Z. Li, R. Tan, W. Huang, and D. Zhang, “Quasicontinuous wave linearly polarized rubidium vapor laser pumped by a 5-bar laser diode stack,” Opt. Eng. 53(11), 116113 (2014).
[Crossref]

2013 (3)

2012 (4)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

W. F. Krupke, “Diode pumped alkali lasers (DPALs) - A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

J. Han and M. C. Heaven, “Gain and lasing of optically pumped metastable rare gas atoms,” Opt. Lett. 37(11), 2157–2159 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581(75810F), 75810F (2010).
[Crossref]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[Crossref]

2008 (4)

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
[Crossref] [PubMed]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output Power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Efficiency diode pumped cesium vapor amplifier,” Opt. Commun. 281(15–16), 4068–4070 (2008).
[Crossref]

D. A. Hostutler and W. L. Klennert, “Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier,” Opt. Express 16(11), 8050–8053 (2008).
[Crossref] [PubMed]

2007 (1)

2004 (1)

2002 (1)

C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, and H. Schmidt-Böcking, “Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy,” Plasma Sources Sci. Technol. 11(4), 476–483 (2002).
[Crossref]

1981 (1)

W. Wieme and J. Lenaerts, “Excimer formation in argon, krypton, and xenon discharge afterglows between 200 and 400 K,” J. Chem. Phys. 74(1), 483–493 (1981).
[Crossref]

Azyazov, V. N.

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Bai-Liang, P.

P. Bai-Liang, W. Ya-Juan, Z. Qi, and Y. Jing, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

Barmashenko, B. D.

Beach, R. J.

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Boyadjian, G.

Bräuning-Demian, A.

C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, and H. Schmidt-Böcking, “Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy,” Plasma Sources Sci. Technol. 11(4), 476–483 (2002).
[Crossref]

Chen, H.

Chernyshov, A. K.

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Davis, S. J.

Demyanov, A. V.

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Dubinskii, M. A.

Dudov, A. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Eroshenko, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Galbally-Kinney, K. L.

Gao, J.

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Glebov, L.

Glebov, L. B.

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
[Crossref]

Guild, E. M.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Guy, M. R.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Hager, G. D.

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
[Crossref]

Han, J.

He, Y.

Heaven, M. C.

Hohn, O.

C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, and H. Schmidt-Böcking, “Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy,” Plasma Sources Sci. Technol. 11(4), 476–483 (2002).
[Crossref]

Hopwood, J. A.

Hoskinson, A. R.

Hostulter, D. A.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Hostutler, D. A.

Hua, W.

Huang, W.

Z. Li, R. Tan, W. Huang, and D. Zhang, “Quasicontinuous wave linearly polarized rubidium vapor laser pumped by a 5-bar laser diode stack,” Opt. Eng. 53(11), 116113 (2014).
[Crossref]

Jahnke, T.

C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, and H. Schmidt-Böcking, “Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy,” Plasma Sources Sci. Technol. 11(4), 476–483 (2002).
[Crossref]

Jing, Y.

P. Bai-Liang, W. Ya-Juan, Z. Qi, and Y. Jing, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

Kanz, V. K.

Klennert, W. L.

Knize, R. J.

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581(75810F), 75810F (2010).
[Crossref]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output Power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Efficiency diode pumped cesium vapor amplifier,” Opt. Commun. 281(15–16), 4068–4070 (2008).
[Crossref]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
[Crossref] [PubMed]

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
[Crossref] [PubMed]

Kochetov, I. V.

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Komashko, A.

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[Crossref]

Krupke, W. F.

W. F. Krupke, “Diode pumped alkali lasers (DPALs) - A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[Crossref]

R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
[Crossref]

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Lange, M. A.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Lenaerts, J.

W. Wieme and J. Lenaerts, “Excimer formation in argon, krypton, and xenon discharge afterglows between 200 and 400 K,” J. Chem. Phys. 74(1), 483–493 (1981).
[Crossref]

Li, M.

Li, Z.

Z. Li, R. Tan, W. Huang, and D. Zhang, “Quasicontinuous wave linearly polarized rubidium vapor laser pumped by a 5-bar laser diode stack,” Opt. Eng. 53(11), 116113 (2014).
[Crossref]

Lockwood, N. P.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Long, S.

Lu, Q.

McCord, J. E.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Merkle, L. D.

Miclea, M.

C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, and H. Schmidt-Böcking, “Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy,” Plasma Sources Sci. Technol. 11(4), 476–483 (2002).
[Crossref]

Mikaelian, G. T.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Mikheyev, P. A.

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Moran, P. J.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Niemax, K.

C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, and H. Schmidt-Böcking, “Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy,” Plasma Sources Sci. Technol. 11(4), 476–483 (2002).
[Crossref]

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Parkhomenko, A. I.

A. I. Parkhomenko and A. M. Shalagin, “An alkali metal vapor laser amplifier,” J. Exp. Theor. Phys. 119(1), 24–35 (2014).
[Crossref]

Pautov, V. O.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Payne, S. A.

Penache, C.

