Abstract

We propose an original variable-focus technology specially designed for presbyopia-correcting adaptive eyeglasses. It has been thought through to offer vision comfort without cutting on aesthetics. It relies on a fluid-filled variable-focus lens (presenting 2 liquids and 1 ultra-thin membrane) assisted by a low-power, high-volume microfluidic actuator. It also features a distance-sensing system to provide automatic focusing. We demonstrate the qualities of this novel technology on our first prototype. Our prototype achieves the necessary 3-diopter-high power variation on a 20-millimeter-wide variable zone with low actuation pressures (~200 Pa at most), and the preliminary optical quality analysis shows the spatial resolution is much better than the one specified by classic eye charts. We discuss further improvements in terms of optics, aesthetics and portability. In particular, we point out that this variable technology is compatible with standard base curves, and we highlight an optimal configuration where the power consumption of our opto-fluidic engine is about 25 mW peak.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable-focus lens for adaptive eyeglasses

Nazmul Hasan, Aishwaryadev Banerjee, Hanseup Kim, and Carlos H. Mastrangelo
Opt. Express 25(2) 1221-1233 (2017)

Electronic liquid crystal contact lenses for the correction of presbyopia

Harry E. Milton, Philip B. Morgan, John H. Clamp, and Helen F Gleeson
Opt. Express 22(7) 8035-8040 (2014)

Aspheric spectacles for correcting presbyopia with myopia and astigmatism

Shaolin Zheng, Zhaoqi Wang, Yongji Liu, and Rui Li
Appl. Opt. 51(29) 6926-6932 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. C. Donders, On the anomalies of accommodation and refraction of the eye (The New Sydenham Society, 1864).
  2. D. Hamasaki, J. Ong, and E. Marg, “The amplitude of accommodation in presbyopia,” Am. J. Optom. Arch. Am. Acad. Optom. 33(1), 3–14 (1956).
    [Crossref] [PubMed]
  3. A. Duane, “Studies in monocular and binocular accommodation, with their clinical application,” Trans. Am. Ophthalmol. Soc. 20, 132–157 (1922).
    [PubMed]
  4. T. R. Fricke, N. Tahhan, S. Resnikoff, E. Papas, A. Burnett, S. M. Ho, T. Naduvilath, and K. S. Naidoo, “Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling,” Ophthalmology 125(10), 1492–1499 (2018).
    [Crossref] [PubMed]
  5. B. P. Luo, G. C. Brown, S. C. Luo, and M. M. Brown, “The quality of life associated with presbyopia,” Am. J. Ophthalmol. 145(4), 618–622 (2008).
    [Crossref] [PubMed]
  6. P. J. McDonnell, P. Lee, K. Spritzer, A. S. Lindblad, and R. D. Hays, “Associations of presbyopia with vision-targeted health-related quality of life,” Arch. Ophthalmol. 121(11), 1577–1581 (2003).
    [Crossref]
  7. C. Y. Chen, J. E. Keeffe, P. Garoufalis, F. M. A. Islam, M. Dirani, T. A. Couper, H. R. Taylor, and P. N. Baird, “Vision-related quality of life comparison for emmetropes, myopes after refractive surgery, and myopes wearing spectacles or contact lenses,” J. Refract. Surg. 23(8), 752–759 (2007).
    [Crossref]
  8. W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34(1), 8–29 (2014).
    [Crossref]
  9. Y. Benard, A. Seidemann, H. Altheimer, A. Welk, and G. Esser, “Reducing prismatic imbalance at near in progressive addition lenses,” Investig. Ophthalmol. Vis. Sci. 59(9), 2967 (2018).
  10. D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91(3), 251–264 (2008).
    [Crossref]
  11. T. Bonnin and V. Torrilhon, “Study on the satisfaction of people who wear progressive lenses, conducted in optical stores,” (Points de Vue, 2018). https://www.pointsdevue.com
  12. S. C. Han, A. D. Graham, and M. C. Lin, “Clinical assessment of a customized free-form progressive add lens spectacle,” Optom. Vis. Sci. 88(2), 234–243 (2011).
    [Crossref] [PubMed]
  13. J. Forkel, J. L. Reiniger, A. Muschielok, A. Welk, A. Seidemann, and P. Baumbach, “Personalized progressive addition lenses: correlation between performance and design,” Optom. Vis. Sci. 94(2), 208–218 (2017).
    [Crossref]
  14. E. Chamorro, J. M. Cleva, P. Concepcion, M. S. Subero, and J. Alonso, “Lens design techniques to improve satisfaction in free-form progressive addition lens users,” JOJ Ophthalmol. 6(3), 555688 (2018).
    [Crossref]
  15. J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
    [Crossref] [PubMed]
  16. D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 1: Design and development of progressive lenses,” Clin. Exp. Optom. 91(3), 240–250 (2008).
    [Crossref]
  17. T. L. Alvarez, E. H. Kim, and B. Granger-Donetti, “Adaptation to progressive additive lenses: potential factors to consider,” Sci. Rep. 7, 2529 (2017).
    [Crossref] [PubMed]
  18. Y. Han, K. J. Ciuffreda, A. Selenow, and S. R. Ali, “Dynamic interactions of eye and head movements when reading with single-vision and progressive lenses in a simulated computer-based environment,” Investig. Ophthalmol. Vis. Sci. 44(4), 1534–1545 (2003).
    [Crossref]
  19. W. Jaschinski, M. König, T. M. Mekontso, A. Ohlendorf, and M. Welscher, “Comparison of progressive addition lenses for general purpose and for computer vision: an office field study,” Clin. Exp. Optom. 98(3), 234–243 (2015).
    [Crossref] [PubMed]
  20. B. Cagnie, K. De Meulemeester, L. Saeys, L. Danneels, L. Vandenbulcke, and B. Castelein, “The impact of different lenses on visual and musculoskeletal complaints in VDU workers with work-related neck complaints: a randomized controlled trial,” Environ. Health Prev. Med. 22(1), 1–8 (2017).
    [Crossref]
  21. J. E. Sheedy, “Progressive addition lenses–matching the specific lens to patient needs,” Optometry 75(2), 83–102 (2004).
    [Crossref] [PubMed]
  22. R. Graham, “A variable focus lens and its uses,” J. Opt. Soc. Am. 30(11), 560–563 (1940).
    [Crossref]
  23. J. D. Silver, C. Miksovsky, M. Newbery, and A. Robertson, “Variable focus lens,” WIPO patentWO/2007/049058 (May3, 2007).
  24. S. Kurtin and S. Epstein, “Spectacles using variable focal length lenses which have an arbitrarily shaped periphery,” WIPO patentWO/1995/027912 (October19, 1995).
  25. N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25(2), 1221–1233 (2017).
    [Crossref] [PubMed]
  26. L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid-membrane-liquid structure,” Appl. Phys. Lett. 102, 131111 (2013).
    [Crossref]
  27. Y. Lo and D. Zhang, “Fluidic adaptive lens,” WIPO patentWO/2006/011937 (February2, 2006).
  28. S. Kuiper and B. H. W. Hendriks, “Variable focus spectacles,” WIPO patentWO/2005/003842 (January13, 2005).
  29. L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. patent3,305,294 (February21, 1967).
  30. J. Nisper and R. E. Stevens, “Variable-power lens,” WIPO patentWO/2014/124707 (August21, 2014).
  31. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
    [Crossref]
  32. G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
    [Crossref] [PubMed]
  33. Y. Yadin, A. Alon, and Y. Haddad, “Lenses with electrically-tunable power and alignment,” WIPO patentWO/2014/049577 (April3, 2014).
  34. M. Millodot and S. Millodot, “Presbyopia correction and the accommodation in reserve,” Ophthalmic Physiol. Opt. 9(2), 126–132 (1989).
    [Crossref] [PubMed]
  35. D. Meslin, Practical refraction (Essilor Academy Europe, 2008).
  36. J. S. Wolffsohn, A. L. Sheppard, S. Vakani, and L. N. Davies, “Accommodative amplitude required for sustained near work,” Ophthalmic Physiol. Opt. 31(5), 480–486 (2011).
    [Crossref] [PubMed]
  37. H. W. Hofstetter, “A longitudinal study of amplitude changes in presbyopia,” Am. J. Optom. Arch. Am. Acad. Optom. 42(1), 3–8 (1965).
    [Crossref] [PubMed]
  38. W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91(3), 207–225 (2008).
    [Crossref] [PubMed]
  39. E. Chirre, P. Prieto, and P. Artal, “Dynamics of the near response under natural viewing conditions with an open-view sensor,” Biomed. Opt. Express 6(10), 4200–4211 (2015).
    [Crossref] [PubMed]
  40. G. Heron and B. Winn, “Binocular accommodation reaction and response times for normal observers,” Ophthalmic Physiol. Opt. 9(2), 176–183 (1989).
    [Crossref] [PubMed]
  41. M. Bass, C. De Cusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of optics, 3 edition, volume III (McGraw Hill Professional, 2009).
  42. The 2015 digital eye strain report, “Hindsight is 20/20/20: protect your eyes from digital devices” (The Vision Council, 2015). https://www.thevisioncouncil.org/blog/2015-digital-eye-strain-report-released
  43. D. Paillé, “Impact of new digital technologies on posture,” Points de Vue 72, 22–30 (2015).
  44. W. Jaschinski, “The proximity-fixation-disparity curve and the preferred viewing distance at a visual display as an indicator of near vision fatigue,” Optom. Vis. Sci. 79(3), 158–169 (2002).
    [Crossref] [PubMed]
  45. D. Ankrum, “Viewing distance at computer workstations,” Workplace Ergonomics 2(5), 10–13 (1996).
  46. D. J. Meister and J. E. Sheedy, Introduction to ophthalmic optics (SOLA Optical, 1999).
  47. M. Cohen, O. Antonyshyn, and A. Michaeli-Cohen, “Spectacle-induced nasal dermochalasis-a new entity,” Eur. J. Plast. Surg. 26(7), 335–337 (2003).
    [Crossref]
  48. G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49(1B), 253–261 (1971).
    [Crossref]
  49. M. S. Ober, D. Dermody, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
    [Crossref] [PubMed]
  50. B. Berge, “Electrostatically actuated device,” WIPO patentWO/2018/041866 (March8, 2018).
  51. Q. Lavigne, N. Terrier, G. Noetinger, D.-D. Tran, S. Kulifaj, P. Kleimann, P. Pittet, and B. Berge, “Novel concept of a low-power high-volume microfluidic actuator: theory of operation and experimental characterization,” Sens. Actuator A-Phys. (to be published).
  52. N. R. Fong, P. Berini, and R. N. Tait, “Mechanical properties of thin free-standing CYTOP membranes,” J. Microelectromech. Syst. 19(3), 700–705 (2010).
    [Crossref]
  53. J.-L. Wang, T.-Y. Chen, Y.-H. Chien, and G.-D. J. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express 17(8), 6268–6274 (2009).
    [Crossref] [PubMed]
  54. B. Berge, “Ophthalmic lens with dynamic focus control,” WIPO patentWO/2018/007425 (January11, 2018).
  55. J. Jarosz, Q. Lavigne, N. Molliex, G. Chenon, G. Noetinger, D.-D. Tran, and B. Berge, “Experimental optical analysis of an original presbyopia-correcting variable focus lens,” Investig. Ophthalmol. Vis. Sci. 59(9), 255 (2018).
  56. P. A. Aitsebaomo and J. A. Afanador, “Contribution of eye and head movement for a near task,” Am. J. Optom. Physiol. Opt. 59(11), 863–869 (1982).
    [Crossref] [PubMed]

