Abstract

In this paper, we show that the graphene-coated nanowire dimers could enable outstanding waveguiding performance in the mid-infrared range. The propagating properties of the fundamental graphene plasmon mode and their dependence on the nanowire radius, gap distance, nanowire permittivity and chemical potential of graphene are revealed in detail and compared with the graphene-coated circular nanowire. By improving the geometric parameters and the surface conductivity of graphene, the propagation length could reach about 9 μm, which is larger than that of the graphene-coated circular nanowire plasmon mode. Meanwhile, the effective mode area is only 10−4A0, which is one order of magnitude smaller than that of the graphene-coated circular nanowire plasmon mode. Theoretically, the propagation length could be further enhanced by increasing the chemical potential. Besides, the proposed graphene-coated nanowire dimers show quite good fabrication tolerance. The manipulation of mid-infrared waves at the deep subwavelength scale using graphene plasmons may offer potential applications in tunable integrated nanophotonic devices and infrared sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analytical model for plasmon modes in graphene-coated nanowire

Yixiao Gao, Guobin Ren, Bofeng Zhu, Huaiqing Liu, Yudong Lian, and Shuisheng Jian
Opt. Express 22(20) 24322-24331 (2014)

Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation

Longfang Ye, Kehan Sui, Yanhui Liu, Miao Zhang, and Qing Huo Liu
Opt. Express 26(12) 15935-15947 (2018)

