Abstract

Fiber-based common-path spectral domain optical coherence tomography (SD-OCT) is compact and polarization insensitive, which is usually used in endoscopic biomedical imaging. In this study, we investigate a method to extend the working distance of a common-path SD-OCT system. Common-path OCT light, which consisting of sample and reference light signal, is directed into a free space optical interferometer. The OCT light is split spatially into two beam segments by a wavefront-splitting mirror, and the two parallel beams interfere noncollinearly in the interferometer. Distance between the end of the probing fiber, which serves as the reference plane of our OCT system, and the OCT sample is about 140 mm. The OCT performance is demonstrated by imaging biological samples. The proposed method can be used to develop polarization insensitive OCT probe for biomedical imaging applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Common-path interferometer for frequency-domain optical coherence tomography

Andrei B. Vakhtin, Daniel J. Kane, William R. Wood, and Kristen A. Peterson
Appl. Opt. 42(34) 6953-6958 (2003)

Double common-path interferometer for flexible optical probe of optical coherence tomography

Jae Seok Park, Zhongping Chen, Myung Yung Jeong, and Chang-Seok Kim
Opt. Express 20(2) 1102-1112 (2012)

In-fiber common-path optical coherence tomography using a conical-tip fiber

K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia
Opt. Express 17(4) 2375-2384 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
    [Crossref] [PubMed]
  3. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
    [Crossref] [PubMed]
  4. M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
    [Crossref] [PubMed]
  5. E. Li, S. Makita, Y. J. Hong, D. Kasaragod, and Y. Yasuno, “Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography,” Biomed. Opt. Express 8(3), 1290–1305 (2017).
    [Crossref] [PubMed]
  6. G. J. Tearney, M. E. Brezinski, J. G. Fujimoto, N. J. Weissman, S. A. Boppart, B. E. Bouma, and J. F. Southern, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
    [Crossref] [PubMed]
  7. C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35(2), 87–92 (2000).
    [Crossref] [PubMed]
  8. Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
    [Crossref]
  9. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).
    [Crossref] [PubMed]
  10. B. E. Bouma, M. Villiger, K. Otsuka, and W.-Y. Oh, “Intravascular optical coherence tomography [Invited],” Biomed. Opt. Express 8(5), 2660–2686 (2017).
    [Crossref] [PubMed]
  11. Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt. 8(4), 648–654 (2003).
    [Crossref] [PubMed]
  12. F. LaRocca, D. Nankivil, S. Farsiu, and J. A. Izatt, “Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system,” Biomed. Opt. Express 4(11), 2307–2321 (2013).
    [Crossref] [PubMed]
  13. P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “Low-cost hand-held probe for depth-resolved low-coherence interferometry,” Biomed. Opt. Express 8(1), 338–348 (2017).
    [Crossref] [PubMed]
  14. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42(34), 6953–6958 (2003).
    [Crossref] [PubMed]
  15. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [Crossref] [PubMed]
  16. U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
    [Crossref]
  17. K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguichi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express 17(4), 2375–2384 (2009).
    [Crossref] [PubMed]
  18. X. Fu, D. Patel, H. Zhu, G. MacLennan, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, “Miniature forward-viewing common-path OCT probe for imaging the renal pelvis,” Biomed. Opt. Express 6(4), 1164–1171 (2015).
    [Crossref] [PubMed]
  19. B. Yin, C. Hyun, J. A. Gardecki, and G. J. Tearney, “Extended depth of focus for coherence-based cellular imaging,” Optica 4(8), 959–965 (2017).
    [Crossref] [PubMed]
  20. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
    [Crossref] [PubMed]
  21. M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
    [Crossref] [PubMed]
  22. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref] [PubMed]
  23. Y. Wang, X. Chen, T. Yuan, Q. Zhang, and L. Zhang, “Spectral domain optical coherence tomography using an optical wavefront splitting interferometer,” Opt. Commun. 428, 176–181 (2018).
    [Crossref]
  24. K. S. Lee, H. Hur, J. Y. Bae, I. J. Kim, D. U. Kim, K.-H. Nam, G.-H. Kim, and K. S. Chang, “High speed parallel spectral-domain OCT using spectrally encoded line-field illumination,” Appl. Phys. Lett. 112(4), 041102 (2018).
    [Crossref]
  25. U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
    [Crossref] [PubMed]