2018 (5)

T. R. Fricke, N. Tahhan, S. Resnikoff, E. Papas, A. Burnett, S. M. Ho, T. Naduvilath, and K. S. Naidoo, “Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling,” Ophthalmology 125(10), 1492–1499 (2018).
[Crossref] [PubMed]

Y. Benard, A. Seidemann, H. Altheimer, A. Welk, and G. Esser, “Reducing prismatic imbalance at near in progressive addition lenses,” Investig. Ophthalmol. Vis. Sci. 59(9), 2967 (2018).

E. Chamorro, J. M. Cleva, P. Concepcion, M. S. Subero, and J. Alonso, “Lens design techniques to improve satisfaction in free-form progressive addition lens users,” JOJ Ophthalmol. 6(3), 555688 (2018).
[Crossref]

M. S. Ober, D. Dermody, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref] [PubMed]

J. Jarosz, Q. Lavigne, N. Molliex, G. Chenon, G. Noetinger, D.-D. Tran, and B. Berge, “Experimental optical analysis of an original presbyopia-correcting variable focus lens,” Investig. Ophthalmol. Vis. Sci. 59(9), 255 (2018).

2017 (4)

B. Cagnie, K. De Meulemeester, L. Saeys, L. Danneels, L. Vandenbulcke, and B. Castelein, “The impact of different lenses on visual and musculoskeletal complaints in VDU workers with work-related neck complaints: a randomized controlled trial,” Environ. Health Prev. Med. 22(1), 1–8 (2017).
[Crossref]

N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25(2), 1221–1233 (2017).
[Crossref] [PubMed]

J. Forkel, J. L. Reiniger, A. Muschielok, A. Welk, A. Seidemann, and P. Baumbach, “Personalized progressive addition lenses: correlation between performance and design,” Optom. Vis. Sci. 94(2), 208–218 (2017).
[Crossref]

T. L. Alvarez, E. H. Kim, and B. Granger-Donetti, “Adaptation to progressive additive lenses: potential factors to consider,” Sci. Rep. 7, 2529 (2017).
[Crossref] [PubMed]

2015 (3)

W. Jaschinski, M. König, T. M. Mekontso, A. Ohlendorf, and M. Welscher, “Comparison of progressive addition lenses for general purpose and for computer vision: an office field study,” Clin. Exp. Optom. 98(3), 234–243 (2015).
[Crossref] [PubMed]

E. Chirre, P. Prieto, and P. Artal, “Dynamics of the near response under natural viewing conditions with an open-view sensor,” Biomed. Opt. Express 6(10), 4200–4211 (2015).
[Crossref] [PubMed]

D. Paillé, “Impact of new digital technologies on posture,” Points de Vue 72, 22–30 (2015).

2014 (1)

W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34(1), 8–29 (2014).
[Crossref]

2013 (1)

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid-membrane-liquid structure,” Appl. Phys. Lett. 102, 131111 (2013).
[Crossref]

2011 (2)

J. S. Wolffsohn, A. L. Sheppard, S. Vakani, and L. N. Davies, “Accommodative amplitude required for sustained near work,” Ophthalmic Physiol. Opt. 31(5), 480–486 (2011).
[Crossref] [PubMed]

S. C. Han, A. D. Graham, and M. C. Lin, “Clinical assessment of a customized free-form progressive add lens spectacle,” Optom. Vis. Sci. 88(2), 234–243 (2011).
[Crossref] [PubMed]

2010 (1)

N. R. Fong, P. Berini, and R. N. Tait, “Mechanical properties of thin free-standing CYTOP membranes,” J. Microelectromech. Syst. 19(3), 700–705 (2010).
[Crossref]

2009 (1)

2008 (4)

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 1: Design and development of progressive lenses,” Clin. Exp. Optom. 91(3), 240–250 (2008).
[Crossref]

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91(3), 251–264 (2008).
[Crossref]

B. P. Luo, G. C. Brown, S. C. Luo, and M. M. Brown, “The quality of life associated with presbyopia,” Am. J. Ophthalmol. 145(4), 618–622 (2008).
[Crossref] [PubMed]

W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91(3), 207–225 (2008).
[Crossref] [PubMed]

2007 (1)

C. Y. Chen, J. E. Keeffe, P. Garoufalis, F. M. A. Islam, M. Dirani, T. A. Couper, H. R. Taylor, and P. N. Baird, “Vision-related quality of life comparison for emmetropes, myopes after refractive surgery, and myopes wearing spectacles or contact lenses,” J. Refract. Surg. 23(8), 752–759 (2007).
[Crossref]

2006 (1)

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

2005 (1)

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
[Crossref] [PubMed]

2004 (1)

J. E. Sheedy, “Progressive addition lenses–matching the specific lens to patient needs,” Optometry 75(2), 83–102 (2004).
[Crossref] [PubMed]

2003 (3)

M. Cohen, O. Antonyshyn, and A. Michaeli-Cohen, “Spectacle-induced nasal dermochalasis-a new entity,” Eur. J. Plast. Surg. 26(7), 335–337 (2003).
[Crossref]

Y. Han, K. J. Ciuffreda, A. Selenow, and S. R. Ali, “Dynamic interactions of eye and head movements when reading with single-vision and progressive lenses in a simulated computer-based environment,” Investig. Ophthalmol. Vis. Sci. 44(4), 1534–1545 (2003).
[Crossref]

P. J. McDonnell, P. Lee, K. Spritzer, A. S. Lindblad, and R. D. Hays, “Associations of presbyopia with vision-targeted health-related quality of life,” Arch. Ophthalmol. 121(11), 1577–1581 (2003).
[Crossref]

2002 (1)

W. Jaschinski, “The proximity-fixation-disparity curve and the preferred viewing distance at a visual display as an indicator of near vision fatigue,” Optom. Vis. Sci. 79(3), 158–169 (2002).
[Crossref] [PubMed]

1998 (1)