High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate

Morteza Hajati and Yaser Hajati
J. Opt. Soc. Am. B 33(12) 2560-2565 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [Crossref] [PubMed]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  5. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B Condens. Matter Mater. Phys. 73(3), 035407 (2006).
    [Crossref]
  6. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
    [Crossref]
  7. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
    [Crossref]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [Crossref] [PubMed]
  9. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
    [Crossref] [PubMed]
  10. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [Crossref] [PubMed]
  11. X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photonics Rev. 7(6), 855–881 (2013).
    [Crossref]
  12. L. Gao, L. Chen, H. Wei, and H. Xu, “Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates,” Nanoscale 10(25), 11923–11929 (2018).
    [Crossref] [PubMed]
  13. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  14. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
    [Crossref] [PubMed]
  15. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
    [Crossref] [PubMed]
  16. Y. Bian and Q. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7(10), 4415–4422 (2015).
    [Crossref] [PubMed]
  17. Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17(23), 21320–21325 (2009).
    [Crossref] [PubMed]
  18. H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Modified surface plasmon polaritons for the nanoconcentration and long-range propagation of optical energy,” Sci. Rep. 4(1), 5015 (2015).
    [Crossref]
  19. H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
    [Crossref]
  20. X. Y. He, Q. J. Wang, and S. F. Yu, “Numerical study of gain-assisted terahertz hybrid plasmonic waveguide,” Plasmonics 7(3), 571–577 (2012).
    [Crossref]
  21. D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt. 49(36), 6868–6871 (2010).
    [Crossref] [PubMed]
  22. L. Chen, T. Zhang, X. Li, and W. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express 20(18), 20535–20544 (2012).
    [Crossref] [PubMed]
  23. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photonics Rev. 8(3), 394–408 (2014).
    [Crossref]
  24. D. Teng, Q. Cao, and K. Wang, “An extension of the generalized nonlocal theory for the mode analysis of plasmonic waveguides at telecommunication frequency,” J. Opt. 19(5), 055003 (2017).
    [Crossref]
  25. Y. Gao and I. V. Shadrivov, “Second harmonic generation in graphene-coated nanowires,” Opt. Lett. 41(15), 3623–3626 (2016).
    [Crossref] [PubMed]
  26. Y. Gao, G. Ren, B. Zhu, J. Wang, and S. Jian, “Single-mode graphene-coated nanowire plasmonic waveguide,” Opt. Lett. 39(20), 5909–5912 (2014).
    [Crossref] [PubMed]
  27. P. Liu, X. Zhang, Z. Ma, W. Cai, L. Wang, and J. Xu, “Surface plasmon modes in graphene wedge and groove waveguides,” Opt. Express 21(26), 32432–32440 (2013).
    [Crossref] [PubMed]
  28. Y. Y. Dai, X. L. Zhu, N. A. Mortensen, J. Zi, and S. S. Xiao, “Nanofocusing in a tapered graphene plasmonic waveguide,” J. Opt. 17(6), 065002 (2015).
    [Crossref]
  29. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  30. A. Politano and G. Chiarello, “Plasmon modes in graphene: status and prospect,” Nanoscale 6(19), 10927–10940 (2014).
    [Crossref] [PubMed]
  31. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  32. X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
    [Crossref] [PubMed]
  33. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
    [Crossref]
  34. B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
    [Crossref] [PubMed]
  35. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  36. Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
    [Crossref] [PubMed]
  37. W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Dielectric loaded graphene plasmon waveguide,” Opt. Express 23(4), 5147–5153 (2015).
    [Crossref] [PubMed]
  38. X. Zhou, T. Zhang, L. Chen, W. Hong, and X. Li, “A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement,” J. Lightwave Technol. 32(21), 3597–3601 (2014).
  39. Y. Kim and M. S. Kwon, “Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon,” Nanoscale 9(44), 17429–17438 (2017).
    [Crossref] [PubMed]
  40. J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, Q. Lin, and S. X. Xia, “Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide,” Plasmonics 11(3), 703–711 (2016).
    [Crossref]
  41. M. Chen, P. Sheng, W. Sun, and J. Cai, “A symmetric terahertz graphene-based hybrid plasmonic waveguide,” Opt. Commun. 376, 41–46 (2016).
    [Crossref]
  42. J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24(5), 5376–5386 (2016).
    [Crossref] [PubMed]
  43. L. Ye, K. Sui, Y. Liu, M. Zhang, and Q. H. Liu, “Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation,” Opt. Express 26(12), 15935–15947 (2018).
    [Crossref] [PubMed]
  44. D. Wu, J. Tian, and R. Yang, “Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate,” J. Nonlinear Opt. Phys. Mater. 27(02), 1850013 (2018).
    [Crossref]
  45. Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, and S. Jian, “Analytical model for plasmon modes in graphene-coated nanowire,” Opt. Express 22(20), 24322–24331 (2014).
    [Crossref] [PubMed]
  46. M. Hajati and Y. Hajati, “High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate,” J. Opt. Soc. Am. B 33(12), 2560–2565 (2016).
    [Crossref]
  47. Y. Huang, L. Zhang, H. Yin, M. Zhang, H. Su, I. L. Li, and H. Liang, “Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation,” Opt. Lett. 42(11), 2078–2081 (2017).
    [Crossref] [PubMed]
  48. A. R. Davoyan and N. Engheta, “Salient features of deeply subwavelength guiding of terahertz radiation in graphene-coated fibers,” ACS Photonics 3(5), 737–742 (2016).
    [Crossref]
  49. H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C. W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
    [Crossref]
  50. D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, V. V. Temnov, H. I. Lee, and J. Mok, “Plasmonically induced magnetic field in graphene-coated nanowires,” Opt. Lett. 41(2), 396–399 (2016).
    [Crossref] [PubMed]
  51. W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
    [Crossref]
  52. H. Gao, Q. Cao, D. Teng, M. Zhu, and K. Wang, “Perturbative solution for terahertz two-wire metallic waveguides with different radii,” Opt. Express 23(21), 27457–27473 (2015).
    [Crossref] [PubMed]
  53. T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013).
    [Crossref] [PubMed]
  54. A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B Condens. Matter Mater. Phys. 84(19), 195446 (2011).
    [Crossref]
  55. Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
    [Crossref]
  56. Y. Zhou, Y. Y. Zhu, K. Zhang, H. W. Wu, R. W. Peng, R. H. Fan, and M. Wang, “Plasmonic band structures in doped graphene tubes,” Opt. Express 25(11), 12081–12089 (2017).
    [Crossref] [PubMed]
  57. G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
    [Crossref]
  58. J. Xu, N. Shi, Y. Chen, X. Lu, H. Wei, Y. Lu, N. Liu, B. Zhang, and J. Wang, “TM01 mode in a cylindrical hybrid plasmonic waveguide with large propagation length,” Appl. Opt. 57(15), 4043–4047 (2018).
    [Crossref] [PubMed]
  59. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007).
    [Crossref] [PubMed]
  60. J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 245419 (2008).
    [Crossref]

2018 (5)

L. Gao, L. Chen, H. Wei, and H. Xu, “Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates,” Nanoscale 10(25), 11923–11929 (2018).
[Crossref] [PubMed]

L. Ye, K. Sui, Y. Liu, M. Zhang, and Q. H. Liu, “Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation,” Opt. Express 26(12), 15935–15947 (2018).
[Crossref] [PubMed]

D. Wu, J. Tian, and R. Yang, “Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate,” J. Nonlinear Opt. Phys. Mater. 27(02), 1850013 (2018).
[Crossref]

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

J. Xu, N. Shi, Y. Chen, X. Lu, H. Wei, Y. Lu, N. Liu, B. Zhang, and J. Wang, “TM01 mode in a cylindrical hybrid plasmonic waveguide with large propagation length,” Appl. Opt. 57(15), 4043–4047 (2018).
[Crossref] [PubMed]

2017 (5)

Y. Zhou, Y. Y. Zhu, K. Zhang, H. W. Wu, R. W. Peng, R. H. Fan, and M. Wang, “Plasmonic band structures in doped graphene tubes,” Opt. Express 25(11), 12081–12089 (2017).
[Crossref] [PubMed]