2018 (3)

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

Y. Wang, X. Chen, T. Yuan, Q. Zhang, and L. Zhang, “Spectral domain optical coherence tomography using an optical wavefront splitting interferometer,” Opt. Commun. 428, 176–181 (2018).
[Crossref]

K. S. Lee, H. Hur, J. Y. Bae, I. J. Kim, D. U. Kim, K.-H. Nam, G.-H. Kim, and K. S. Chang, “High speed parallel spectral-domain OCT using spectrally encoded line-field illumination,” Appl. Phys. Lett. 112(4), 041102 (2018).
[Crossref]

2017 (4)

2015 (1)

2013 (1)

2010 (1)

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
[Crossref]

2009 (1)

2008 (1)

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).
[Crossref] [PubMed]

2007 (1)

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[Crossref] [PubMed]

2005 (2)

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
[Crossref] [PubMed]

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[Crossref]

2004 (1)

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

2003 (3)

2002 (1)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

2000 (1)

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35(2), 87–92 (2000).
[Crossref] [PubMed]

1996 (2)

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, J. G. Fujimoto, N. J. Weissman, S. A. Boppart, B. E. Bouma, and J. F. Southern, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref] [PubMed]

1995 (1)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Bae, J. Y.

K. S. Lee, H. Hur, J. Y. Bae, I. J. Kim, D. U. Kim, K.-H. Nam, G.-H. Kim, and K. S. Chang, “High speed parallel spectral-domain OCT using spectrally encoded line-field illumination,” Appl. Phys. Lett. 112(4), 041102 (2018).
[Crossref]

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Bartlett, L. A.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).
[Crossref] [PubMed]

Blatter, C.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

Boppart, S. A.

Bouma, B. E.

Brezinski, M. E.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35(2), 87–92 (2000).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, J. G. Fujimoto, N. J. Weissman, S. A. Boppart, B. E. Bouma, and J. F. Southern, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref] [PubMed]

Brown, C. T. A.

Canto, M. I. F.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
[Crossref]

Cense, B.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

Chang, K. S.

K. S. Lee, H. Hur, J. Y. Bae, I. J. Kim, D. U. Kim, K.-H. Nam, G.-H. Kim, and K. S. Chang, “High speed parallel spectral-domain OCT using spectrally encoded line-field illumination,” Appl. Phys. Lett. 112(4), 041102 (2018).
[Crossref]

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, X.

Y. Wang, X. Chen, T. Yuan, Q. Zhang, and L. Zhang, “Spectral domain optical coherence tomography using an optical wavefront splitting interferometer,” Opt. Commun. 428, 176–181 (2018).
[Crossref]

Choma, M. A.

Chow, T. H.

Chu, C. R.

Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt. 8(4), 648–654 (2003).
[Crossref] [PubMed]

Coker, J. G.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Creazzo, T. L.

de Boer, J. F.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

Desjardins, A. E.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).
[Crossref] [PubMed]

Dholakia, K.

Ellerbee, A. K.

Farsiu, S.

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Freilich, M. I.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).
[Crossref] [PubMed]

Fried, N. M.

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[Crossref]

Fu, X.

Fujimoto, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35(2), 87–92 (2000).
[Crossref] [PubMed]

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, J. G. Fujimoto, N. J. Weissman, S. A. Boppart, B. E. Bouma, and J. F. Southern, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[Crossref] [PubMed]

Gardecki, J. A.

Giday, S. A.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
[Crossref]

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[Crossref] [PubMed]

Herrington, C. S.

Hertzmark, E.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Hong, Y. J.

Huang, D.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[Crossref] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huo, L.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
[Crossref]

Hur, H.