1996 (1)

D. Ankrum, “Viewing distance at computer workstations,” Workplace Ergonomics 2(5), 10–13 (1996).

1989 (2)

G. Heron and B. Winn, “Binocular accommodation reaction and response times for normal observers,” Ophthalmic Physiol. Opt. 9(2), 176–183 (1989).
[Crossref] [PubMed]

M. Millodot and S. Millodot, “Presbyopia correction and the accommodation in reserve,” Ophthalmic Physiol. Opt. 9(2), 126–132 (1989).
[Crossref] [PubMed]

1982 (1)

P. A. Aitsebaomo and J. A. Afanador, “Contribution of eye and head movement for a near task,” Am. J. Optom. Physiol. Opt. 59(11), 863–869 (1982).
[Crossref] [PubMed]

1971 (1)

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49(1B), 253–261 (1971).
[Crossref]

1965 (1)

H. W. Hofstetter, “A longitudinal study of amplitude changes in presbyopia,” Am. J. Optom. Arch. Am. Acad. Optom. 42(1), 3–8 (1965).
[Crossref] [PubMed]

1956 (1)

D. Hamasaki, J. Ong, and E. Marg, “The amplitude of accommodation in presbyopia,” Am. J. Optom. Arch. Am. Acad. Optom. 33(1), 3–14 (1956).
[Crossref] [PubMed]

1940 (1)

1922 (1)

A. Duane, “Studies in monocular and binocular accommodation, with their clinical application,” Trans. Am. Ophthalmol. Soc. 20, 132–157 (1922).
[PubMed]

Afanador, J. A.

P. A. Aitsebaomo and J. A. Afanador, “Contribution of eye and head movement for a near task,” Am. J. Optom. Physiol. Opt. 59(11), 863–869 (1982).
[Crossref] [PubMed]

Aitsebaomo, P. A.

P. A. Aitsebaomo and J. A. Afanador, “Contribution of eye and head movement for a near task,” Am. J. Optom. Physiol. Opt. 59(11), 863–869 (1982).
[Crossref] [PubMed]

Ali, S. R.

Y. Han, K. J. Ciuffreda, A. Selenow, and S. R. Ali, “Dynamic interactions of eye and head movements when reading with single-vision and progressive lenses in a simulated computer-based environment,” Investig. Ophthalmol. Vis. Sci. 44(4), 1534–1545 (2003).
[Crossref]

Alon, A.

Y. Yadin, A. Alon, and Y. Haddad, “Lenses with electrically-tunable power and alignment,” WIPO patentWO/2014/049577 (April3, 2014).

Alonso, J.

E. Chamorro, J. M. Cleva, P. Concepcion, M. S. Subero, and J. Alonso, “Lens design techniques to improve satisfaction in free-form progressive addition lens users,” JOJ Ophthalmol. 6(3), 555688 (2018).
[Crossref]

Altheimer, H.

Y. Benard, A. Seidemann, H. Altheimer, A. Welk, and G. Esser, “Reducing prismatic imbalance at near in progressive addition lenses,” Investig. Ophthalmol. Vis. Sci. 59(9), 2967 (2018).

Alvarez, L. W.

L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. patent3,305,294 (February21, 1967).

Alvarez, T. L.

T. L. Alvarez, E. H. Kim, and B. Granger-Donetti, “Adaptation to progressive additive lenses: potential factors to consider,” Sci. Rep. 7, 2529 (2017).
[Crossref] [PubMed]

Amiot, F.

M. S. Ober, D. Dermody, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref] [PubMed]

Ankrum, D.

D. Ankrum, “Viewing distance at computer workstations,” Workplace Ergonomics 2(5), 10–13 (1996).

Antonyshyn, O.

M. Cohen, O. Antonyshyn, and A. Michaeli-Cohen, “Spectacle-induced nasal dermochalasis-a new entity,” Eur. J. Plast. Surg. 26(7), 335–337 (2003).
[Crossref]

Artal, P.

Äyräs, P.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

Baird, P. N.

C. Y. Chen, J. E. Keeffe, P. Garoufalis, F. M. A. Islam, M. Dirani, T. A. Couper, H. R. Taylor, and P. N. Baird, “Vision-related quality of life comparison for emmetropes, myopes after refractive surgery, and myopes wearing spectacles or contact lenses,” J. Refract. Surg. 23(8), 752–759 (2007).
[Crossref]

Banerjee, A.

Bass, M.

M. Bass, C. De Cusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of optics, 3 edition, volume III (McGraw Hill Professional, 2009).

Baumbach, P.

J. Forkel, J. L. Reiniger, A. Muschielok, A. Welk, A. Seidemann, and P. Baumbach, “Personalized progressive addition lenses: correlation between performance and design,” Optom. Vis. Sci. 94(2), 208–218 (2017).
[Crossref]

Bellin, J. L. S.

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49(1B), 253–261 (1971).
[Crossref]

Benard, Y.

Y. Benard, A. Seidemann, H. Altheimer, A. Welk, and G. Esser, “Reducing prismatic imbalance at near in progressive addition lenses,” Investig. Ophthalmol. Vis. Sci. 59(9), 2967 (2018).

Berge, B.

J. Jarosz, Q. Lavigne, N. Molliex, G. Chenon, G. Noetinger, D.-D. Tran, and B. Berge, “Experimental optical analysis of an original presbyopia-correcting variable focus lens,” Investig. Ophthalmol. Vis. Sci. 59(9), 255 (2018).

M. S. Ober, D. Dermody, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref] [PubMed]

B. Berge, “Electrostatically actuated device,” WIPO patentWO/2018/041866 (March8, 2018).

Q. Lavigne, N. Terrier, G. Noetinger, D.-D. Tran, S. Kulifaj, P. Kleimann, P. Pittet, and B. Berge, “Novel concept of a low-power high-volume microfluidic actuator: theory of operation and experimental characterization,” Sens. Actuator A-Phys. (to be published).

B. Berge, “Ophthalmic lens with dynamic focus control,” WIPO patentWO/2018/007425 (January11, 2018).

Berini, P.

N. R. Fong, P. Berini, and R. N. Tait, “Mechanical properties of thin free-standing CYTOP membranes,” J. Microelectromech. Syst. 19(3), 700–705 (2010).
[Crossref]

Brown, G. C.

B. P. Luo, G. C. Brown, S. C. Luo, and M. M. Brown, “The quality of life associated with presbyopia,” Am. J. Ophthalmol. 145(4), 618–622 (2008).
[Crossref] [PubMed]

Brown, M. M.

B. P. Luo, G. C. Brown, S. C. Luo, and M. M. Brown, “The quality of life associated with presbyopia,” Am. J. Ophthalmol. 145(4), 618–622 (2008).
[Crossref] [PubMed]

Burger, B.

M. S. Ober, D. Dermody, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref] [PubMed]

Burnett, A.

T. R. Fricke, N. Tahhan, S. Resnikoff, E. Papas, A. Burnett, S. M. Ho, T. Naduvilath, and K. S. Naidoo, “Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling,” Ophthalmology 125(10), 1492–1499 (2018).
[Crossref] [PubMed]

Cagnie, B.

B. Cagnie, K. De Meulemeester, L. Saeys, L. Danneels, L. Vandenbulcke, and B. Castelein, “The impact of different lenses on visual and musculoskeletal complaints in VDU workers with work-related neck complaints: a randomized controlled trial,” Environ. Health Prev. Med. 22(1), 1–8 (2017).
[Crossref]

Campbell, C.

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
[Crossref] [PubMed]

Castelein, B.

B. Cagnie, K. De Meulemeester, L. Saeys, L. Danneels, L. Vandenbulcke, and B. Castelein, “The impact of different lenses on visual and musculoskeletal complaints in VDU workers with work-related neck complaints: a randomized controlled trial,” Environ. Health Prev. Med. 22(1), 1–8 (2017).
[Crossref]

Chamorro, E.

E. Chamorro, J. M. Cleva, P. Concepcion, M. S. Subero, and J. Alonso, “Lens design techniques to improve satisfaction in free-form progressive addition lens users,” JOJ Ophthalmol. 6(3), 555688 (2018).
[Crossref]

Charman, W. N.

W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34(1), 8–29 (2014).
[Crossref]

W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91(3), 207–225 (2008).
[Crossref] [PubMed]

Chen, C. Y.

C. Y. Chen, J. E. Keeffe, P. Garoufalis, F. M. A. Islam, M. Dirani, T. A. Couper, H. R. Taylor, and P. N. Baird, “Vision-related quality of life comparison for emmetropes, myopes after refractive surgery, and myopes wearing spectacles or contact lenses,” J. Refract. Surg. 23(8), 752–759 (2007).
[Crossref]

Chen, T.-Y.

Chenon, G.

