Abstract

A new method for spectroscopic interferometry using rotating diffraction grating was developed for industrial measurements. Two diffraction gratings increase the spectroscopic resolution, and the effective measuring range can be extended considerably. Instead of calibrating the wavelength, we used the Fabry−Perot Etalon (standard) to calibrate the system and determine the absolute position. The rotation diffraction gratings may also be used as a spectroscopic element over extensive ranges for low-cost and high-speed measurement. Our experiments indicate a length range of approximately 4.00 mm with repeatability of 0.17μm (0.0167%) for the narrow range and 3.84 μm (0.0955%) for the wide range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-noise blue light source with large frequency-scanning range from frequency doubling of a diode laser

Xiaoguang Sun and John L. Carlsten
J. Opt. Soc. Am. B 18(3) 281-285 (2001)

Direct Determination of Wave-Lengths from Fabry-Perot Interferometer Patterns

George R. Harrison
J. Opt. Soc. Am. 36(11) 644-654 (1946)

Multiorder rotating grating interferometer

John Howard
Appl. Opt. 31(10) 1419-1425 (1992)

References

  • View by:
  • |
  • |
  • |

  1. P. Hlubina, “White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica,” Opt. Commun. 193(1-6), 1–7 (2001).
    [Crossref]
  2. S. K. Debnath, M. P. Kothiyal, J. Schmit, and P. Hariharan, “Spectrally resolved white-light phase-shifting interference microscopy for thickness-profile measurements of transparent thin film layers on patterned substrates,” Opt. Express 14(11), 4662–4667 (2006).
    [Crossref] [PubMed]
  3. P. Hlubina, “Spectral reflectrometry and white-light interferometry used to measure thin films,” Proc. SPIE 5457, 756–764 (2004).
    [Crossref]
  4. U. Schnell, R. Dändliker, and S. Gray, “Dispersive white-light interferometry for absolute distance measurement with dielectric multilayer systems on the target,” Opt. Lett. 21(7), 528–530 (1996).
    [Crossref] [PubMed]
  5. C. Sáinz, P. Jourdian, R. Escalona, and J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 110(3-4), 381–390 (1994).
    [Crossref]
  6. S.-W. Kim and G.-H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38(28), 5968–5973 (1999).
    [Crossref] [PubMed]
  7. V. N. Kumar and D. N. Rao, “Using interference in the frequency domain for precise determination of the thickness and refractive indices of normal dispersive materials,” J. Opt. Soc. Am. B 12(9), 1559–1563 (1995).
    [Crossref]
  8. J. Schwider and L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett. 19(13), 995–997 (1994).
    [Crossref] [PubMed]
  9. A. F. Zuluaga and R. Richards-Kortum, “Spatially resolved spectral interferometry for determination of subsurface structure,” Opt. Lett. 24(8), 519–521 (1999).
    [Crossref] [PubMed]
  10. D. Wang, Y. Yang, C. Chen, and Y. Zhuo, “Point diffraction interferometer with adjustable fringe contrast for testing spherical surfaces,” Appl. Opt. 50(16), 2342–2348 (2011).
    [Crossref] [PubMed]
  11. Ó. Martínez-Matos, C. Rickenstorff, S. Zamora, J. G. Izquierdo, and P. Vaveliuk, “Characterization of digital dispersive spectrometers by low coherence interferometry,” Opt. Express 25(4), 3222–3233 (2017).
    [Crossref] [PubMed]
  12. K. Liu and F. Yu, “Accurate wavelength calibration method using system parameters for grating spectrometers,” Opt. Eng. 52(1), 013603 (2013).
    [Crossref]
  13. C. E. Cramer, S. Brown, N. Caldwell, A. K. Dupree, S. G. Korzennik, K. R. Lykke, and A. Szentgyorgyi, “A tunable laser system for the wavelength calibration of astronomical spectrographs,” in Proceedings of IEEE Conference on Lasers and Electro-Optics and Conference on Quantum electronics and Laser Science Conference (IEEE, 2009) pp. 1–2.
    [Crossref]
  14. R. de la Fuente, “White light spectral interferometry as a spectrometer calibration tool,” Appl. Spectrosc. 68(5), 525–530 (2014).
    [Crossref] [PubMed]
  15. J.-H. Kim, J.-H. Han, and J. Jeong, “Accurate wavelength calibration method for spectrometer using low coherence interferometry,” J. Lightwave Technol. 33(16), 3413–3418 (2015).
    [Crossref]
  16. R. C. Youngquist, S. M. Simmons, and A. M. Belanger, “Spectrometer wavelength calibration using spectrally resolved white-light interferometry,” Opt. Lett. 35(13), 2257–2259 (2010).
    [Crossref] [PubMed]
  17. R. C. Youngquist, S. M. Simmons, and A. M. Belanger, “Spectrometer wavelength calibration using spectrally resolved white-light interferometry,” Opt. Lett. 35(13), 2257–2259 (2010).
    [Crossref] [PubMed]
  18. H. Wu, F. Zhang, T. Liu, F. Meng, J. Li, and X. Qu, “Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser,” Opt. Express 23(24), 31582–31593 (2015).
    [Crossref] [PubMed]
  19. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
    [Crossref] [PubMed]
  20. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 (2006).
    [Crossref] [PubMed]
  21. C. Dorrer, “Influence of the calibration of the detector on spectral interferometry,” J. Opt. Soc. Am. B 16(7), 1160–1168 (1999).
    [Crossref]
  22. H. Matsumoto and K. Takamasu, “Non-Contact High Speed Measurements of the Processed-Product Shape Using New Optical Comb Interferometer,” 2018 17th International Conference on Precision Engineering, D-3–1, 2018.
  23. A. Gosteva, M. Haiml, R. Paschotta, and U. Keller, “Noise-related resolution limit of dispersion measurements with white-light interferometers,” J. Opt. Soc. Am. B 22(9), 1868–1874 (2005).
    [Crossref]

