Abstract

Stretchability and flexibility are two key requirements for manipulating the propagation of light in compact and high-performance lab-on-a-chip systems. These requirements are best met by embedding stretchable and flexible tuning elements such as volume phase gratings (VPGs) in polydimethylsiloxane (PDMS), making them attractive alternatives to conventional rigid optical elements. However, fabrication of these PDMS VPGs is a challenge, requiring extensive modifications to PDMS or complex multi-step processes that require long processing times. In this context, we propose the concept of “ultrafast volume holography” for the fabrication of stretchable photonic structures such as tunable VPGs directly in unmodified PDMS. Our concept translates insights in heat regulation via fs repetition rate control into volumetric patterning, forming periodic refractive index modulation of 1.95 × 10−4 in the PDMS without post-processing. VPGs formed are further demonstrated as active beam steering units and tunable spectroscopic optical elements.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stretchable, flexible, rollable, and adherable polarization volume grating film

Kun Yin, Yun-Han Lee, Ziqian He, and Shin-Tson Wu
Opt. Express 27(4) 5814-5823 (2019)

Ultrafast laser inscription of volume phase gratings with low refractive index modulation and self-images of high visibility

A. Dias, A. Rodríguez, M. Martínez-Calderón, M. Gómez-Aranzadi, and S.M. Olaizola
Opt. Express 23(20) 26683-26688 (2015)

Femtosecond laser fabrication of volume-phase gratings in CdSxSe1-x-doped borosilicate glass at a low repetition rate