J. Jarosz, Q. Lavigne, N. Molliex, G. Chenon, G. Noetinger, D.-D. Tran, and B. Berge, “Experimental optical analysis of an original presbyopia-correcting variable focus lens,” Investig. Ophthalmol. Vis. Sci. 59(9), 255 (2018).

Chien, Y.-H.

Chirre, E.

Ciuffreda, K. J.

Y. Han, K. J. Ciuffreda, A. Selenow, and S. R. Ali, “Dynamic interactions of eye and head movements when reading with single-vision and progressive lenses in a simulated computer-based environment,” Investig. Ophthalmol. Vis. Sci. 44(4), 1534–1545 (2003).
[Crossref]

Cleva, J. M.

E. Chamorro, J. M. Cleva, P. Concepcion, M. S. Subero, and J. Alonso, “Lens design techniques to improve satisfaction in free-form progressive addition lens users,” JOJ Ophthalmol. 6(3), 555688 (2018).
[Crossref]

Cohen, M.

M. Cohen, O. Antonyshyn, and A. Michaeli-Cohen, “Spectacle-induced nasal dermochalasis-a new entity,” Eur. J. Plast. Surg. 26(7), 335–337 (2003).
[Crossref]

Concepcion, P.

E. Chamorro, J. M. Cleva, P. Concepcion, M. S. Subero, and J. Alonso, “Lens design techniques to improve satisfaction in free-form progressive addition lens users,” JOJ Ophthalmol. 6(3), 555688 (2018).
[Crossref]

Couper, T. A.

C. Y. Chen, J. E. Keeffe, P. Garoufalis, F. M. A. Islam, M. Dirani, T. A. Couper, H. R. Taylor, and P. N. Baird, “Vision-related quality of life comparison for emmetropes, myopes after refractive surgery, and myopes wearing spectacles or contact lenses,” J. Refract. Surg. 23(8), 752–759 (2007).
[Crossref]

Danneels, L.

B. Cagnie, K. De Meulemeester, L. Saeys, L. Danneels, L. Vandenbulcke, and B. Castelein, “The impact of different lenses on visual and musculoskeletal complaints in VDU workers with work-related neck complaints: a randomized controlled trial,” Environ. Health Prev. Med. 22(1), 1–8 (2017).
[Crossref]

Davies, L. N.

J. S. Wolffsohn, A. L. Sheppard, S. Vakani, and L. N. Davies, “Accommodative amplitude required for sustained near work,” Ophthalmic Physiol. Opt. 31(5), 480–486 (2011).
[Crossref] [PubMed]

De Cusatis, C.

M. Bass, C. De Cusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of optics, 3 edition, volume III (McGraw Hill Professional, 2009).

De Meulemeester, K.

B. Cagnie, K. De Meulemeester, L. Saeys, L. Danneels, L. Vandenbulcke, and B. Castelein, “The impact of different lenses on visual and musculoskeletal complaints in VDU workers with work-related neck complaints: a randomized controlled trial,” Environ. Health Prev. Med. 22(1), 1–8 (2017).
[Crossref]

Dermody, D.

M. S. Ober, D. Dermody, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref] [PubMed]

Dirani, M.

C. Y. Chen, J. E. Keeffe, P. Garoufalis, F. M. A. Islam, M. Dirani, T. A. Couper, H. R. Taylor, and P. N. Baird, “Vision-related quality of life comparison for emmetropes, myopes after refractive surgery, and myopes wearing spectacles or contact lenses,” J. Refract. Surg. 23(8), 752–759 (2007).
[Crossref]

Donders, F. C.

F. C. Donders, On the anomalies of accommodation and refraction of the eye (The New Sydenham Society, 1864).

Duane, A.

A. Duane, “Studies in monocular and binocular accommodation, with their clinical application,” Trans. Am. Ophthalmol. Soc. 20, 132–157 (1922).
[PubMed]

Enoch, J.

M. Bass, C. De Cusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of optics, 3 edition, volume III (McGraw Hill Professional, 2009).

Epstein, S.

S. Kurtin and S. Epstein, “Spectacles using variable focal length lenses which have an arbitrarily shaped periphery,” WIPO patentWO/1995/027912 (October19, 1995).

Esser, G.

Y. Benard, A. Seidemann, H. Altheimer, A. Welk, and G. Esser, “Reducing prismatic imbalance at near in progressive addition lenses,” Investig. Ophthalmol. Vis. Sci. 59(9), 2967 (2018).

Fisher, S. W.

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91(3), 251–264 (2008).
[Crossref]

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 1: Design and development of progressive lenses,” Clin. Exp. Optom. 91(3), 240–250 (2008).
[Crossref]

Fong, N. R.

N. R. Fong, P. Berini, and R. N. Tait, “Mechanical properties of thin free-standing CYTOP membranes,” J. Microelectromech. Syst. 19(3), 700–705 (2010).
[Crossref]

Forkel, J.

J. Forkel, J. L. Reiniger, A. Muschielok, A. Welk, A. Seidemann, and P. Baumbach, “Personalized progressive addition lenses: correlation between performance and design,” Optom. Vis. Sci. 94(2), 208–218 (2017).
[Crossref]

Fricke, T. R.

T. R. Fricke, N. Tahhan, S. Resnikoff, E. Papas, A. Burnett, S. M. Ho, T. Naduvilath, and K. S. Naidoo, “Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling,” Ophthalmology 125(10), 1492–1499 (2018).
[Crossref] [PubMed]

Garoufalis, P.

C. Y. Chen, J. E. Keeffe, P. Garoufalis, F. M. A. Islam, M. Dirani, T. A. Couper, H. R. Taylor, and P. N. Baird, “Vision-related quality of life comparison for emmetropes, myopes after refractive surgery, and myopes wearing spectacles or contact lenses,” J. Refract. Surg. 23(8), 752–759 (2007).
[Crossref]

Giridhar, M. S.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

Graham, A. D.

S. C. Han, A. D. Graham, and M. C. Lin, “Clinical assessment of a customized free-form progressive add lens spectacle,” Optom. Vis. Sci. 88(2), 234–243 (2011).
[Crossref] [PubMed]

Graham, R.

Granger-Donetti, B.

T. L. Alvarez, E. H. Kim, and B. Granger-Donetti, “Adaptation to progressive additive lenses: potential factors to consider,” Sci. Rep. 7, 2529 (2017).
[Crossref] [PubMed]

Guralnik, I. R.

Haddad, Y.

Y. Yadin, A. Alon, and Y. Haddad, “Lenses with electrically-tunable power and alignment,” WIPO patentWO/2014/049577 (April3, 2014).

Haddock, J. N.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

Hamasaki, D.

D. Hamasaki, J. Ong, and E. Marg, “The amplitude of accommodation in presbyopia,” Am. J. Optom. Arch. Am. Acad. Optom. 33(1), 3–14 (1956).
[Crossref] [PubMed]

Han, S. C.

S. C. Han, A. D. Graham, and M. C. Lin, “Clinical assessment of a customized free-form progressive add lens spectacle,” Optom. Vis. Sci. 88(2), 234–243 (2011).
[Crossref] [PubMed]

Han, Y.

Y. Han, K. J. Ciuffreda, A. Selenow, and S. R. Ali, “Dynamic interactions of eye and head movements when reading with single-vision and progressive lenses in a simulated computer-based environment,” Investig. Ophthalmol. Vis. Sci. 44(4), 1534–1545 (2003).
[Crossref]

Hasan, N.

Hayes, J. R.

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
[Crossref] [PubMed]

Hays, R. D.

P. J. McDonnell, P. Lee, K. Spritzer, A. S. Lindblad, and R. D. Hays, “Associations of presbyopia with vision-targeted health-related quality of life,” Arch. Ophthalmol. 121(11), 1577–1581 (2003).
[Crossref]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable focus spectacles,” WIPO patentWO/2005/003842 (January13, 2005).

Heron, G.

G. Heron and B. Winn, “Binocular accommodation reaction and response times for normal observers,” Ophthalmic Physiol. Opt. 9(2), 176–183 (1989).
[Crossref] [PubMed]

Ho, S. M.

T. R. Fricke, N. Tahhan, S. Resnikoff, E. Papas, A. Burnett, S. M. Ho, T. Naduvilath, and K. S. Naidoo, “Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling,” Ophthalmology 125(10), 1492–1499 (2018).
[Crossref] [PubMed]

Hofstetter, H. W.

H. W. Hofstetter, “A longitudinal study of amplitude changes in presbyopia,” Am. J. Optom. Arch. Am. Acad. Optom. 42(1), 3–8 (1965).
[Crossref] [PubMed]

Honkanen, S.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

Ishikawa, M.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid-membrane-liquid structure,” Appl. Phys. Lett. 102, 131111 (2013).
[Crossref]

Islam, F. M. A.