Y. Huang, L. Zhang, H. Yin, M. Zhang, H. Su, I. L. Li, and H. Liang, “Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation,” Opt. Lett. 42(11), 2078–2081 (2017).
[Crossref] [PubMed]

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Y. Kim and M. S. Kwon, “Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon,” Nanoscale 9(44), 17429–17438 (2017).
[Crossref] [PubMed]

D. Teng, Q. Cao, and K. Wang, “An extension of the generalized nonlocal theory for the mode analysis of plasmonic waveguides at telecommunication frequency,” J. Opt. 19(5), 055003 (2017).
[Crossref]

2016 (9)

Y. Gao and I. V. Shadrivov, “Second harmonic generation in graphene-coated nanowires,” Opt. Lett. 41(15), 3623–3626 (2016).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, Q. Lin, and S. X. Xia, “Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide,” Plasmonics 11(3), 703–711 (2016).
[Crossref]

M. Chen, P. Sheng, W. Sun, and J. Cai, “A symmetric terahertz graphene-based hybrid plasmonic waveguide,” Opt. Commun. 376, 41–46 (2016).
[Crossref]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24(5), 5376–5386 (2016).
[Crossref] [PubMed]

A. R. Davoyan and N. Engheta, “Salient features of deeply subwavelength guiding of terahertz radiation in graphene-coated fibers,” ACS Photonics 3(5), 737–742 (2016).
[Crossref]

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C. W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, V. V. Temnov, H. I. Lee, and J. Mok, “Plasmonically induced magnetic field in graphene-coated nanowires,” Opt. Lett. 41(2), 396–399 (2016).
[Crossref] [PubMed]

M. Hajati and Y. Hajati, “High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate,” J. Opt. Soc. Am. B 33(12), 2560–2565 (2016).
[Crossref]

2015 (5)

H. Gao, Q. Cao, D. Teng, M. Zhu, and K. Wang, “Perturbative solution for terahertz two-wire metallic waveguides with different radii,” Opt. Express 23(21), 27457–27473 (2015).
[Crossref] [PubMed]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Dielectric loaded graphene plasmon waveguide,” Opt. Express 23(4), 5147–5153 (2015).
[Crossref] [PubMed]

Y. Y. Dai, X. L. Zhu, N. A. Mortensen, J. Zi, and S. S. Xiao, “Nanofocusing in a tapered graphene plasmonic waveguide,” J. Opt. 17(6), 065002 (2015).
[Crossref]

Y. Bian and Q. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7(10), 4415–4422 (2015).
[Crossref] [PubMed]

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Modified surface plasmon polaritons for the nanoconcentration and long-range propagation of optical energy,” Sci. Rep. 4(1), 5015 (2015).
[Crossref]

2014 (5)

2013 (4)

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013).
[Crossref] [PubMed]

P. Liu, X. Zhang, Z. Ma, W. Cai, L. Wang, and J. Xu, “Surface plasmon modes in graphene wedge and groove waveguides,” Opt. Express 21(26), 32432–32440 (2013).
[Crossref] [PubMed]

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photonics Rev. 7(6), 855–881 (2013).
[Crossref]

2012 (4)

X. Y. He, Q. J. Wang, and S. F. Yu, “Numerical study of gain-assisted terahertz hybrid plasmonic waveguide,” Plasmonics 7(3), 571–577 (2012).
[Crossref]

L. Chen, T. Zhang, X. Li, and W. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express 20(18), 20535–20544 (2012).
[Crossref] [PubMed]

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

2011 (2)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B Condens. Matter Mater. Phys. 84(19), 195446 (2011).
[Crossref]

2010 (5)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[Crossref] [PubMed]

D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt. 49(36), 6868–6871 (2010).
[Crossref] [PubMed]

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

2009 (4)

2008 (4)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref] [PubMed]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 245419 (2008).
[Crossref]

G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
[Crossref]

2007 (1)

2006 (3)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B Condens. Matter Mater. Phys. 73(3), 035407 (2006).
[Crossref]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[Crossref]

2005 (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Aitchison, J. S.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photonics Rev. 8(3), 394–408 (2014).
[Crossref]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[Crossref] [PubMed]

Alam, M. Z.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photonics Rev. 8(3), 394–408 (2014).
[Crossref]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[Crossref] [PubMed]

Alù, A.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C. W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B Condens. Matter Mater. Phys. 73(3), 035407 (2006).
[Crossref]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Aussenegg, F.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[Crossref]

Bai, P.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

Berini, P.

Bian, Y.

Y. Bian and Q. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7(10), 4415–4422 (2015).
[Crossref] [PubMed]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17(23), 21320–21325 (2009).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Bouhelier, A.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 245419 (2008).
[Crossref]

Bozhevolnyi, S. I.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Buckley, R.