2017 (1)

2015 (2)

2014 (1)

2013 (1)

K. Liu and F. Yu, “Accurate wavelength calibration method using system parameters for grating spectrometers,” Opt. Eng. 52(1), 013603 (2013).
[Crossref]

2011 (1)

2010 (3)

2006 (2)

2005 (1)

2004 (1)

P. Hlubina, “Spectral reflectrometry and white-light interferometry used to measure thin films,” Proc. SPIE 5457, 756–764 (2004).
[Crossref]

2001 (1)

P. Hlubina, “White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica,” Opt. Commun. 193(1-6), 1–7 (2001).
[Crossref]

1999 (3)

1996 (1)

1995 (1)

1994 (2)

C. Sáinz, P. Jourdian, R. Escalona, and J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 110(3-4), 381–390 (1994).
[Crossref]

J. Schwider and L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett. 19(13), 995–997 (1994).
[Crossref] [PubMed]

Akturk, S.

Belanger, A. M.

Bowlan, P.

Brown, S.

C. E. Cramer, S. Brown, N. Caldwell, A. K. Dupree, S. G. Korzennik, K. R. Lykke, and A. Szentgyorgyi, “A tunable laser system for the wavelength calibration of astronomical spectrographs,” in Proceedings of IEEE Conference on Lasers and Electro-Optics and Conference on Quantum electronics and Laser Science Conference (IEEE, 2009) pp. 1–2.
[Crossref]

Calatroni, J.

C. Sáinz, P. Jourdian, R. Escalona, and J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 110(3-4), 381–390 (1994).
[Crossref]

Caldwell, N.

C. E. Cramer, S. Brown, N. Caldwell, A. K. Dupree, S. G. Korzennik, K. R. Lykke, and A. Szentgyorgyi, “A tunable laser system for the wavelength calibration of astronomical spectrographs,” in Proceedings of IEEE Conference on Lasers and Electro-Optics and Conference on Quantum electronics and Laser Science Conference (IEEE, 2009) pp. 1–2.
[Crossref]

Chen, C.

Cramer, C. E.

C. E. Cramer, S. Brown, N. Caldwell, A. K. Dupree, S. G. Korzennik, K. R. Lykke, and A. Szentgyorgyi, “A tunable laser system for the wavelength calibration of astronomical spectrographs,” in Proceedings of IEEE Conference on Lasers and Electro-Optics and Conference on Quantum electronics and Laser Science Conference (IEEE, 2009) pp. 1–2.
[Crossref]

Dändliker, R.

de la Fuente, R.