C. Y. Chen, J. E. Keeffe, P. Garoufalis, F. M. A. Islam, M. Dirani, T. A. Couper, H. R. Taylor, and P. N. Baird, “Vision-related quality of life comparison for emmetropes, myopes after refractive surgery, and myopes wearing spectacles or contact lenses,” J. Refract. Surg. 23(8), 752–759 (2007).
[Crossref]

Jarosz, J.

J. Jarosz, Q. Lavigne, N. Molliex, G. Chenon, G. Noetinger, D.-D. Tran, and B. Berge, “Experimental optical analysis of an original presbyopia-correcting variable focus lens,” Investig. Ophthalmol. Vis. Sci. 59(9), 255 (2018).

Jaschinski, W.

W. Jaschinski, M. König, T. M. Mekontso, A. Ohlendorf, and M. Welscher, “Comparison of progressive addition lenses for general purpose and for computer vision: an office field study,” Clin. Exp. Optom. 98(3), 234–243 (2015).
[Crossref] [PubMed]

W. Jaschinski, “The proximity-fixation-disparity curve and the preferred viewing distance at a visual display as an indicator of near vision fatigue,” Optom. Vis. Sci. 79(3), 158–169 (2002).
[Crossref] [PubMed]

Keeffe, J. E.

C. Y. Chen, J. E. Keeffe, P. Garoufalis, F. M. A. Islam, M. Dirani, T. A. Couper, H. R. Taylor, and P. N. Baird, “Vision-related quality of life comparison for emmetropes, myopes after refractive surgery, and myopes wearing spectacles or contact lenses,” J. Refract. Surg. 23(8), 752–759 (2007).
[Crossref]

Kim, E. H.

T. L. Alvarez, E. H. Kim, and B. Granger-Donetti, “Adaptation to progressive additive lenses: potential factors to consider,” Sci. Rep. 7, 2529 (2017).
[Crossref] [PubMed]

Kim, H.

King-Smith, E.

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
[Crossref] [PubMed]

Kippelen, B.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

Kleimann, P.

Q. Lavigne, N. Terrier, G. Noetinger, D.-D. Tran, S. Kulifaj, P. Kleimann, P. Pittet, and B. Berge, “Novel concept of a low-power high-volume microfluidic actuator: theory of operation and experimental characterization,” Sens. Actuator A-Phys. (to be published).

Knollman, G. C.

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49(1B), 253–261 (1971).
[Crossref]

König, M.

W. Jaschinski, M. König, T. M. Mekontso, A. Ohlendorf, and M. Welscher, “Comparison of progressive addition lenses for general purpose and for computer vision: an office field study,” Clin. Exp. Optom. 98(3), 234–243 (2015).
[Crossref] [PubMed]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable focus spectacles,” WIPO patentWO/2005/003842 (January13, 2005).

Kulifaj, S.

Q. Lavigne, N. Terrier, G. Noetinger, D.-D. Tran, S. Kulifaj, P. Kleimann, P. Pittet, and B. Berge, “Novel concept of a low-power high-volume microfluidic actuator: theory of operation and experimental characterization,” Sens. Actuator A-Phys. (to be published).

Kurtin, S.

S. Kurtin and S. Epstein, “Spectacles using variable focal length lenses which have an arbitrarily shaped periphery,” WIPO patentWO/1995/027912 (October19, 1995).

Lakshminarayanan, V.

M. Bass, C. De Cusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of optics, 3 edition, volume III (McGraw Hill Professional, 2009).

Lavigne, Q.

J. Jarosz, Q. Lavigne, N. Molliex, G. Chenon, G. Noetinger, D.-D. Tran, and B. Berge, “Experimental optical analysis of an original presbyopia-correcting variable focus lens,” Investig. Ophthalmol. Vis. Sci. 59(9), 255 (2018).

Q. Lavigne, N. Terrier, G. Noetinger, D.-D. Tran, S. Kulifaj, P. Kleimann, P. Pittet, and B. Berge, “Novel concept of a low-power high-volume microfluidic actuator: theory of operation and experimental characterization,” Sens. Actuator A-Phys. (to be published).

Lee, P.

P. J. McDonnell, P. Lee, K. Spritzer, A. S. Lindblad, and R. D. Hays, “Associations of presbyopia with vision-targeted health-related quality of life,” Arch. Ophthalmol. 121(11), 1577–1581 (2003).
[Crossref]

Li, G.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

M. Bass, C. De Cusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of optics, 3 edition, volume III (McGraw Hill Professional, 2009).

Lin, M. C.

S. C. Han, A. D. Graham, and M. C. Lin, “Clinical assessment of a customized free-form progressive add lens spectacle,” Optom. Vis. Sci. 88(2), 234–243 (2011).
[Crossref] [PubMed]

Lindblad, A. S.

P. J. McDonnell, P. Lee, K. Spritzer, A. S. Lindblad, and R. D. Hays, “Associations of presbyopia with vision-targeted health-related quality of life,” Arch. Ophthalmol. 121(11), 1577–1581 (2003).
[Crossref]

Lo, Y.

Y. Lo and D. Zhang, “Fluidic adaptive lens,” WIPO patentWO/2006/011937 (February2, 2006).

Loktev, M. Y.

Luo, B. P.

B. P. Luo, G. C. Brown, S. C. Luo, and M. M. Brown, “The quality of life associated with presbyopia,” Am. J. Ophthalmol. 145(4), 618–622 (2008).
[Crossref] [PubMed]

Luo, S. C.

B. P. Luo, G. C. Brown, S. C. Luo, and M. M. Brown, “The quality of life associated with presbyopia,” Am. J. Ophthalmol. 145(4), 618–622 (2008).
[Crossref] [PubMed]

MacDonald, C.

M. Bass, C. De Cusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of optics, 3 edition, volume III (McGraw Hill Professional, 2009).

Mahajan, V.

M. Bass, C. De Cusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of optics, 3 edition, volume III (McGraw Hill Professional, 2009).

Maillard, M.

M. S. Ober, D. Dermody, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref] [PubMed]

Malet, G.

M. S. Ober, D. Dermody, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref] [PubMed]

Marg, E.

D. Hamasaki, J. Ong, and E. Marg, “The amplitude of accommodation in presbyopia,” Am. J. Optom. Arch. Am. Acad. Optom. 33(1), 3–14 (1956).
[Crossref] [PubMed]

Mastrangelo, C. H.

Mathine, D. L.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

McDonnell, P. J.

P. J. McDonnell, P. Lee, K. Spritzer, A. S. Lindblad, and R. D. Hays, “Associations of presbyopia with vision-targeted health-related quality of life,” Arch. Ophthalmol. 121(11), 1577–1581 (2003).
[Crossref]

Meister, D. J.

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91(3), 251–264 (2008).
[Crossref]

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 1: Design and development of progressive lenses,” Clin. Exp. Optom. 91(3), 240–250 (2008).
[Crossref]

D. J. Meister and J. E. Sheedy, Introduction to ophthalmic optics (SOLA Optical, 1999).

Mekontso, T. M.

W. Jaschinski, M. König, T. M. Mekontso, A. Ohlendorf, and M. Welscher, “Comparison of progressive addition lenses for general purpose and for computer vision: an office field study,” Clin. Exp. Optom. 98(3), 234–243 (2015).
[Crossref] [PubMed]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

Meslin, D.

D. Meslin, Practical refraction (Essilor Academy Europe, 2008).

Michaeli-Cohen, A.

M. Cohen, O. Antonyshyn, and A. Michaeli-Cohen, “Spectacle-induced nasal dermochalasis-a new entity,” Eur. J. Plast. Surg. 26(7), 335–337 (2003).
[Crossref]

Miksovsky, C.

J. D. Silver, C. Miksovsky, M. Newbery, and A. Robertson, “Variable focus lens,” WIPO patentWO/2007/049058 (May3, 2007).

Millodot, M.

M. Millodot and S. Millodot, “Presbyopia correction and the accommodation in reserve,” Ophthalmic Physiol. Opt. 9(2), 126–132 (1989).
[Crossref] [PubMed]

Millodot, S.

M. Millodot and S. Millodot, “Presbyopia correction and the accommodation in reserve,” Ophthalmic Physiol. Opt. 9(2), 126–132 (1989).
[Crossref] [PubMed]

Molliex, N.

J. Jarosz, Q. Lavigne, N. Molliex, G. Chenon, G. Noetinger, D.-D. Tran, and B. Berge, “Experimental optical analysis of an original presbyopia-correcting variable focus lens,” Investig. Ophthalmol. Vis. Sci. 59(9), 255 (2018).

Muschielok, A.