Buljan, H.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Bychkov, I. V.

Cai, J.

M. Chen, P. Sheng, W. Sun, and J. Cai, “A symmetric terahertz graphene-based hybrid plasmonic waveguide,” Opt. Commun. 376, 41–46 (2016).
[Crossref]

Cai, W.

Cao, Q.

D. Teng, Q. Cao, and K. Wang, “An extension of the generalized nonlocal theory for the mode analysis of plasmonic waveguides at telecommunication frequency,” J. Opt. 19(5), 055003 (2017).
[Crossref]

H. Gao, Q. Cao, D. Teng, M. Zhu, and K. Wang, “Perturbative solution for terahertz two-wire metallic waveguides with different radii,” Opt. Express 23(21), 27457–27473 (2015).
[Crossref] [PubMed]

Cao, T.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C. W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Chen, D.

Chen, L.

Chen, M.

M. Chen, P. Sheng, W. Sun, and J. Cai, “A symmetric terahertz graphene-based hybrid plasmonic waveguide,” Opt. Commun. 376, 41–46 (2016).
[Crossref]

Chen, Y.

Chiarello, G.

A. Politano and G. Chiarello, “Plasmon modes in graphene: status and prospect,” Nanoscale 6(19), 10927–10940 (2014).
[Crossref] [PubMed]

Chu, H. S.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

Colas des Francs, G.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 245419 (2008).
[Crossref]

Dai, D.

Dai, Y. Y.

Y. Y. Dai, X. L. Zhu, N. A. Mortensen, J. Zi, and S. S. Xiao, “Nanofocusing in a tapered graphene plasmonic waveguide,” J. Opt. 17(6), 065002 (2015).
[Crossref]

Davoyan, A. R.

A. R. Davoyan and N. Engheta, “Salient features of deeply subwavelength guiding of terahertz radiation in graphene-coated fibers,” ACS Photonics 3(5), 737–742 (2016).
[Crossref]

Dereux, A.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 245419 (2008).
[Crossref]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Ding, Y.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B Condens. Matter Mater. Phys. 73(3), 035407 (2006).
[Crossref]

Ditlbacher, H.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[Crossref]

Drezet, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[Crossref]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Engheta, N.

A. R. Davoyan and N. Engheta, “Salient features of deeply subwavelength guiding of terahertz radiation in graphene-coated fibers,” ACS Photonics 3(5), 737–742 (2016).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Fan, R. H.

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

Fu, T.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Gao, H.

Gao, L.

L. Gao, L. Chen, H. Wei, and H. Xu, “Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates,” Nanoscale 10(25), 11923–11929 (2018).
[Crossref] [PubMed]

Gao, P.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Gao, Y.

Garcia-Vidal, F. J.

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B Condens. Matter Mater. Phys. 84(19), 195446 (2011).
[Crossref]

García-Vidal, F. J.

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

Gong, Q.

Y. Bian and Q. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7(10), 4415–4422 (2015).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Grandidier, J.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 245419 (2008).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Guan, X.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Guinea, F.

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B Condens. Matter Mater. Phys. 84(19), 195446 (2011).
[Crossref]

Guo, X.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photonics Rev. 7(6), 855–881 (2013).
[Crossref]

Hajati, M.

Hajati, Y.

Hanson, G. W.

G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
[Crossref]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, S.

He, X.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

He, X. Y.

X. Y. He, Q. J. Wang, and S. F. Yu, “Numerical study of gain-assisted terahertz hybrid plasmonic waveguide,” Plasmonics 7(3), 571–577 (2012).
[Crossref]

Hegde, R.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

Hohenau, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[Crossref]

Hong, W.

Hu, H.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Huang, W.

Huang, Y.

Jablan, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Jian, S.

Jin, K. J.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Kim, Y.

Y. Kim and M. S. Kwon, “Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon,” Nanoscale 9(44), 17429–17438 (2017).
[Crossref] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Krenn, J.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[Crossref]

Kuzmin, D. A.

Kwon, M. S.

Y. Kim and M. S. Kwon, “Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon,” Nanoscale 9(44), 17429–17438 (2017).
[Crossref] [PubMed]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Lee, H. I.

Leitner, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[Crossref]

Li, E. P.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

Li, H. J.

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, Q. Lin, and S. X. Xia, “Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide,” Plasmonics 11(3), 703–711 (2016).
[Crossref]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24(5), 5376–5386 (2016).
[Crossref] [PubMed]

Li, I. L.

Y. Huang, L. Zhang, H. Yin, M. Zhang, H. Su, I. L. Li, and H. Liang, “Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation,” Opt. Lett. 42(11), 2078–2081 (2017).
[Crossref] [PubMed]

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Modified surface plasmon polaritons for the nanoconcentration and long-range propagation of optical energy,” Sci. Rep. 4(1), 5015 (2015).
[Crossref]

Li, Q.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Li, X.