J. J. Azkona, M. Martinez-Calderón, E. Granados, M. Gómez-Aranzadi, A. Rodriguez, and S. M. Olaizola
Appl. Opt. 58(16) 4220-4226 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  2. Y. Wang, X. Zhang, J. Zhang, and H. Liu, “Stretchable polymeric modulator for intracavity spectroscopic broadening of femtosecond optical parametric oscillators,” Appl. Phys. Lett. 105(1), 011118 (2014).
    [Crossref]
  3. L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
    [Crossref]
  4. L. Zhou, X. Jiang, Y. Li, A. Shi, J. Chen, Q. Ou, H. Liu, and J. Tang, “Light extraction of trapped optical modes in polymer light-emitting diodes with nanoimprinted double-pattern gratings,” ACS Appl. Mater. Interfaces 6(20), 18139–18146 (2014).
    [Crossref] [PubMed]
  5. W. Chen, R. H. W. Lam, and J. Fu, “Photolithographic surface micromachining of polydimethylsiloxane (PDMS),” Lab Chip 12(2), 391–395 (2012).
    [Crossref] [PubMed]
  6. T.-L. Chang, S.-W. Luo, H.-P. Yang, and C.-H. Lee, “Fabrication of diffraction grating in polydimethylsiloxane using femtosecond-pulsed laser micromachining,” Microelectron. Eng. 87(5-8), 1344–1347 (2010).
    [Crossref]
  7. J.-K. Park and S.-H. Cho, “Flexible gratings fabricated in polymeric plate using femtosecond laser irradiation,” Opt. Lasers Eng. 49(5), 589–593 (2011).
    [Crossref]
  8. D. Sola, C. Lavieja, A. Orera, and M. J. Clemente, “Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers,” Opt. Lasers Eng. 106, 139–146 (2018).
    [Crossref]
  9. A. K. Ghatak and K. Thyagarajan, “Acoustooptic effect: Raman–Nath diffraction,” in Optical Electronics, A. K. Ghatak and K. Thyagarajan, eds. (Cambridge University, Cambridge, 1989), pp. 508–518.
  10. W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly (dimethylsiloxane),” J. Laser Micro Nanoen. 7(2), 171–175 (2012).
    [Crossref]
  11. A. Ryabchun, M. Kollosche, M. Wegener, and O. Sakhno, “Holographic structuring of elastomer actuator: first true monolithic tunable elastomer optics,” Adv. Mater. 28(46), 10217–10223 (2016).
    [Crossref] [PubMed]
  12. A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS-based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
    [Crossref]
  13. A. Ryabchun, O. Sakhno, and M. Wegener, “Conventional elastomers doped with benzophenone derivatives as effective media for all-optical fabrication of tunable diffraction elements,” RSC Advances 6(57), 51791–51800 (2016).
    [Crossref]
  14. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref] [PubMed]
  15. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [Crossref] [PubMed]
  16. C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express 18(23), 24344–24351 (2010).
    [Crossref] [PubMed]
  17. M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
    [Crossref]
  18. C. B. Schaffer, N. Nishimura, and E. Mazur, “Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, (International Society for Optics and Photonics, 1998), 2–8.
    [Crossref]
  19. S. Onda, W. Watanabe, K. Yamada, K. Itoh, and J. Nishii, “Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses,” J. Opt. Soc. Am. B 22(11), 2437–2443 (2005).
    [Crossref]
  20. K. L. N. Deepak, R. Kuladeep, S. V. Rao, and D. N. Rao, “Studies on defect formation in femtosecond laser-irradiated PMMA and PDMS,” Radiat. Eff. Defects Solids 167(2), 88–101 (2012).
    [Crossref]
  21. N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
    [Crossref]
  22. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  23. W.-C. Shih, S.-G. Kim, and G. Barbastathis, High-Resolution Electrostatic Analog Tunable Grating With a Single-Mask Fabrication Process,” J. Microelectromech. S. 15(4), 763–769 (2006).
  24. Lumerical Inc, http://www.lumerical.com/tcad-products/fdtd/ .
  25. C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Imaging of various optical fiber Bragg gratings using differential interference contrast microscopy: analysis and comparison,” Appl. Opt. 55(4), 783–790 (2016).
    [Crossref] [PubMed]
  26. M. M. Ali, K. S. Lim, H. Z. Yang, W. Y. Chong, W. S. Lim, and H. Ahmad, “Direct period measurement for fiber Bragg grating using an optical imaging technique,” Appl. Opt. 52(22), 5393–5397 (2013).
    [Crossref] [PubMed]
  27. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
    [Crossref]
  28. H. D. Tholl, “Novel laser beam steering techniques,” in Optics/Photonics in Security and Defence, (SPIE, 2006), 14.
  29. G. P. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14(4), 54–59 (2003).
    [Crossref]
  30. J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
    [Crossref] [PubMed]
  31. A. N. Simonov, S. Grabarnik, and G. Vdovin, “Stretchable diffraction gratings for spectrometry,” Opt. Express 15(15), 9784–9792 (2007).
    [Crossref] [PubMed]

2018 (1)

D. Sola, C. Lavieja, A. Orera, and M. J. Clemente, “Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers,” Opt. Lasers Eng. 106, 139–146 (2018).
[Crossref]

2016 (6)

A. Ryabchun, M. Kollosche, M. Wegener, and O. Sakhno, “Holographic structuring of elastomer actuator: first true monolithic tunable elastomer optics,” Adv. Mater. 28(46), 10217–10223 (2016).
[Crossref] [PubMed]

A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS-based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
[Crossref]

A. Ryabchun, O. Sakhno, and M. Wegener, “Conventional elastomers doped with benzophenone derivatives as effective media for all-optical fabrication of tunable diffraction elements,” RSC Advances 6(57), 51791–51800 (2016).
[Crossref]

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Imaging of various optical fiber Bragg gratings using differential interference contrast microscopy: analysis and comparison,” Appl. Opt. 55(4), 783–790 (2016).
[Crossref] [PubMed]

2014 (2)

Y. Wang, X. Zhang, J. Zhang, and H. Liu, “Stretchable polymeric modulator for intracavity spectroscopic broadening of femtosecond optical parametric oscillators,” Appl. Phys. Lett. 105(1), 011118 (2014).
[Crossref]

L. Zhou, X. Jiang, Y. Li, A. Shi, J. Chen, Q. Ou, H. Liu, and J. Tang, “Light extraction of trapped optical modes in polymer light-emitting diodes with nanoimprinted double-pattern gratings,” ACS Appl. Mater. Interfaces 6(20), 18139–18146 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (3)