Debnath, S. K.

Dorrer, C.

Dupree, A. K.

C. E. Cramer, S. Brown, N. Caldwell, A. K. Dupree, S. G. Korzennik, K. R. Lykke, and A. Szentgyorgyi, “A tunable laser system for the wavelength calibration of astronomical spectrographs,” in Proceedings of IEEE Conference on Lasers and Electro-Optics and Conference on Quantum electronics and Laser Science Conference (IEEE, 2009) pp. 1–2.
[Crossref]

Escalona, R.

C. Sáinz, P. Jourdian, R. Escalona, and J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 110(3-4), 381–390 (1994).
[Crossref]

Gabolde, P.

Gosteva, A.

Gray, S.

Haiml, M.

Han, J.-H.

Hariharan, P.

Hlubina, P.

P. Hlubina, “Spectral reflectrometry and white-light interferometry used to measure thin films,” Proc. SPIE 5457, 756–764 (2004).
[Crossref]

P. Hlubina, “White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica,” Opt. Commun. 193(1-6), 1–7 (2001).
[Crossref]

Izquierdo, J. G.

Jeong, J.

Jourdian, P.

C. Sáinz, P. Jourdian, R. Escalona, and J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 110(3-4), 381–390 (1994).
[Crossref]

Keller, U.

Kim, G.-H.

Kim, J.-H.

Kim, S.-W.

Korzennik, S. G.

C. E. Cramer, S. Brown, N. Caldwell, A. K. Dupree, S. G. Korzennik, K. R. Lykke, and A. Szentgyorgyi, “A tunable laser system for the wavelength calibration of astronomical spectrographs,” in Proceedings of IEEE Conference on Lasers and Electro-Optics and Conference on Quantum electronics and Laser Science Conference (IEEE, 2009) pp. 1–2.
[Crossref]

Kothiyal, M. P.

Kumar, V. N.

Li, J.

Liu, K.

K. Liu and F. Yu, “Accurate wavelength calibration method using system parameters for grating spectrometers,” Opt. Eng. 52(1), 013603 (2013).
[Crossref]

Liu, T.

Lykke, K. R.

C. E. Cramer, S. Brown, N. Caldwell, A. K. Dupree, S. G. Korzennik, K. R. Lykke, and A. Szentgyorgyi, “A tunable laser system for the wavelength calibration of astronomical spectrographs,” in Proceedings of IEEE Conference on Lasers and Electro-Optics and Conference on Quantum electronics and Laser Science Conference (IEEE, 2009) pp. 1–2.
[Crossref]

Martínez-Matos, Ó.

McGresham, K.

Meng, F.

Paschotta, R.

Qu, X.

Rao, D. N.

Richards-Kortum, R.

Rickenstorff, C.

Sáinz, C.

C. Sáinz, P. Jourdian, R. Escalona, and J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 110(3-4), 381–390 (1994).
[Crossref]

Schmit, J.

Schnell, U.

Schwider, J.

Shreenath, A.

Simmons, S. M.

Szentgyorgyi, A.

C. E. Cramer, S. Brown, N. Caldwell, A. K. Dupree, S. G. Korzennik, K. R. Lykke, and A. Szentgyorgyi, “A tunable laser system for the wavelength calibration of astronomical spectrographs,” in Proceedings of IEEE Conference on Lasers and Electro-Optics and Conference on Quantum electronics and Laser Science Conference (IEEE, 2009) pp. 1–2.
[Crossref]

Trebino, R.

Vaveliuk, P.

Wang, D.

Wojtkowski, M.

Wu, H.

Yang, Y.

Youngquist, R. C.

Yu, F.

K. Liu and F. Yu, “Accurate wavelength calibration method using system parameters for grating spectrometers,” Opt. Eng. 52(1), 013603 (2013).
[Crossref]

Zamora, S.

Zhang, F.

Zhou, L.

Zhuo, Y.

Zuluaga, A. F.