Lian, Y.

Liang, H.

Y. Huang, L. Zhang, H. Yin, M. Zhang, H. Su, I. L. Li, and H. Liang, “Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation,” Opt. Lett. 42(11), 2078–2081 (2017).
[Crossref] [PubMed]

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C. W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Modified surface plasmon polaritons for the nanoconcentration and long-range propagation of optical energy,” Sci. Rep. 4(1), 5015 (2015).
[Crossref]

Lin, Q.

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, Q. Lin, and S. X. Xia, “Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide,” Plasmonics 11(3), 703–711 (2016).
[Crossref]

Liu, H.

Liu, J. P.

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24(5), 5376–5386 (2016).
[Crossref] [PubMed]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, Q. Lin, and S. X. Xia, “Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide,” Plasmonics 11(3), 703–711 (2016).
[Crossref]

Liu, K.

Liu, N.

Liu, P.

Liu, Q. H.

Liu, W.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Liu, Y.

Lu, Q. S.

Lu, X.

Lu, Y.

Luo, X.

Ma, Y.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photonics Rev. 7(6), 855–881 (2013).
[Crossref]

Ma, Z.

Maier, S. A.

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Markey, L.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 245419 (2008).
[Crossref]

Martin-Moreno, L.

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B Condens. Matter Mater. Phys. 84(19), 195446 (2011).
[Crossref]

Martín-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref] [PubMed]

Massenot, S.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 245419 (2008).
[Crossref]

Meier, J.

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Mojahedi, M.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photonics Rev. 8(3), 394–408 (2014).
[Crossref]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[Crossref] [PubMed]

Mok, J.

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref] [PubMed]

Mortensen, N. A.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Y. Y. Dai, X. L. Zhu, N. A. Mortensen, J. Zi, and S. S. Xiao, “Nanofocusing in a tapered graphene plasmonic waveguide,” J. Opt. 17(6), 065002 (2015).
[Crossref]

Nikitin, A. Yu.

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B Condens. Matter Mater. Phys. 84(19), 195446 (2011).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Oxenløwe, L. K.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Peng, R. W.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Politano, A.

A. Politano and G. Chiarello, “Plasmon modes in graphene: status and prospect,” Nanoscale 6(19), 10927–10940 (2014).
[Crossref] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B Condens. Matter Mater. Phys. 73(3), 035407 (2006).
[Crossref]

Qin, S. Q.

Qiu, C. W.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C. W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Ren, G.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref] [PubMed]

Ruan, S.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C. W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Modified surface plasmon polaritons for the nanoconcentration and long-range propagation of optical energy,” Sci. Rep. 4(1), 5015 (2015).
[Crossref]

Shadrivov, I. V.

Shang, X. J.

Shavrov, V. G.

Sheng, P.

M. Chen, P. Sheng, W. Sun, and J. Cai, “A symmetric terahertz graphene-based hybrid plasmonic waveguide,” Opt. Commun. 376, 41–46 (2016).
[Crossref]

Shi, N.

Shi, W.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Steinberger, B.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[Crossref]

Stepanov, A. L.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Su, H.

Y. Huang, L. Zhang, H. Yin, M. Zhang, H. Su, I. L. Li, and H. Liang, “Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation,” Opt. Lett. 42(11), 2078–2081 (2017).
[Crossref] [PubMed]

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Modified surface plasmon polaritons for the nanoconcentration and long-range propagation of optical energy,” Sci. Rep. 4(1), 5015 (2015).
[Crossref]

Sui, K.

Sun, W.

M. Chen, P. Sheng, W. Sun, and J. Cai, “A symmetric terahertz graphene-based hybrid plasmonic waveguide,” Opt. Commun. 376, 41–46 (2016).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B Condens. Matter Mater. Phys. 73(3), 035407 (2006).
[Crossref]

Temnov, V. V.

Teng, D.

D. Teng, Q. Cao, and K. Wang, “An extension of the generalized nonlocal theory for the mode analysis of plasmonic waveguides at telecommunication frequency,” J. Opt. 19(5), 055003 (2017).
[Crossref]

H. Gao, Q. Cao, D. Teng, M. Zhu, and K. Wang, “Perturbative solution for terahertz two-wire metallic waveguides with different radii,” Opt. Express 23(21), 27457–27473 (2015).
[Crossref] [PubMed]

Teng, J.

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

Tian, J.

D. Wu, J. Tian, and R. Yang, “Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate,” J. Nonlinear Opt. Phys. Mater. 27(02), 1850013 (2018).
[Crossref]

Tong, L.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photonics Rev. 7(6), 855–881 (2013).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Wang, B.

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

Wang, J.

Wang, K.