K. L. N. Deepak, R. Kuladeep, S. V. Rao, and D. N. Rao, “Studies on defect formation in femtosecond laser-irradiated PMMA and PDMS,” Radiat. Eff. Defects Solids 167(2), 88–101 (2012).
[Crossref]

W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly (dimethylsiloxane),” J. Laser Micro Nanoen. 7(2), 171–175 (2012).
[Crossref]

W. Chen, R. H. W. Lam, and J. Fu, “Photolithographic surface micromachining of polydimethylsiloxane (PDMS),” Lab Chip 12(2), 391–395 (2012).
[Crossref] [PubMed]

2011 (2)

J.-K. Park and S.-H. Cho, “Flexible gratings fabricated in polymeric plate using femtosecond laser irradiation,” Opt. Lasers Eng. 49(5), 589–593 (2011).
[Crossref]

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
[Crossref] [PubMed]

2010 (3)

T.-L. Chang, S.-W. Luo, H.-P. Yang, and C.-H. Lee, “Fabrication of diffraction grating in polydimethylsiloxane using femtosecond-pulsed laser micromachining,” Microelectron. Eng. 87(5-8), 1344–1347 (2010).
[Crossref]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
[Crossref]

C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express 18(23), 24344–24351 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (1)

2006 (1)

W.-C. Shih, S.-G. Kim, and G. Barbastathis, High-Resolution Electrostatic Analog Tunable Grating With a Single-Mask Fabrication Process,” J. Microelectromech. S. 15(4), 763–769 (2006).

2005 (2)

2003 (1)

G. P. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14(4), 54–59 (2003).
[Crossref]

1996 (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Ahmad, H.

Ali, M. M.

Arai, A.

Armbruster, O.

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Armyanov, S. A.

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

Atanasov, P. A.

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

Barbastathis, G.

W.-C. Shih, S.-G. Kim, and G. Barbastathis, High-Resolution Electrostatic Analog Tunable Grating With a Single-Mask Fabrication Process,” J. Microelectromech. S. 15(4), 763–769 (2006).

Baxter, G. W.

Bovatsek, J.

Brouwer, N.

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Bulgakova, N. M.

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Chang, T.-L.

T.-L. Chang, S.-W. Luo, H.-P. Yang, and C.-H. Lee, “Fabrication of diffraction grating in polydimethylsiloxane using femtosecond-pulsed laser micromachining,” Microelectron. Eng. 87(5-8), 1344–1347 (2010).
[Crossref]

Chen, J.

L. Zhou, X. Jiang, Y. Li, A. Shi, J. Chen, Q. Ou, H. Liu, and J. Tang, “Light extraction of trapped optical modes in polymer light-emitting diodes with nanoimprinted double-pattern gratings,” ACS Appl. Mater. Interfaces 6(20), 18139–18146 (2014).
[Crossref] [PubMed]

Chen, W.

W. Chen, R. H. W. Lam, and J. Fu, “Photolithographic surface micromachining of polydimethylsiloxane (PDMS),” Lab Chip 12(2), 391–395 (2012).
[Crossref] [PubMed]

Chen, W.-J.

Cho, S.-H.

J.-K. Park and S.-H. Cho, “Flexible gratings fabricated in polymeric plate using femtosecond laser irradiation,” Opt. Lasers Eng. 49(5), 589–593 (2011).
[Crossref]

Chong, W. Y.

Clemente, M. J.

D. Sola, C. Lavieja, A. Orera, and M. J. Clemente, “Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers,” Opt. Lasers Eng. 106, 139–146 (2018).
[Crossref]

Collins, S. F.

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Crawford, G. P.

G. P. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14(4), 54–59 (2003).
[Crossref]

Cuennet, J. G.

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
[Crossref]

De Sio, L.

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
[Crossref]

Deepak, K. L. N.