C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, and H. Schmidt-Böcking, “Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy,” Plasma Sources Sci. Technol. 11(4), 476–483 (2002).
[Crossref]

Pitz, G. A.

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

Qi, Z.

P. Bai-Liang, W. Ya-Juan, Z. Qi, and Y. Jing, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

Qin, Y.

Rawlins, W. T.

Rosenwaks, S.

Rus, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Schmidt-Böcking, H.

C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, and H. Schmidt-Böcking, “Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy,” Plasma Sources Sci. Technol. 11(4), 476–483 (2002).
[Crossref]

Schössler, S.

C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, and H. Schmidt-Böcking, “Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy,” Plasma Sources Sci. Technol. 11(4), 476–483 (2002).
[Crossref]

Sell, J.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output Power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

Shaffer, M. K.

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581(75810F), 75810F (2010).
[Crossref]

Shalagin, A. M.

A. I. Parkhomenko and A. M. Shalagin, “An alkali metal vapor laser amplifier,” J. Exp. Theor. Phys. 119(1), 24–35 (2014).
[Crossref]

Stooke, A.

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Sun, P.

Tan, R.

Z. Li, R. Tan, W. Huang, and D. Zhang, “Quasicontinuous wave linearly polarized rubidium vapor laser pumped by a 5-bar laser diode stack,” Opt. Eng. 53(11), 116113 (2014).
[Crossref]

Tang, X.

Ufimtsev, N. I.

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Venus, G.

Venus, G. B.

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
[Crossref]

Voci, A.

Vorontsova, E. A.

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Wang, H.

Wang, X.

Wen, T.

Wieme, W.

W. Wieme and J. Lenaerts, “Excimer formation in argon, krypton, and xenon discharge afterglows between 200 and 400 K,” J. Chem. Phys. 74(1), 483–493 (1981).
[Crossref]

Wu, X.

Xu, X.

Ya-Juan, W.

P. Bai-Liang, W. Ya-Juan, Z. Qi, and Y. Jing, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

Yang, Z.

Yu, G.

Zhang, D.

Z. Li, R. Tan, W. Huang, and D. Zhang, “Quasicontinuous wave linearly polarized rubidium vapor laser pumped by a 5-bar laser diode stack,” Opt. Eng. 53(11), 116113 (2014).
[Crossref]

Zhang, Z.

Zhdanov, B.

Zhdanov, B. V.

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581(75810F), 75810F (2010).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Efficiency diode pumped cesium vapor amplifier,” Opt. Commun. 281(15–16), 4068–4070 (2008).
[Crossref]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output Power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
[Crossref] [PubMed]

Zuo, D.

Zweiback, J.

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[Crossref]

Electron. Lett. (1)

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output Power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

J. Chem. Phys. (1)

W. Wieme and J. Lenaerts, “Excimer formation in argon, krypton, and xenon discharge afterglows between 200 and 400 K,” J. Chem. Phys. 74(1), 483–493 (1981).
[Crossref]

J. Exp. Theor. Phys. (1)

A. I. Parkhomenko and A. M. Shalagin, “An alkali metal vapor laser amplifier,” J. Exp. Theor. Phys. 119(1), 24–35 (2014).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. D Appl. Phys. (1)

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

J. Quantum Electron. (1)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” J. Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Opt. Commun. (2)

B. V. Zhdanov and R. J. Knize, “Efficiency diode pumped cesium vapor amplifier,” Opt. Commun. 281(15–16), 4068–4070 (2008).
[Crossref]

P. Bai-Liang, W. Ya-Juan, Z. Qi, and Y. Jing, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

Opt. Eng. (2)

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

Z. Li, R. Tan, W. Huang, and D. Zhang, “Quasicontinuous wave linearly polarized rubidium vapor laser pumped by a 5-bar laser diode stack,” Opt. Eng. 53(11), 116113 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Plasma Sources Sci. Technol. (1)

C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, and H. Schmidt-Böcking, “Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy,” Plasma Sources Sci. Technol. 11(4), 476–483 (2002).
[Crossref]

Proc. SPIE (4)

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
[Crossref]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[Crossref]

P. J. Moran, N. P. Lockwood, M. A. Lange, D. A. Hostulter, E. M. Guild, M. R. Guy, J. E. McCord, and G. A. Pitz, “Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL),” Proc. SPIE 97290, 97290C (2016).