J. Forkel, J. L. Reiniger, A. Muschielok, A. Welk, A. Seidemann, and P. Baumbach, “Personalized progressive addition lenses: correlation between performance and design,” Optom. Vis. Sci. 94(2), 208–218 (2017).
[Crossref]

Naduvilath, T.

T. R. Fricke, N. Tahhan, S. Resnikoff, E. Papas, A. Burnett, S. M. Ho, T. Naduvilath, and K. S. Naidoo, “Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling,” Ophthalmology 125(10), 1492–1499 (2018).
[Crossref] [PubMed]

Naidoo, K. S.

T. R. Fricke, N. Tahhan, S. Resnikoff, E. Papas, A. Burnett, S. M. Ho, T. Naduvilath, and K. S. Naidoo, “Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling,” Ophthalmology 125(10), 1492–1499 (2018).
[Crossref] [PubMed]

Naumov, A. F.

Newbery, M.

J. D. Silver, C. Miksovsky, M. Newbery, and A. Robertson, “Variable focus lens,” WIPO patentWO/2007/049058 (May3, 2007).

Nisper, J.

J. Nisper and R. E. Stevens, “Variable-power lens,” WIPO patentWO/2014/124707 (August21, 2014).

Noetinger, G.

J. Jarosz, Q. Lavigne, N. Molliex, G. Chenon, G. Noetinger, D.-D. Tran, and B. Berge, “Experimental optical analysis of an original presbyopia-correcting variable focus lens,” Investig. Ophthalmol. Vis. Sci. 59(9), 255 (2018).

Q. Lavigne, N. Terrier, G. Noetinger, D.-D. Tran, S. Kulifaj, P. Kleimann, P. Pittet, and B. Berge, “Novel concept of a low-power high-volume microfluidic actuator: theory of operation and experimental characterization,” Sens. Actuator A-Phys. (to be published).

Ober, M. S.

M. S. Ober, D. Dermody, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref] [PubMed]

Ohlendorf, A.

W. Jaschinski, M. König, T. M. Mekontso, A. Ohlendorf, and M. Welscher, “Comparison of progressive addition lenses for general purpose and for computer vision: an office field study,” Clin. Exp. Optom. 98(3), 234–243 (2015).
[Crossref] [PubMed]

Oku, H.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid-membrane-liquid structure,” Appl. Phys. Lett. 102, 131111 (2013).
[Crossref]

Ong, J.

D. Hamasaki, J. Ong, and E. Marg, “The amplitude of accommodation in presbyopia,” Am. J. Optom. Arch. Am. Acad. Optom. 33(1), 3–14 (1956).
[Crossref] [PubMed]

Paillé, D.

D. Paillé, “Impact of new digital technologies on posture,” Points de Vue 72, 22–30 (2015).

Papas, E.

T. R. Fricke, N. Tahhan, S. Resnikoff, E. Papas, A. Burnett, S. M. Ho, T. Naduvilath, and K. S. Naidoo, “Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling,” Ophthalmology 125(10), 1492–1499 (2018).
[Crossref] [PubMed]

Peyghambarian, N.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

Pittet, P.

Q. Lavigne, N. Terrier, G. Noetinger, D.-D. Tran, S. Kulifaj, P. Kleimann, P. Pittet, and B. Berge, “Novel concept of a low-power high-volume microfluidic actuator: theory of operation and experimental characterization,” Sens. Actuator A-Phys. (to be published).

Prieto, P.

Reiniger, J. L.

J. Forkel, J. L. Reiniger, A. Muschielok, A. Welk, A. Seidemann, and P. Baumbach, “Personalized progressive addition lenses: correlation between performance and design,” Optom. Vis. Sci. 94(2), 208–218 (2017).
[Crossref]

Resnikoff, S.

T. R. Fricke, N. Tahhan, S. Resnikoff, E. Papas, A. Burnett, S. M. Ho, T. Naduvilath, and K. S. Naidoo, “Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling,” Ophthalmology 125(10), 1492–1499 (2018).
[Crossref] [PubMed]

Robertson, A.

J. D. Silver, C. Miksovsky, M. Newbery, and A. Robertson, “Variable focus lens,” WIPO patentWO/2007/049058 (May3, 2007).

Saeys, L.

B. Cagnie, K. De Meulemeester, L. Saeys, L. Danneels, L. Vandenbulcke, and B. Castelein, “The impact of different lenses on visual and musculoskeletal complaints in VDU workers with work-related neck complaints: a randomized controlled trial,” Environ. Health Prev. Med. 22(1), 1–8 (2017).
[Crossref]

Schwiegerling, J.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

Seidemann, A.

Y. Benard, A. Seidemann, H. Altheimer, A. Welk, and G. Esser, “Reducing prismatic imbalance at near in progressive addition lenses,” Investig. Ophthalmol. Vis. Sci. 59(9), 2967 (2018).

J. Forkel, J. L. Reiniger, A. Muschielok, A. Welk, A. Seidemann, and P. Baumbach, “Personalized progressive addition lenses: correlation between performance and design,” Optom. Vis. Sci. 94(2), 208–218 (2017).
[Crossref]

Selenow, A.

Y. Han, K. J. Ciuffreda, A. Selenow, and S. R. Ali, “Dynamic interactions of eye and head movements when reading with single-vision and progressive lenses in a simulated computer-based environment,” Investig. Ophthalmol. Vis. Sci. 44(4), 1534–1545 (2003).
[Crossref]

Sheedy, J. E.

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
[Crossref] [PubMed]

J. E. Sheedy, “Progressive addition lenses–matching the specific lens to patient needs,” Optometry 75(2), 83–102 (2004).
[Crossref] [PubMed]

D. J. Meister and J. E. Sheedy, Introduction to ophthalmic optics (SOLA Optical, 1999).

Sheppard, A. L.

J. S. Wolffsohn, A. L. Sheppard, S. Vakani, and L. N. Davies, “Accommodative amplitude required for sustained near work,” Ophthalmic Physiol. Opt. 31(5), 480–486 (2011).
[Crossref] [PubMed]

Silver, J. D.

J. D. Silver, C. Miksovsky, M. Newbery, and A. Robertson, “Variable focus lens,” WIPO patentWO/2007/049058 (May3, 2007).

Spritzer, K.

P. J. McDonnell, P. Lee, K. Spritzer, A. S. Lindblad, and R. D. Hays, “Associations of presbyopia with vision-targeted health-related quality of life,” Arch. Ophthalmol. 121(11), 1577–1581 (2003).
[Crossref]

Stevens, R. E.

J. Nisper and R. E. Stevens, “Variable-power lens,” WIPO patentWO/2014/124707 (August21, 2014).

Stryland, E. V.

M. Bass, C. De Cusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of optics, 3 edition, volume III (McGraw Hill Professional, 2009).

Su, G.-D. J.

Subero, M. S.

E. Chamorro, J. M. Cleva, P. Concepcion, M. S. Subero, and J. Alonso, “Lens design techniques to improve satisfaction in free-form progressive addition lens users,” JOJ Ophthalmol. 6(3), 555688 (2018).
[Crossref]

Tahhan, N.

T. R. Fricke, N. Tahhan, S. Resnikoff, E. Papas, A. Burnett, S. M. Ho, T. Naduvilath, and K. S. Naidoo, “Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling,” Ophthalmology 125(10), 1492–1499 (2018).
[Crossref] [PubMed]

Tait, R. N.

N. R. Fong, P. Berini, and R. N. Tait, “Mechanical properties of thin free-standing CYTOP membranes,” J. Microelectromech. Syst. 19(3), 700–705 (2010).
[Crossref]

Taylor, H. R.

C. Y. Chen, J. E. Keeffe, P. Garoufalis, F. M. A. Islam, M. Dirani, T. A. Couper, H. R. Taylor, and P. N. Baird, “Vision-related quality of life comparison for emmetropes, myopes after refractive surgery, and myopes wearing spectacles or contact lenses,” J. Refract. Surg. 23(8), 752–759 (2007).
[Crossref]

Terrier, N.

Q. Lavigne, N. Terrier, G. Noetinger, D.-D. Tran, S. Kulifaj, P. Kleimann, P. Pittet, and B. Berge, “Novel concept of a low-power high-volume microfluidic actuator: theory of operation and experimental characterization,” Sens. Actuator A-Phys. (to be published).

Tran, D.-D.

J. Jarosz, Q. Lavigne, N. Molliex, G. Chenon, G. Noetinger, D.-D. Tran, and B. Berge, “Experimental optical analysis of an original presbyopia-correcting variable focus lens,” Investig. Ophthalmol. Vis. Sci. 59(9), 255 (2018).

Q. Lavigne, N. Terrier, G. Noetinger, D.-D. Tran, S. Kulifaj, P. Kleimann, P. Pittet, and B. Berge, “Novel concept of a low-power high-volume microfluidic actuator: theory of operation and experimental characterization,” Sens. Actuator A-Phys. (to be published).