K. L. N. Deepak, R. Kuladeep, S. V. Rao, and D. N. Rao, “Studies on defect formation in femtosecond laser-irradiated PMMA and PDMS,” Radiat. Eff. Defects Solids 167(2), 88–101 (2012).
[Crossref]

Derrien, T. J. Y.

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Eaton, S.

Eaton, S. M.

Escuti, M. J.

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Fu, J.

W. Chen, R. H. W. Lam, and J. Fu, “Photolithographic surface micromachining of polydimethylsiloxane (PDMS),” Lab Chip 12(2), 391–395 (2012).
[Crossref] [PubMed]

Fukata, N.

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

Georgieva, J. S.

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

Grabarnik, S.

Gritsai, Y.

A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS-based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
[Crossref]

Herman, P.

Herman, P. R.

Hirono, S.

W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly (dimethylsiloxane),” J. Laser Micro Nanoen. 7(2), 171–175 (2012).
[Crossref]

Ho, S.

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Itoh, K.

Ivanov, D. S.

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Jiang, X.

L. Zhou, X. Jiang, Y. Li, A. Shi, J. Chen, Q. Ou, H. Liu, and J. Tang, “Light extraction of trapped optical modes in polymer light-emitting diodes with nanoimprinted double-pattern gratings,” ACS Appl. Mater. Interfaces 6(20), 18139–18146 (2014).
[Crossref] [PubMed]

Kakarantzas, G.

Kautek, W.

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Kim, J.

Kim, S.-G.

W.-C. Shih, S.-G. Kim, and G. Barbastathis, High-Resolution Electrostatic Analog Tunable Grating With a Single-Mask Fabrication Process,” J. Microelectromech. S. 15(4), 763–769 (2006).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kolev, K. N.

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

Kollosche, M.

A. Ryabchun, M. Kollosche, M. Wegener, and O. Sakhno, “Holographic structuring of elastomer actuator: first true monolithic tunable elastomer optics,” Adv. Mater. 28(46), 10217–10223 (2016).
[Crossref] [PubMed]

Kuladeep, R.

K. L. N. Deepak, R. Kuladeep, S. V. Rao, and D. N. Rao, “Studies on defect formation in femtosecond laser-irradiated PMMA and PDMS,” Radiat. Eff. Defects Solids 167(2), 88–101 (2012).
[Crossref]

Lam, R. H. W.

W. Chen, R. H. W. Lam, and J. Fu, “Photolithographic surface micromachining of polydimethylsiloxane (PDMS),” Lab Chip 12(2), 391–395 (2012).
[Crossref] [PubMed]

Lavieja, C.

D. Sola, C. Lavieja, A. Orera, and M. J. Clemente, “Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers,” Opt. Lasers Eng. 106, 139–146 (2018).
[Crossref]

Lee, C.-H.

T.-L. Chang, S.-W. Luo, H.-P. Yang, and C.-H. Lee, “Fabrication of diffraction grating in polydimethylsiloxane using femtosecond-pulsed laser micromachining,” Microelectron. Eng. 87(5-8), 1344–1347 (2010).
[Crossref]

Li, J.

Li, Y.

L. Zhou, X. Jiang, Y. Li, A. Shi, J. Chen, Q. Ou, H. Liu, and J. Tang, “Light extraction of trapped optical modes in polymer light-emitting diodes with nanoimprinted double-pattern gratings,” ACS Appl. Mater. Interfaces 6(20), 18139–18146 (2014).
[Crossref] [PubMed]

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Lim, K. S.

Lim, W. S.

Liu, H.

Y. Wang, X. Zhang, J. Zhang, and H. Liu, “Stretchable polymeric modulator for intracavity spectroscopic broadening of femtosecond optical parametric oscillators,” Appl. Phys. Lett. 105(1), 011118 (2014).
[Crossref]

L. Zhou, X. Jiang, Y. Li, A. Shi, J. Chen, Q. Ou, H. Liu, and J. Tang, “Light extraction of trapped optical modes in polymer light-emitting diodes with nanoimprinted double-pattern gratings,” ACS Appl. Mater. Interfaces 6(20), 18139–18146 (2014).
[Crossref] [PubMed]

Luo, S.-W.