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581(75810F), 75810F (2010).
[Crossref]

Prog. Quantum Electron. (1)

W. F. Krupke, “Diode pumped alkali lasers (DPALs) - A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Other (1)

A. Kramida and Y. Ralchenko, J. Reader, and NIST ASD Team (2018), “NIST atomic spectra database,” https://physics.nist.gov/asd .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram for an Ar* laser MOPA system.
Fig. 2
Fig. 2 Illustration of Ar energy levels and transfer channels in the mode.
Fig. 3
Fig. 3 The calculation results of the gain length on single-pass amplification factor. The amplification factor is defined as A(dB) = 10 log10 (Ilaser / Isl).
Fig. 4
Fig. 4 The initial Ar (1s5) number density influence on single-pass amplification factor of a DPRGA at different (a) gain lengths, (b) pump intensities, (c) seed laser intensities and (d) pump linewidths.
Fig. 5
Fig. 5 Influence of the initial Ar(1s5) density on pump absorption efficiency (ηabsorb), the laser extraction efficiency relative to total pump power (ηopt-opt), the laser extraction efficiency relative to absorbed pump power (ηopt-abs), fluorescence efficiency relative to absorbed pump power (ηfluo-abs) and heat efficiency relative to absorbed pump power (ηheat-abs). And fluorescence power and heat power are calculated by Eqs. (17) and (18).
Fig. 6
Fig. 6 The gain length influence on single-pass amplification factor of a DPRGA at different (a) pump intensities, (b) pump linewidths and (c) seed laser intensities.
Fig. 7
Fig. 7 The gain length influence on single-pass amplification factor of a DPRGA at different pump intensities.

Tables (2)

Tables Icon

Table 1 Collisional relaxation processes and rate constants involved in DPRGLs model.

Tables Icon

Table 2 Einstein spontaneous emission coefficients A in DPRGLs model a .

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

d n 1 d t = Γ p Γ s l + Γ l a s e r k A r 2 * N 2 y A r n 1 + k 21 N [ n 2 - g 2 g 1 n 1 exp ( Δ E 21 k B T ) ] + ( A 31 + k 31 N ) n 3 + ( A 41 + k 41 N ) n 4 + ( A 51 + k 51 N ) n 5 ,
d n 2 d t = A 32 n 3 + A 52 n 5 k 21 N [ n 2 g 2 g 1 n 1 exp ( Δ E 21 k B T ) ] A 20 n 2 ,
d n 3 d t = Γ l a s e r + Γ s l + k 43 N [ n 4 g 4 g 3 n 3 exp ( Δ E 43 k B T ) ] + k 53 N [ n 5 g 5 g 3 n 3 exp ( Δ E 53 k B T ) ] ( A 31 + A 32 + A p 10 s 2 + A p 10 s 3 + k 31 N ) n 3 ,
d n 4 d t = Γ p + k 54 N [ n 5 g 5 g 4 n 4 exp ( Δ E 54 k B T ) ] k 43 N [ n 4 g 4 g 3 n 3 exp ( Δ E 43 k B T ) ] ( A 41 + k 41 N ) n 4 ,
d n 5 d t = k 54 N [ n 5 g 5 g 4 n 4 exp ( Δ E 54 k B T ) ] k 53 N [ n 5 g 5 g 3 n 3 exp ( Δ E 53 k B T ) ] ( A 51 + A 52 + A p 8 s 2 + k 51 N ) n 5 ,
I l a s e r = I s l ( exp [ Δ n 31 σ 31 ( λ ) l g a i n ] 1 ) ,
σ 31 ( λ ) = A 31 λ 31 2 4 π 2 Δ v 31 ,
Δ v 31 = 2 [ y H e k 31 H e + y A r k 31 A r ] × ( T / 300 ) 0.3 × N ,
Γ p = η d e l η m o d L d λ 1 h v P d I p ( λ ) d λ { 1 exp [ Δ n 14 σ 14 ( λ ) l g a i n ] } ,
d I p ( λ ) / d λ = I P g P ( λ ) ,
g P ( λ ) = c λ 2 2 Δ v p ln 2 π exp [ 4 ln 2 Δ v p 2 ( v v p ) 2 ] .
σ 14 ( λ ) = g 4 g 1 A 41 λ 41 2 16 π 2 Δ v 41 ( Δ v 41 / 2 ) 2 + ( v v 41 ) 2 ,
Δ v 41 = 2 [ y H e k 41 H e + y A r k 41 A r ] × ( T / 300 ) 0.3 × N ,
Γ s l = η d e l η m o d L d λ 1 h v s l d I s l d λ { 1 exp [ Δ n 13 σ 13 ( λ ) l g a i n ] } ,
Γ l a s e r = 1 L I s l h v l { exp [ Δ n 31 σ 31 ( λ ) l g a i n ] 1 } ,
P l a s e r = I l a s e r S ,
P f l u o r e s c e n c e = V ( n 3 A 31 Δ E 31 + n 3 A 32 Δ E 32 + n 4 A 41 Δ E 41 + n 5 A 51 Δ E 51 + n 5 A 52 Δ E 52 ) ,
P h e a t = V { n 3 A 31 Δ E 31 + n 4 A 41 Δ E 41 + n 5 A 51 Δ E 51 + k 21 Δ E 21 [ n 2 g 2 g 1 n 1 exp ( Δ E 21 k B T ) ] + k 43 Δ E 43 [ n 4 g 4 g 3 n 3 exp ( Δ E 43 k B T ) ] + k 53 Δ E 53 [ n 5 g 5 g 3 n 3 exp ( Δ E 53 k B T ) ] + k 54 Δ E 54 [ n 5 g 5 g 4 n 4 exp ( Δ E 54 k B T ) ] } ,

Metrics