Vakani, S.

J. S. Wolffsohn, A. L. Sheppard, S. Vakani, and L. N. Davies, “Accommodative amplitude required for sustained near work,” Ophthalmic Physiol. Opt. 31(5), 480–486 (2011).
[Crossref] [PubMed]

Valley, P.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

Vandenbulcke, L.

B. Cagnie, K. De Meulemeester, L. Saeys, L. Danneels, L. Vandenbulcke, and B. Castelein, “The impact of different lenses on visual and musculoskeletal complaints in VDU workers with work-related neck complaints: a randomized controlled trial,” Environ. Health Prev. Med. 22(1), 1–8 (2017).
[Crossref]

Vdovin, G.

Wang, J.-L.

Wang, L.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid-membrane-liquid structure,” Appl. Phys. Lett. 102, 131111 (2013).
[Crossref]

Weaver, J. L.

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49(1B), 253–261 (1971).
[Crossref]

Welk, A.

Y. Benard, A. Seidemann, H. Altheimer, A. Welk, and G. Esser, “Reducing prismatic imbalance at near in progressive addition lenses,” Investig. Ophthalmol. Vis. Sci. 59(9), 2967 (2018).

J. Forkel, J. L. Reiniger, A. Muschielok, A. Welk, A. Seidemann, and P. Baumbach, “Personalized progressive addition lenses: correlation between performance and design,” Optom. Vis. Sci. 94(2), 208–218 (2017).
[Crossref]

Welscher, M.

W. Jaschinski, M. König, T. M. Mekontso, A. Ohlendorf, and M. Welscher, “Comparison of progressive addition lenses for general purpose and for computer vision: an office field study,” Clin. Exp. Optom. 98(3), 234–243 (2015).
[Crossref] [PubMed]

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

Winn, B.

G. Heron and B. Winn, “Binocular accommodation reaction and response times for normal observers,” Ophthalmic Physiol. Opt. 9(2), 176–183 (1989).
[Crossref] [PubMed]

Woelfle-Gupta, C.

M. S. Ober, D. Dermody, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref] [PubMed]

Wolffsohn, J. S.

J. S. Wolffsohn, A. L. Sheppard, S. Vakani, and L. N. Davies, “Accommodative amplitude required for sustained near work,” Ophthalmic Physiol. Opt. 31(5), 480–486 (2011).
[Crossref] [PubMed]

Yadin, Y.

Y. Yadin, A. Alon, and Y. Haddad, “Lenses with electrically-tunable power and alignment,” WIPO patentWO/2014/049577 (April3, 2014).

Zhang, D.

Y. Lo and D. Zhang, “Fluidic adaptive lens,” WIPO patentWO/2006/011937 (February2, 2006).

ACS Comb. Sci. (1)

M. S. Ober, D. Dermody, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

B. P. Luo, G. C. Brown, S. C. Luo, and M. M. Brown, “The quality of life associated with presbyopia,” Am. J. Ophthalmol. 145(4), 618–622 (2008).
[Crossref] [PubMed]

Am. J. Optom. Arch. Am. Acad. Optom. (2)

D. Hamasaki, J. Ong, and E. Marg, “The amplitude of accommodation in presbyopia,” Am. J. Optom. Arch. Am. Acad. Optom. 33(1), 3–14 (1956).
[Crossref] [PubMed]

H. W. Hofstetter, “A longitudinal study of amplitude changes in presbyopia,” Am. J. Optom. Arch. Am. Acad. Optom. 42(1), 3–8 (1965).
[Crossref] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

P. A. Aitsebaomo and J. A. Afanador, “Contribution of eye and head movement for a near task,” Am. J. Optom. Physiol. Opt. 59(11), 863–869 (1982).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid-membrane-liquid structure,” Appl. Phys. Lett. 102, 131111 (2013).
[Crossref]

Arch. Ophthalmol. (1)

P. J. McDonnell, P. Lee, K. Spritzer, A. S. Lindblad, and R. D. Hays, “Associations of presbyopia with vision-targeted health-related quality of life,” Arch. Ophthalmol. 121(11), 1577–1581 (2003).
[Crossref]

Biomed. Opt. Express (1)

Clin. Exp. Optom. (4)

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91(3), 251–264 (2008).
[Crossref]

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 1: Design and development of progressive lenses,” Clin. Exp. Optom. 91(3), 240–250 (2008).
[Crossref]

W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91(3), 207–225 (2008).
[Crossref] [PubMed]

W. Jaschinski, M. König, T. M. Mekontso, A. Ohlendorf, and M. Welscher, “Comparison of progressive addition lenses for general purpose and for computer vision: an office field study,” Clin. Exp. Optom. 98(3), 234–243 (2015).
[Crossref] [PubMed]

Environ. Health Prev. Med. (1)

B. Cagnie, K. De Meulemeester, L. Saeys, L. Danneels, L. Vandenbulcke, and B. Castelein, “The impact of different lenses on visual and musculoskeletal complaints in VDU workers with work-related neck complaints: a randomized controlled trial,” Environ. Health Prev. Med. 22(1), 1–8 (2017).
[Crossref]

Eur. J. Plast. Surg. (1)

M. Cohen, O. Antonyshyn, and A. Michaeli-Cohen, “Spectacle-induced nasal dermochalasis-a new entity,” Eur. J. Plast. Surg. 26(7), 335–337 (2003).
[Crossref]

Investig. Ophthalmol. Vis. Sci. (3)

J. Jarosz, Q. Lavigne, N. Molliex, G. Chenon, G. Noetinger, D.-D. Tran, and B. Berge, “Experimental optical analysis of an original presbyopia-correcting variable focus lens,” Investig. Ophthalmol. Vis. Sci. 59(9), 255 (2018).

Y. Benard, A. Seidemann, H. Altheimer, A. Welk, and G. Esser, “Reducing prismatic imbalance at near in progressive addition lenses,” Investig. Ophthalmol. Vis. Sci. 59(9), 2967 (2018).

Y. Han, K. J. Ciuffreda, A. Selenow, and S. R. Ali, “Dynamic interactions of eye and head movements when reading with single-vision and progressive lenses in a simulated computer-based environment,” Investig. Ophthalmol. Vis. Sci. 44(4), 1534–1545 (2003).
[Crossref]

J. Acoust. Soc. Am. (1)

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49(1B), 253–261 (1971).
[Crossref]

J. Microelectromech. Syst. (1)

N. R. Fong, P. Berini, and R. N. Tait, “Mechanical properties of thin free-standing CYTOP membranes,” J. Microelectromech. Syst. 19(3), 700–705 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

J. Refract. Surg. (1)

C. Y. Chen, J. E. Keeffe, P. Garoufalis, F. M. A. Islam, M. Dirani, T. A. Couper, H. R. Taylor, and P. N. Baird, “Vision-related quality of life comparison for emmetropes, myopes after refractive surgery, and myopes wearing spectacles or contact lenses,” J. Refract. Surg. 23(8), 752–759 (2007).
[Crossref]

JOJ Ophthalmol. (1)

E. Chamorro, J. M. Cleva, P. Concepcion, M. S. Subero, and J. Alonso, “Lens design techniques to improve satisfaction in free-form progressive addition lens users,” JOJ Ophthalmol. 6(3), 555688 (2018).
[Crossref]

Ophthalmic Physiol. Opt. (4)

W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34(1), 8–29 (2014).
[Crossref]

M. Millodot and S. Millodot, “Presbyopia correction and the accommodation in reserve,” Ophthalmic Physiol. Opt. 9(2), 126–132 (1989).
[Crossref] [PubMed]

G. Heron and B. Winn, “Binocular accommodation reaction and response times for normal observers,” Ophthalmic Physiol. Opt. 9(2), 176–183 (1989).
[Crossref] [PubMed]

J. S. Wolffsohn, A. L. Sheppard, S. Vakani, and L. N. Davies, “Accommodative amplitude required for sustained near work,” Ophthalmic Physiol. Opt. 31(5), 480–486 (2011).
[Crossref] [PubMed]

Ophthalmology (1)

T. R. Fricke, N. Tahhan, S. Resnikoff, E. Papas, A. Burnett, S. M. Ho, T. Naduvilath, and K. S. Naidoo, “Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling,” Ophthalmology 125(10), 1492–1499 (2018).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Optom. Vis. Sci. (4)

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
[Crossref] [PubMed]

S. C. Han, A. D. Graham, and M. C. Lin, “Clinical assessment of a customized free-form progressive add lens spectacle,” Optom. Vis. Sci. 88(2), 234–243 (2011).
[Crossref] [PubMed]