T.-L. Chang, S.-W. Luo, H.-P. Yang, and C.-H. Lee, “Fabrication of diffraction grating in polydimethylsiloxane using femtosecond-pulsed laser micromachining,” Microelectron. Eng. 87(5-8), 1344–1347 (2010).
[Crossref]

Markos, C.

Matsuda, K.

W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly (dimethylsiloxane),” J. Laser Micro Nanoen. 7(2), 171–175 (2012).
[Crossref]

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Mochizuki, H.

W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly (dimethylsiloxane),” J. Laser Micro Nanoen. 7(2), 171–175 (2012).
[Crossref]

Naghilou, A.

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Nedyalkov, N. N.

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

Ng, M. L.

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Nikov, R. G.

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

Nishii, J.

Oh, C.

Onda, S.

Orera, A.

D. Sola, C. Lavieja, A. Orera, and M. J. Clemente, “Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers,” Opt. Lasers Eng. 106, 139–146 (2018).
[Crossref]

Ou, Q.

L. Zhou, X. Jiang, Y. Li, A. Shi, J. Chen, Q. Ou, H. Liu, and J. Tang, “Light extraction of trapped optical modes in polymer light-emitting diodes with nanoimprinted double-pattern gratings,” ACS Appl. Mater. Interfaces 6(20), 18139–18146 (2014).
[Crossref] [PubMed]

Park, J.-K.

J.-K. Park and S.-H. Cho, “Flexible gratings fabricated in polymeric plate using femtosecond laser irradiation,” Opt. Lasers Eng. 49(5), 589–593 (2011).
[Crossref]

Psaltis, D.

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
[Crossref]

Rao, D. N.

K. L. N. Deepak, R. Kuladeep, S. V. Rao, and D. N. Rao, “Studies on defect formation in femtosecond laser-irradiated PMMA and PDMS,” Radiat. Eff. Defects Solids 167(2), 88–101 (2012).
[Crossref]

Rao, S. V.

K. L. N. Deepak, R. Kuladeep, S. V. Rao, and D. N. Rao, “Studies on defect formation in femtosecond laser-irradiated PMMA and PDMS,” Radiat. Eff. Defects Solids 167(2), 88–101 (2012).
[Crossref]

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Rethfeld, B.

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Rollinson, C. M.

Ryabchun, A.

A. Ryabchun, M. Kollosche, M. Wegener, and O. Sakhno, “Holographic structuring of elastomer actuator: first true monolithic tunable elastomer optics,” Adv. Mater. 28(46), 10217–10223 (2016).
[Crossref] [PubMed]

A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS-based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
[Crossref]

A. Ryabchun, O. Sakhno, and M. Wegener, “Conventional elastomers doped with benzophenone derivatives as effective media for all-optical fabrication of tunable diffraction elements,” RSC Advances 6(57), 51791–51800 (2016).
[Crossref]

Sakhno, O.

A. Ryabchun, O. Sakhno, and M. Wegener, “Conventional elastomers doped with benzophenone derivatives as effective media for all-optical fabrication of tunable diffraction elements,” RSC Advances 6(57), 51791–51800 (2016).
[Crossref]

A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS-based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
[Crossref]

A. Ryabchun, M. Kollosche, M. Wegener, and O. Sakhno, “Holographic structuring of elastomer actuator: first true monolithic tunable elastomer optics,” Adv. Mater. 28(46), 10217–10223 (2016).
[Crossref] [PubMed]

Serati, S.

Shah, L.

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Shi, A.

L. Zhou, X. Jiang, Y. Li, A. Shi, J. Chen, Q. Ou, H. Liu, and J. Tang, “Light extraction of trapped optical modes in polymer light-emitting diodes with nanoimprinted double-pattern gratings,” ACS Appl. Mater. Interfaces 6(20), 18139–18146 (2014).
[Crossref] [PubMed]

Shih, W.-C.