Appl. Opt. (3)

Appl. Spectrosc. (1)

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

C. Sáinz, P. Jourdian, R. Escalona, and J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 110(3-4), 381–390 (1994).
[Crossref]

P. Hlubina, “White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica,” Opt. Commun. 193(1-6), 1–7 (2001).
[Crossref]

Opt. Eng. (1)

K. Liu and F. Yu, “Accurate wavelength calibration method using system parameters for grating spectrometers,” Opt. Eng. 52(1), 013603 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Proc. SPIE (1)

P. Hlubina, “Spectral reflectrometry and white-light interferometry used to measure thin films,” Proc. SPIE 5457, 756–764 (2004).
[Crossref]

Other (2)

C. E. Cramer, S. Brown, N. Caldwell, A. K. Dupree, S. G. Korzennik, K. R. Lykke, and A. Szentgyorgyi, “A tunable laser system for the wavelength calibration of astronomical spectrographs,” in Proceedings of IEEE Conference on Lasers and Electro-Optics and Conference on Quantum electronics and Laser Science Conference (IEEE, 2009) pp. 1–2.
[Crossref]

H. Matsumoto and K. Takamasu, “Non-Contact High Speed Measurements of the Processed-Product Shape Using New Optical Comb Interferometer,” 2018 17th International Conference on Precision Engineering, D-3–1, 2018.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Optical spectrometer with diffraction grating: (a) Schematic of optical spectrometer (b) Schematic of diffraction grating.
Fig. 2
Fig. 2 Schematic showing the measurement principle of the proposed spectroscopic interferometer: (a) Optical path (b) Rotating diffraction device.
Fig. 3
Fig. 3 Optical layout of the proposed spectral interferometer with two diffraction gratings: (a) the light path of the diffraction device (b) the variation in the amplitude of the spectrum.
Fig. 4
Fig. 4 Photograph of the spectral interferometer experimental setup.
Fig. 5
Fig. 5 Data processing procedure for measurement of period time.
Fig. 6
Fig. 6 Association with Fabry−Perot Etalon: (a) measured spectrograms (b) Fourier-transformed amplitude.
Fig. 7
Fig. 7 Displacement for the measurement range of 0.11 mm in steps of 0.01 mm: the original path length difference (x0) is calculated from the peak frequency of the Fabry−Perot Etalon.
Fig. 8
Fig. 8 Measured spectrograms with different length ranges (x): (a) 0.8305, (b) 1.0305, (c) 1.2305, (d) 1.4305, (e) 1.6305, (f) 1.8305, (g) 2.0305, (h) 2.2305, (i) 2.4305, (j) 2.6305, (k) 2.8305, (l) 3.0305, (m) 3.2305, (n) 3.4305, (0) 3.6305, (p) 3.8305, (q) 4.0305, (e) 4.2305, (s) 4.4305, and (t) 4.6305 mm.
Fig. 9
Fig. 9 Fourier-transformed amplitude of the interference spectrum for different length ranges (x) corresponding to the values in Fig. 8.
Fig. 10
Fig. 10 Angle peak frequency for distance from 0.8340 mm to 4.0340 mm.
Fig. 11
Fig. 11 Standard deviation of the distance in the wide range.

Tables (1)

Tables Icon

Table 1 Comparison results in the wide range

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d ( sin θ i sin θ m ) = m λ ,
E r e f   ( ω ) = α E 0 ( ω ) ,
E m e a s ( ω ) = β E 0 ( ω ) e x p ( i τ ω ) ,
I ( ω ) = | E r e f ( ω ) + E m e a s ( ω ) | 2 = | E r e f ( ω ) | 2 + | E m e a s ( ω ) | 2 + 2 R e E r e f ( ω ) E m e a s * ( ω )
I ( ω ) = E 0 2 ( ω ) [ α 2 + β 2 + 2 α β cos ( ψ ω ) ] = E 0 2 ( ω ) [ α 2 + β 2 + 2 α β cos ( φ ( ω ) x ] ,
R = λ Δ λ   ,
R = λ Δ λ   = m N W ,
  λ = 2 x k ,
λ 1 = 2 x k , λ 2 = 2 x k + 1 ,
Δ λ w = λ 1 λ 2 λ 2 2 x λ ,
x d < λ 2 2 Δ λ .
f a = f t   t = 60 f t v
x = a f a + x 0 ,
σ x = σ f a x f a ¯

Metrics