J. Forkel, J. L. Reiniger, A. Muschielok, A. Welk, A. Seidemann, and P. Baumbach, “Personalized progressive addition lenses: correlation between performance and design,” Optom. Vis. Sci. 94(2), 208–218 (2017).
[Crossref]

W. Jaschinski, “The proximity-fixation-disparity curve and the preferred viewing distance at a visual display as an indicator of near vision fatigue,” Optom. Vis. Sci. 79(3), 158–169 (2002).
[Crossref] [PubMed]

Optometry (1)

J. E. Sheedy, “Progressive addition lenses–matching the specific lens to patient needs,” Optometry 75(2), 83–102 (2004).
[Crossref] [PubMed]

Points de Vue (1)

D. Paillé, “Impact of new digital technologies on posture,” Points de Vue 72, 22–30 (2015).

Proc. Natl. Acad. Sci. (1)

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. 103(13), 6100–6104 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

T. L. Alvarez, E. H. Kim, and B. Granger-Donetti, “Adaptation to progressive additive lenses: potential factors to consider,” Sci. Rep. 7, 2529 (2017).
[Crossref] [PubMed]

Trans. Am. Ophthalmol. Soc. (1)

A. Duane, “Studies in monocular and binocular accommodation, with their clinical application,” Trans. Am. Ophthalmol. Soc. 20, 132–157 (1922).
[PubMed]

Workplace Ergonomics (1)

D. Ankrum, “Viewing distance at computer workstations,” Workplace Ergonomics 2(5), 10–13 (1996).

Other (16)

D. J. Meister and J. E. Sheedy, Introduction to ophthalmic optics (SOLA Optical, 1999).

M. Bass, C. De Cusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of optics, 3 edition, volume III (McGraw Hill Professional, 2009).

The 2015 digital eye strain report, “Hindsight is 20/20/20: protect your eyes from digital devices” (The Vision Council, 2015). https://www.thevisioncouncil.org/blog/2015-digital-eye-strain-report-released

Y. Yadin, A. Alon, and Y. Haddad, “Lenses with electrically-tunable power and alignment,” WIPO patentWO/2014/049577 (April3, 2014).

D. Meslin, Practical refraction (Essilor Academy Europe, 2008).

F. C. Donders, On the anomalies of accommodation and refraction of the eye (The New Sydenham Society, 1864).

T. Bonnin and V. Torrilhon, “Study on the satisfaction of people who wear progressive lenses, conducted in optical stores,” (Points de Vue, 2018). https://www.pointsdevue.com

B. Berge, “Electrostatically actuated device,” WIPO patentWO/2018/041866 (March8, 2018).

Q. Lavigne, N. Terrier, G. Noetinger, D.-D. Tran, S. Kulifaj, P. Kleimann, P. Pittet, and B. Berge, “Novel concept of a low-power high-volume microfluidic actuator: theory of operation and experimental characterization,” Sens. Actuator A-Phys. (to be published).

Y. Lo and D. Zhang, “Fluidic adaptive lens,” WIPO patentWO/2006/011937 (February2, 2006).

S. Kuiper and B. H. W. Hendriks, “Variable focus spectacles,” WIPO patentWO/2005/003842 (January13, 2005).

L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. patent3,305,294 (February21, 1967).

J. Nisper and R. E. Stevens, “Variable-power lens,” WIPO patentWO/2014/124707 (August21, 2014).

J. D. Silver, C. Miksovsky, M. Newbery, and A. Robertson, “Variable focus lens,” WIPO patentWO/2007/049058 (May3, 2007).

S. Kurtin and S. Epstein, “Spectacles using variable focal length lenses which have an arbitrarily shaped periphery,” WIPO patentWO/1995/027912 (October19, 1995).

B. Berge, “Ophthalmic lens with dynamic focus control,” WIPO patentWO/2018/007425 (January11, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic of the variable-focus lens. It can be either plano (a) or curved (b). The light blue layer refers the low-index layer and the dark blue layer to the high-index layer. The membrane is figured in red at the interface between both layers. In the plano configuration, when no liquid pressure is applied, the addition Add provided by the doublet lens is 0 D; when fluid is pumped out of the low-index layer, the addition increases. In the curved configuration, when no liquid pressure is applied, the addition provided by the doublet lens is positive; when fluid is pumped into the low-index layer, the addition decreases and when fluid is pumped out of the low-index layer, the addition increases.
Fig. 2
Fig. 2 Volume to be displaced (a) and minimal thickness (b) of the adaptive doublet lens providing a power variation from 0 to 3 D.
Fig. 3
Fig. 3 Photograph of the prototype.
Fig. 4
Fig. 4 Layout of the solid structure of the variable-focus lens.
Fig. 5
Fig. 5 Typical power response of the variable-focus lens obtained before fluid filling. Experimental data (green ’x’ markers) is presented along with model fit based on Eq. (3) (green solid line).
Fig. 6
Fig. 6 Typical optical power response of the opto-fluidic engine as a function of voltage (a) and of the capacitance of the actuator (b). Experimental data (dashed lines, with ’x’ markers) is presented along with model data (solid lines). The 2 sets of data were acquired through the same acquisition. The voltage course was: first, 0 V to 140 V, then, 140 V to 0 V, then, 0 V to −140 V, last, −140 V to 0 V. Positively noted voltages appear in red, while negatively noted voltages appear in blue.
Fig. 7
Fig. 7 Typical dynamic optical power response of the opto-fluidic engine in the plano configuration, switching from far vision to near vision (a) and from near vision to far vision (b), under a voltage step from −140V to 140V and from 140V to −140 V, respectively.
Fig. 8
Fig. 8 Imaging of the resolution test chart in far vision with the artificial eye through the variable lens (a) and alone (b). Far vision was assessed at 3 m, the focus was adjusted with the lens camera so that we could analyze the optical quality of the variable-focus lens at 0 D. The focus was manually adjusted, so it is probably not exactly the best focus. The pattern closest to the distance vision specification (10/10) given by the Monoyer chart (0.29 mrad MAR equivalent to 0.57 c/mm at 3 m) is highlighted by the blue box (group -1 element 2). The acquisition parameters are the same for the 2 images. One can note a decrease in the transmission when adding our lens since our lens is not featuring anti-reflection coatings here.
Fig. 9
Fig. 9 Imaging of the resolution test chart in near vision with the artificial eye through the variable lens (a)/(b) and alone (c). Image (b) shows a magnification of the central part of image (a). Near vision was assessed at 33 cm, the focus was done with the variable-focus lens on image (a)/(b) - the lens camera focus being adjusted to infinity - and with the lens camera on image (c). The focus was manually adjusted, so it is probably not exactly the best focus. The pattern closest to the near vision specification (0.44 mrad MAR equivalent to 3.4c/mm at 3 m) is highlighted by the blue box (group 1 element 6).
Fig. 10
Fig. 10 Optical power response of the opto-fluidic engine as a function of the actuation pressure for several values of refractive index difference in the plano configuration (a) and in the optimal curved configuration (b). The red dotted lines enable to enclose the necessary actuation pressure range to provide the [0, 3D] power range.
Fig. 11
Fig. 11 Maximum actuation pressure as a function of base curve for a 0.2 refractive index difference. The offset power was computed as Δn/(nref − 1). BC with BC the base curve and nref = 1.530 the standard reference refractive index.
Fig. 12
Fig. 12 Typical optical power response of the opto-fluidic engine in the optimal base curve configuration, as a function of voltage (a) and of the capacitance of the actuator (b). Experimental data (dashed lines, with ’x’ markers) is presented along with model data (solid lines). The 2 sets of data were acquired through the same acquisition. The voltage course was: first, 0 V to 140 V, then, 140 V to 0 V, then, 0 V to −140 V, last, −140V to 0V. Positively noted voltage appear in red, while negatively noted voltage appear in blue.
Fig. 13
Fig. 13 Typical dynamic power response of the opto-fluidic engine in the optimal curved configuration, switching from far vision to near vision (a) and from near vision to far vision (b), under a voltage step from −140V to 140V and from 140V to −140 V, respectively. Experimental data (blue ’x’ markers) is presented along with model data (black dashed lines) and fit data (red solid lines).
Fig. 14
Fig. 14 Setting up a multizone LIDAR combined with a low-resolution camera in the frame of the eyeglasses to enhance ergonomy. The low-resolution camera is pointing toward the eye of the wearer in order to determine the gaze direction and the multizone LIDAR is providing a distance map.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 R = Δ P 2 T ,
T = T 0 + e E 2 ( 1 v ) d A A ,
Δ P = 2 T 0 Δ n P o p t + e E Φ 2 16 ( 1 v ) Δ n 3 P o p t 3 ,
Δ P p u m p = k V 2 ,
Δ P = Δ P p u m p Q d V l d t ,
Q d V l d t + 128 T 0 π Φ 4 V l = Δ P p u m p ,

Metrics