W.-C. Shih, S.-G. Kim, and G. Barbastathis, High-Resolution Electrostatic Analog Tunable Grating With a Single-Mask Fabrication Process,” J. Microelectromech. S. 15(4), 763–769 (2006).

Shugaev, M. V.

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Simonov, A. N.

Sola, D.

D. Sola, C. Lavieja, A. Orera, and M. J. Clemente, “Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers,” Opt. Lasers Eng. 106, 139–146 (2018).
[Crossref]

Stankova, N. E.

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

Stoyanchov, T. R.

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Tang, J.

L. Zhou, X. Jiang, Y. Li, A. Shi, J. Chen, Q. Ou, H. Liu, and J. Tang, “Light extraction of trapped optical modes in polymer light-emitting diodes with nanoimprinted double-pattern gratings,” ACS Appl. Mater. Interfaces 6(20), 18139–18146 (2014).
[Crossref] [PubMed]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Valova, E. I.

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

Vasdekis, A. E.

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
[Crossref]

Vdovin, G.

Vlachos, K.

Wade, S. A.

Wang, Y.

Y. Wang, X. Zhang, J. Zhang, and H. Liu, “Stretchable polymeric modulator for intracavity spectroscopic broadening of femtosecond optical parametric oscillators,” Appl. Phys. Lett. 105(1), 011118 (2014).
[Crossref]

Watanabe, W.

W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly (dimethylsiloxane),” J. Laser Micro Nanoen. 7(2), 171–175 (2012).
[Crossref]

S. Onda, W. Watanabe, K. Yamada, K. Itoh, and J. Nishii, “Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses,” J. Opt. Soc. Am. B 22(11), 2437–2443 (2005).
[Crossref]

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Wegener, M.

A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS-based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
[Crossref]

A. Ryabchun, M. Kollosche, M. Wegener, and O. Sakhno, “Holographic structuring of elastomer actuator: first true monolithic tunable elastomer optics,” Adv. Mater. 28(46), 10217–10223 (2016).
[Crossref] [PubMed]

A. Ryabchun, O. Sakhno, and M. Wegener, “Conventional elastomers doped with benzophenone derivatives as effective media for all-optical fabrication of tunable diffraction elements,” RSC Advances 6(57), 51791–51800 (2016).
[Crossref]

Wu, C.

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Yamada, K.

Yang, H. Z.

Yang, H.-P.

T.-L. Chang, S.-W. Luo, H.-P. Yang, and C.-H. Lee, “Fabrication of diffraction grating in polydimethylsiloxane using femtosecond-pulsed laser micromachining,” Microelectron. Eng. 87(5-8), 1344–1347 (2010).
[Crossref]

Yoshino, F.

Zhang, H.

Zhang, J.

Y. Wang, X. Zhang, J. Zhang, and H. Liu, “Stretchable polymeric modulator for intracavity spectroscopic broadening of femtosecond optical parametric oscillators,” Appl. Phys. Lett. 105(1), 011118 (2014).
[Crossref]

Zhang, X.

Y. Wang, X. Zhang, J. Zhang, and H. Liu, “Stretchable polymeric modulator for intracavity spectroscopic broadening of femtosecond optical parametric oscillators,” Appl. Phys. Lett. 105(1), 011118 (2014).
[Crossref]

Zhigilei, L. V.

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Zhou, L.