D. Teng, Q. Cao, and K. Wang, “An extension of the generalized nonlocal theory for the mode analysis of plasmonic waveguides at telecommunication frequency,” J. Opt. 19(5), 055003 (2017).
[Crossref]

H. Gao, Q. Cao, D. Teng, M. Zhu, and K. Wang, “Perturbative solution for terahertz two-wire metallic waveguides with different radii,” Opt. Express 23(21), 27457–27473 (2015).
[Crossref] [PubMed]

Wang, L.

Wang, L. L.

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24(5), 5376–5386 (2016).
[Crossref] [PubMed]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, Q. Lin, and S. X. Xia, “Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide,” Plasmonics 11(3), 703–711 (2016).
[Crossref]

Wang, M.

Wang, Q. J.

X. Y. He, Q. J. Wang, and S. F. Yu, “Numerical study of gain-assisted terahertz hybrid plasmonic waveguide,” Plasmonics 7(3), 571–577 (2012).
[Crossref]

Wang, W.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Wang, Y.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photonics Rev. 7(6), 855–881 (2013).
[Crossref]

Weeber, J. C.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 245419 (2008).
[Crossref]

Wei, H.

J. Xu, N. Shi, Y. Chen, X. Lu, H. Wei, Y. Lu, N. Liu, B. Zhang, and J. Wang, “TM01 mode in a cylindrical hybrid plasmonic waveguide with large propagation length,” Appl. Opt. 57(15), 4043–4047 (2018).
[Crossref] [PubMed]

L. Gao, L. Chen, H. Wei, and H. Xu, “Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates,” Nanoscale 10(25), 11923–11929 (2018).
[Crossref] [PubMed]

Wu, D.

D. Wu, J. Tian, and R. Yang, “Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate,” J. Nonlinear Opt. Phys. Mater. 27(02), 1850013 (2018).
[Crossref]

Wu, F.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Wu, H. W.

Xia, S. X.

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24(5), 5376–5386 (2016).
[Crossref] [PubMed]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, Q. Lin, and S. X. Xia, “Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide,” Plasmonics 11(3), 703–711 (2016).
[Crossref]

Xiao, S.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Xiao, S. S.

Y. Y. Dai, X. L. Zhu, N. A. Mortensen, J. Zi, and S. S. Xiao, “Nanofocusing in a tapered graphene plasmonic waveguide,” J. Opt. 17(6), 065002 (2015).
[Crossref]

Xie, F.

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, Q. Lin, and S. X. Xia, “Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide,” Plasmonics 11(3), 703–711 (2016).
[Crossref]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24(5), 5376–5386 (2016).
[Crossref] [PubMed]

Xu, H.

L. Gao, L. Chen, H. Wei, and H. Xu, “Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates,” Nanoscale 10(25), 11923–11929 (2018).
[Crossref] [PubMed]

Xu, J.

Xu, W.

Xu, Z.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Yang, R.

D. Wu, J. Tian, and R. Yang, “Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate,” J. Nonlinear Opt. Phys. Mater. 27(02), 1850013 (2018).
[Crossref]

Ye, L.

Yin, H.

Yu, S. F.

X. Y. He, Q. J. Wang, and S. F. Yu, “Numerical study of gain-assisted terahertz hybrid plasmonic waveguide,” Plasmonics 7(3), 571–577 (2012).
[Crossref]

Yuan, X.

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

Yuan, X. D.

Zhai, X.

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24(5), 5376–5386 (2016).
[Crossref] [PubMed]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, Q. Lin, and S. X. Xia, “Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide,” Plasmonics 11(3), 703–711 (2016).
[Crossref]

Zhang, B.

Zhang, J. F.

Zhang, K.

Zhang, L.

Y. Huang, L. Zhang, H. Yin, M. Zhang, H. Su, I. L. Li, and H. Liang, “Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation,” Opt. Lett. 42(11), 2078–2081 (2017).
[Crossref] [PubMed]

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C. W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Zhang, M.

Zhang, N.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Zhang, S.

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C. W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Zhang, T.

Zhang, X.

P. Liu, X. Zhang, Z. Ma, W. Cai, L. Wang, and J. Xu, “Surface plasmon modes in graphene wedge and groove waveguides,” Opt. Express 21(26), 32432–32440 (2013).
[Crossref] [PubMed]

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhao, X.

Zheng, Z.

Zhou, T.

Zhou, W.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Zhou, X.

Zhou, Y.

Zhu, B.

Zhu, J.

Zhu, M.

Zhu, X.

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Zhu, X. L.

Y. Y. Dai, X. L. Zhu, N. A. Mortensen, J. Zi, and S. S. Xiao, “Nanofocusing in a tapered graphene plasmonic waveguide,” J. Opt. 17(6), 065002 (2015).
[Crossref]

Zhu, Y. Y.