K. S. Lee, H. Hur, J. Y. Bae, I. J. Kim, D. U. Kim, K.-H. Nam, G.-H. Kim, and K. S. Chang, “High speed parallel spectral-domain OCT using spectrally encoded line-field illumination,” Appl. Phys. Lett. 112(4), 041102 (2018).
[Crossref]

Hwang, J. H.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
[Crossref]

Hyle Park, B.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Hyun, C.

Izatt, J. A.

Jenkins, M. W.

Jesser, C.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35(2), 87–92 (2000).
[Crossref] [PubMed]

Kane, D. J.

Kang, J. U.

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[Crossref] [PubMed]

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[Crossref]

Kasaragod, D.

Kim, D. U.

K. S. Lee, H. Hur, J. Y. Bae, I. J. Kim, D. U. Kim, K.-H. Nam, G.-H. Kim, and K. S. Chang, “High speed parallel spectral-domain OCT using spectrally encoded line-field illumination,” Appl. Phys. Lett. 112(4), 041102 (2018).
[Crossref]

Kim, G.-H.

K. S. Lee, H. Hur, J. Y. Bae, I. J. Kim, D. U. Kim, K.-H. Nam, G.-H. Kim, and K. S. Chang, “High speed parallel spectral-domain OCT using spectrally encoded line-field illumination,” Appl. Phys. Lett. 112(4), 041102 (2018).
[Crossref]

Kim, I. J.

K. S. Lee, H. Hur, J. Y. Bae, I. J. Kim, D. U. Kim, K.-H. Nam, G.-H. Kim, and K. S. Chang, “High speed parallel spectral-domain OCT using spectrally encoded line-field illumination,” Appl. Phys. Lett. 112(4), 041102 (2018).
[Crossref]

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

LaRocca, F.

Lee, K. S.

K. S. Lee, H. Hur, J. Y. Bae, I. J. Kim, D. U. Kim, K.-H. Nam, G.-H. Kim, and K. S. Chang, “High speed parallel spectral-domain OCT using spectrally encoded line-field illumination,” Appl. Phys. Lett. 112(4), 041102 (2018).
[Crossref]

Lee, W. M.

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Lennon, A. M.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
[Crossref]

Li, E.

Li, X.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
[Crossref]

Li, Z.

Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt. 8(4), 648–654 (2003).
[Crossref] [PubMed]

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, C. P.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[Crossref] [PubMed]

Lippok, N.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

MacLennan, G.

Makita, S.

Mazilu, M.

Monroy, G. L.

Nam, A. S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

Nam, K.-H.

K. S. Lee, H. Hur, J. Y. Bae, I. J. Kim, D. U. Kim, K.-H. Nam, G.-H. Kim, and K. S. Chang, “High speed parallel spectral-domain OCT using spectrally encoded line-field illumination,” Appl. Phys. Lett. 112(4), 041102 (2018).
[Crossref]

Nankivil, D.

Ng, B. K.

Nolan, R. M.

Oh, W.-Y.

B. E. Bouma, M. Villiger, K. Otsuka, and W.-Y. Oh, “Intravascular optical coherence tomography [Invited],” Biomed. Opt. Express 8(5), 2660–2686 (2017).
[Crossref] [PubMed]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).
[Crossref] [PubMed]

Otsuka, K.

Padvorac, J.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
[Crossref]

Pan, Y.

Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt. 8(4), 648–654 (2003).
[Crossref] [PubMed]

Pande, P.

Park, B. H.

Patel, D.

Pedut-Kloizman, T.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Peterson, K. A.

Pierce, M. C.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

Pitris, C.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35(2), 87–92 (2000).
[Crossref] [PubMed]

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Puliafito, C. A.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[Crossref] [PubMed]

Rollins, A. M.

Rosenberg, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).
[Crossref] [PubMed]

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schuman, J. S.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[Crossref] [PubMed]

Sharma, U.

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[Crossref] [PubMed]

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[Crossref]

Shelton, R. L.

Shin, E. J.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
[Crossref]

Shishkov, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).
[Crossref] [PubMed]

Sibbett, W.

Siddiqui, M.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

Southern, J. F.