L. Zhou, X. Jiang, Y. Li, A. Shi, J. Chen, Q. Ou, H. Liu, and J. Tang, “Light extraction of trapped optical modes in polymer light-emitting diodes with nanoimprinted double-pattern gratings,” ACS Appl. Mater. Interfaces 6(20), 18139–18146 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

L. Zhou, X. Jiang, Y. Li, A. Shi, J. Chen, Q. Ou, H. Liu, and J. Tang, “Light extraction of trapped optical modes in polymer light-emitting diodes with nanoimprinted double-pattern gratings,” ACS Appl. Mater. Interfaces 6(20), 18139–18146 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

A. Ryabchun, M. Kollosche, M. Wegener, and O. Sakhno, “Holographic structuring of elastomer actuator: first true monolithic tunable elastomer optics,” Adv. Mater. 28(46), 10217–10223 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS-based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

Y. Wang, X. Zhang, J. Zhang, and H. Liu, “Stretchable polymeric modulator for intracavity spectroscopic broadening of femtosecond optical parametric oscillators,” Appl. Phys. Lett. 105(1), 011118 (2014).
[Crossref]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
[Crossref]

Appl. Surf. Sci. (1)

N. E. Stankova, P. A. Atanasov, R. G. Nikov, R. G. Nikov, N. N. Nedyalkov, T. R. Stoyanchov, N. Fukata, K. N. Kolev, E. I. Valova, J. S. Georgieva, and S. A. Armyanov, “Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing,” Appl. Surf. Sci. 374, 96–103 (2016).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

J. Laser Micro Nanoen. (1)

W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly (dimethylsiloxane),” J. Laser Micro Nanoen. 7(2), 171–175 (2012).
[Crossref]

J. Microelectromech. S. (1)

W.-C. Shih, S.-G. Kim, and G. Barbastathis, High-Resolution Electrostatic Analog Tunable Grating With a Single-Mask Fabrication Process,” J. Microelectromech. S. 15(4), 763–769 (2006).

J. Opt. Soc. Am. B (1)

Lab Chip (1)

W. Chen, R. H. W. Lam, and J. Fu, “Photolithographic surface micromachining of polydimethylsiloxane (PDMS),” Lab Chip 12(2), 391–395 (2012).
[Crossref] [PubMed]

Microelectron. Eng. (1)

T.-L. Chang, S.-W. Luo, H.-P. Yang, and C.-H. Lee, “Fabrication of diffraction grating in polydimethylsiloxane using femtosecond-pulsed laser micromachining,” Microelectron. Eng. 87(5-8), 1344–1347 (2010).
[Crossref]

MRS Bull. (1)

M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser–material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lasers Eng. (2)

J.-K. Park and S.-H. Cho, “Flexible gratings fabricated in polymeric plate using femtosecond laser irradiation,” Opt. Lasers Eng. 49(5), 589–593 (2011).
[Crossref]

D. Sola, C. Lavieja, A. Orera, and M. J. Clemente, “Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers,” Opt. Lasers Eng. 106, 139–146 (2018).
[Crossref]

Opt. Photonics News (1)

G. P. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14(4), 54–59 (2003).
[Crossref]

Proc. IEEE (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Radiat. Eff. Defects Solids (1)

K. L. N. Deepak, R. Kuladeep, S. V. Rao, and D. N. Rao, “Studies on defect formation in femtosecond laser-irradiated PMMA and PDMS,” Radiat. Eff. Defects Solids 167(2), 88–101 (2012).
[Crossref]

RSC Advances (1)

A. Ryabchun, O. Sakhno, and M. Wegener, “Conventional elastomers doped with benzophenone derivatives as effective media for all-optical fabrication of tunable diffraction elements,” RSC Advances 6(57), 51791–51800 (2016).
[Crossref]

Other (4)

H. D. Tholl, “Novel laser beam steering techniques,” in Optics/Photonics in Security and Defence, (SPIE, 2006), 14.

Lumerical Inc, http://www.lumerical.com/tcad-products/fdtd/ .

A. K. Ghatak and K. Thyagarajan, “Acoustooptic effect: Raman–Nath diffraction,” in Optical Electronics, A. K. Ghatak and K. Thyagarajan, eds. (Cambridge University, Cambridge, 1989), pp. 508–518.