Zhu, Z. H.

Zi, J.

Y. Y. Dai, X. L. Zhu, N. A. Mortensen, J. Zi, and S. S. Xiao, “Nanofocusing in a tapered graphene plasmonic waveguide,” J. Opt. 17(6), 065002 (2015).
[Crossref]

ACS Photonics (2)

A. R. Davoyan and N. Engheta, “Salient features of deeply subwavelength guiding of terahertz radiation in graphene-coated fibers,” ACS Photonics 3(5), 737–742 (2016).
[Crossref]

H. Liang, L. Zhang, S. Zhang, T. Cao, A. Alù, S. Ruan, and C. W. Qiu, “Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution,” ACS Photonics 3(10), 1847–1853 (2016).
[Crossref]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[Crossref]

J. Appl. Phys. (2)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Nonlinear Opt. Phys. Mater. (1)

D. Wu, J. Tian, and R. Yang, “Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate,” J. Nonlinear Opt. Phys. Mater. 27(02), 1850013 (2018).
[Crossref]

J. Opt. (2)

D. Teng, Q. Cao, and K. Wang, “An extension of the generalized nonlocal theory for the mode analysis of plasmonic waveguides at telecommunication frequency,” J. Opt. 19(5), 055003 (2017).
[Crossref]

Y. Y. Dai, X. L. Zhu, N. A. Mortensen, J. Zi, and S. S. Xiao, “Nanofocusing in a tapered graphene plasmonic waveguide,” J. Opt. 17(6), 065002 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photonics Rev. 8(3), 394–408 (2014).
[Crossref]

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photonics Rev. 7(6), 855–881 (2013).
[Crossref]

Nano Energy (1)

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Nanoscale (6)

Y. Kim and M. S. Kwon, “Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon,” Nanoscale 9(44), 17429–17438 (2017).
[Crossref] [PubMed]

L. Gao, L. Chen, H. Wei, and H. Xu, “Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates,” Nanoscale 10(25), 11923–11929 (2018).
[Crossref] [PubMed]

Y. Bian and Q. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7(10), 4415–4422 (2015).
[Crossref] [PubMed]

A. Politano and G. Chiarello, “Plasmon modes in graphene: status and prospect,” Nanoscale 6(19), 10927–10940 (2014).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,” Nanoscale 9(40), 15576–15581 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Nat. Photonics (4)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

New J. Phys. (1)

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013).
[Crossref]

Opt. Commun. (1)

M. Chen, P. Sheng, W. Sun, and J. Cai, “A symmetric terahertz graphene-based hybrid plasmonic waveguide,” Opt. Commun. 376, 41–46 (2016).
[Crossref]

Opt. Express (13)

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24(5), 5376–5386 (2016).
[Crossref] [PubMed]

L. Ye, K. Sui, Y. Liu, M. Zhang, and Q. H. Liu, “Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation,” Opt. Express 26(12), 15935–15947 (2018).
[Crossref] [PubMed]

Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, and S. Jian, “Analytical model for plasmon modes in graphene-coated nanowire,” Opt. Express 22(20), 24322–24331 (2014).
[Crossref] [PubMed]

Y. Zhou, Y. Y. Zhu, K. Zhang, H. W. Wu, R. W. Peng, R. H. Fan, and M. Wang, “Plasmonic band structures in doped graphene tubes,” Opt. Express 25(11), 12081–12089 (2017).
[Crossref] [PubMed]

H. Gao, Q. Cao, D. Teng, M. Zhu, and K. Wang, “Perturbative solution for terahertz two-wire metallic waveguides with different radii,” Opt. Express 23(21), 27457–27473 (2015).
[Crossref] [PubMed]

T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013).
[Crossref] [PubMed]

R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007).
[Crossref] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[Crossref] [PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[Crossref] [PubMed]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17(23), 21320–21325 (2009).
[Crossref] [PubMed]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Dielectric loaded graphene plasmon waveguide,” Opt. Express 23(4), 5147–5153 (2015).
[Crossref] [PubMed]

P. Liu, X. Zhang, Z. Ma, W. Cai, L. Wang, and J. Xu, “Surface plasmon modes in graphene wedge and groove waveguides,” Opt. Express 21(26), 32432–32440 (2013).
[Crossref] [PubMed]

L. Chen, T. Zhang, X. Li, and W. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express 20(18), 20535–20544 (2012).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. B Condens. Matter Mater. Phys. (4)

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B Condens. Matter Mater. Phys. 84(19), 195446 (2011).
[Crossref]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 245419 (2008).
[Crossref]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B Condens. Matter Mater. Phys. 73(3), 035407 (2006).
[Crossref]

Phys. Rev. Lett. (3)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

Plasmonics (2)