Stamper, D.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35(2), 87–92 (2000).
[Crossref] [PubMed]

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Strasswimmer, J.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Suter, M. J.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).
[Crossref] [PubMed]

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[Crossref] [PubMed]

Taguichi, K.

Tan, K. M.

Tearney, G. J.

Tozburun, S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

Vakhtin, A. B.

Vakoc, B. J.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).
[Crossref] [PubMed]

Villiger, M.

Wang, Y.

Y. Wang, X. Chen, T. Yuan, Q. Zhang, and L. Zhang, “Spectral domain optical coherence tomography using an optical wavefront splitting interferometer,” Opt. Commun. 428, 176–181 (2018).
[Crossref]

Wang, Y. T.

Waxman, S.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).
[Crossref] [PubMed]

Weissman, N. J.

Wilkins, J. R.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Wood, W. R.

Wu, Y.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
[Crossref]

Xi, J.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
[Crossref]

Xie, T.

Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt. 8(4), 648–654 (2003).
[Crossref] [PubMed]

Yang, C.

Yasuno, Y.

Yin, B.

Yuan, T.

Y. Wang, X. Chen, T. Yuan, Q. Zhang, and L. Zhang, “Spectral domain optical coherence tomography using an optical wavefront splitting interferometer,” Opt. Commun. 428, 176–181 (2018).
[Crossref]

Zhang, L.

Y. Wang, X. Chen, T. Yuan, Q. Zhang, and L. Zhang, “Spectral domain optical coherence tomography using an optical wavefront splitting interferometer,” Opt. Commun. 428, 176–181 (2018).
[Crossref]

Zhang, Q.

Y. Wang, X. Chen, T. Yuan, Q. Zhang, and L. Zhang, “Spectral domain optical coherence tomography using an optical wavefront splitting interferometer,” Opt. Commun. 428, 176–181 (2018).
[Crossref]

Zhu, H.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. S. Lee, H. Hur, J. Y. Bae, I. J. Kim, D. U. Kim, K.-H. Nam, G.-H. Kim, and K. S. Chang, “High speed parallel spectral-domain OCT using spectrally encoded line-field illumination,” Appl. Phys. Lett. 112(4), 041102 (2018).
[Crossref]

Arch. Ophthalmol. (1)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[Crossref] [PubMed]

Biomed. Opt. Express (5)

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. M. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010).
[Crossref]

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[Crossref]

J. Biomed. Opt. (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt. 8(4), 648–654 (2003).
[Crossref] [PubMed]

J. Gastroenterol. (1)

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35(2), 87–92 (2000).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

JACC Cardiovasc. Imaging (1)

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

Ophthalmology (1)

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Wang, X. Chen, T. Yuan, Q. Zhang, and L. Zhang, “Spectral domain optical coherence tomography using an optical wavefront splitting interferometer,” Opt. Commun. 428, 176–181 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Optica (1)

Rev. Sci. Instrum. (1)

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[Crossref] [PubMed]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Common-path spectral domain OCT setup. SLD, superluminescent diode; OI, optical isolator; BS, beam splitter. The dashed window (a) shows the fiber end P1 which is polished at an angle α. The dashed window (b) shows the three dimensional diagram of the interferometer in which the common-path OCT light is split and recombined spatially. V and H represent the vertical and horizontal dimension respectively.
Fig. 2
Fig. 2 Three dimensional diagram of the spectrometer.
Fig. 3
Fig. 3 (a) Interference spectrum detected by the line-scan camera. (b) Measured OCT point spread function in log scale.
Fig. 4
Fig. 4 Images sampled using the OCT system illustrated in Fig. 1. (a) OCT image of onion skin; (b) OCT image of chicken trachea. HC, hyaline cartilage.
Fig. 5
Fig. 5 (a) A round input beam is focused by lens L4; (b) Lower half-round beam segment is focused by lens L4; (c) Solid and dashed curves represent vertical beam profiles at the focal plane of lens L4 for Fig. 5(a) and 5(b) separately.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR=η P sam τ/ E ν .

Metrics