C. B. Schaffer, N. Nishimura, and E. Mazur, “Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, (International Society for Optics and Photonics, 1998), 2–8.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Demonstration of application as a tuneable spectroscopic transmission grating using a supercontinuum (SC) laser.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Ultrafast volume holography of VPGs. (a) Schematic of femtosecond pulses patterning of an unprocessed polydimethylsiloxane (PDMS) film placed at the interference plane. Also shown is a schematic of an embedded stretchable and flexible volume phase grating (VPG) formed and a schematic of the cosine-squared refractive index modulation (Δn) formed in PDMS. (b) Close-up of VPGs on unstretched PDMS, showing white light diffracted into blue, green and red. (c) Close-up of VPGs in manually stretched PDMS, showing white light diffracted into blue, green and red.
Fig. 2
Fig. 2 Optimization of VPGs with ultrafast volume holography. (a) Change in diffraction efficiency with repetition rate, with fixed number of pulses (��) at 1.75 × 10−4 Jcm−2. (b) Fluence (��) and �� (or exposure time) thresholds for formation of VPGs, scattering damage and burn damage. The optimal processing region is marked separately with dashed lines. (c) Relationship between exposure time (x-axis) and �� (series) with Bragg diffraction efficiency (��) of VPGs.
Fig. 3
Fig. 3 Proposed mechanisms of VPG formation with ultrafast volume holography. (a) Effect of fluence (��) on Δn and width of nmax where I1 < I2 < I3. RI saturated from I2 onwards. (b) Effect of number of pulses (��) (or exposure time) on refractive index modulation (Δn) and width of maximum refractive index (nmax), where x < y < z. RI saturated from y number of pulses onwards.
Fig. 4
Fig. 4 Tunable beam steering and spectroscopy demonstrated with stretchable and flexible VPGs in PDMS. (a) Schematic of VPG as a free space beam steering device via rotation and stretching for a single wavelength (532 nm). (b) Change in Bragg angle in relation to strain (%). Dotted line indicates the expected Bragg angle, while the plotted points indicate the measured angles. (c) Schematic of VPG as free space transmission-based spectroscopic grating with a white light source. (d) Change in peak wavelength and spectral dispersion in relation to strain (%). (e) Demonstration of the tunable spectroscopic transmission grating using a supercontinuum (SC) laser. (i) 0th order and 1st Bragg order diffracted beam. (ii) & (iii) Close-up of diffracted spot before and after stretching, marked in white. Visualization 1 shows the spectrum change as the sample is stretched and rotated.
Fig. 5
Fig. 5 Damage features through ultrafast volume holography. (a) Relationship between transmitted power, fluence (��) and exposure time (equivalent to number of pulses (��)). (b) 10X Confocal microscope image of scattering damage induced by femtosecond holographic patterning. Inset: 20X optical microscope image of voids formed along scattering damage tracks. (c) 10X Confocal microscope image of burn damage induced by femtosecond holographic patterning. All microscope images are viewed normal to the PDMS surface.
Fig. 6
Fig. 6 Z-scan at high and low repetition rates. (a) Normalized signal from Z-scan done at 50 kHz, using the 343 nm fs laser used for VPG fabrication. The averaged signal from 100 pulses were taken at each position. (b) Normalized closed and open aperture signals from Z-scan done at 500 kHz, using the 343 nm fs laser used for VPG fabrication. (c) Normalized and adjusted aperture signals from Z-scan done at 500 kHz, using the 343 nm fs laser used for VPG fabrication. The averaged signal from 500,000 pulses were taken at each position.
Fig. 7
Fig. 7 FDTD simulation elements and results. (a) Imported objects with cosine square refractive index variation where the color gradient represents such refractive index variation with deeper color indicating higher refractive index & vice versa. (b) Unit cell with a uniform block of refractive index 1.45+Δn sandwiched between the left and right block. (c) VPG formed by periodic repetition of the unit cell having period P =  t L +a+ t R . (d) Variation of efficiency (η) with d.c. defined by d.c.=a/P. (e) Far field diffraction pattern for varying d.c. (f) Variation of η with Δn.

Tables (1)

Tables Icon

Table 1 Comparison of calculated and measured Bragg diffraction angles at 532 nm and 638 nm for sample periodicities of 1370 nm and 987 nm

Metrics