X. Y. He, Q. J. Wang, and S. F. Yu, “Numerical study of gain-assisted terahertz hybrid plasmonic waveguide,” Plasmonics 7(3), 571–577 (2012).
[Crossref]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, Q. Lin, and S. X. Xia, “Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide,” Plasmonics 11(3), 703–711 (2016).
[Crossref]

Sci. Rep. (1)

H. Liang, S. Ruan, M. Zhang, H. Su, and I. L. Li, “Modified surface plasmon polaritons for the nanoconcentration and long-range propagation of optical energy,” Sci. Rep. 4(1), 5015 (2015).
[Crossref]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the cross section of the GCNWD. The radii of the two wires are R1 and R2, and the spacing between two nanowires is D.
Fig. 2
Fig. 2 (a) Field distributions of the fundamental GPM of the GCNWD at 30 THz. The white arrows indicate the polarization directions. (b) Amplitude of Poynting vector(Sz) of the GPM at frequencies of 20 THz, 30 THz, 40 THz, 50 THz and 60 THz. (c) Effective mode index and propagation length, and (d) Normalized mode area and FoM of the plasmon mode as a function of frequency. The parameters are uc = 0.5 eV, T = 300 K, τ = 0.5 ps, R1 = R2 = 100 nm, D = 50 nm, ε1 = 2.25, and ε2 = 1.
Fig. 3
Fig. 3 (a) Effective mode index and propagation length, and (b) Normalized mode area and FoM as a function of R1 at f0 = 30 THz. The other parameters are uc = 0.5 eV, T = 300 K, τ = 0.5 ps, D = 20 nm, ε1 = 2.25, and ε2 = 1.
Fig. 4
Fig. 4 (a) Effective mode index and propagation length. The blue dashed line indicates the Re(neff) of the graphene-coated circular nanowire plasmon mode, and (b) Normalized mode area and FoM as a function of gap distance at 30 THz. The other parameters are uc = 0.5 eV, T = 300 K, τ = 0.5 ps, R1 = R2 = 100 nm, ε1 = 2.25, and ε2 = 1.
Fig. 5
Fig. 5 (a) Effective mode index and propagation length, (b) Normalized mode area and FoM as a function of nanowire permittivity at 30 THz. The other parameters are uc = 0.5 eV, T = 300 K, τ = 0.5 ps, R1 = R2 = 100 nm, D = 20 nm, and ε2 = 1.
Fig. 6
Fig. 6 (a) Effective mode index and propagation length, and (b) Normalized mode area and FoM as a function of uc at f0 = 30 THz. The other parameters are T = 300 K, τ = 0.5 ps, R1 = R2 = 100 nm, D = 20 nm, ε1 = 2.25, and ε2 = 1.
Fig. 7
Fig. 7 Improved mode properties of the GPM. The related parameters are T = 300 K, τ = 0.5 ps, ε1 = 2, ε2 = 1, uc = 1 eV, R1 = R2 = 50 nm, and f0 = 30 THz.
Fig. 8
Fig. 8 (a) Three kinds of graphene-coated nanowire based waveguides. (b) Effective mode index. (c) Propagation length. (d) Normalized mode area. The parameters are uc = 1 eV, T = 300 K, τ = 0.5 ps, R = 100 nm, D = 30 nm, ε1 = 3, and ε2 = 1.
Fig. 9
Fig. 9 (a) Mode patterns (Ez) of first 5 order modes at 60 THz. (b) Effective mode index. (c) Propagation length. The parameters are uc = 1 eV, T = 300 K, τ = 0.5 ps, R1 = R2 = 100 nm, D = 30 nm, ε1 = 3, and ε2 = 1.
Fig. 10
Fig. 10 Energy density distributions of GPMs for four extended GCNWDs. (a) Two circular nanowires with R1 = 100 nm, R2 = 200 nm, LP = 6.7 μm, Aeff = 0.85 × 10−4A0. (b) Circular and elliptical nanowires with R1 = 100 nm, a = 100 nm, b = 200 nm, LP = 6.4 μm, Aeff = 0.87 × 10−4A0. (c) Two elliptical nanowires with a = 100 nm, b = 200 nm, LP = 6 μm, Aeff = 1 × 10−4A0. (d) Two elliptical nanowires with a = 200 nm, b = 100 nm, LP = 8.5 μm, Aeff = 0.57 × 10−4A0. a and b stand for the short axis and long axis, respectively.The other parameters are uc = 1 eV, T = 300 K, τ = 0.5 ps, D = 30 nm, ε1 = 2.25, ε2 = 1, and f0 = 20 THz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ g = 2i e 2 k B T π 2 (ω+i/τ) ln[2cosh( u c 2 k B T )],
A eff = 1 max{W(r)} W(r) d 2 r,  
W( r )= 1 2 { d[ ε( r )ω ] dω | E( r ) | 2 + μ 0 |H( r ) | 2 }.

Metrics