Abstract

Micro-optics arrays (MOAs) with high aspect ratio (AR) have unique advantages in realizing the minimization of optical systems by reducing the focal distance. Fast or slow tool servo (F/STS) is widely regarded as an outperforming technique for the fabrication of MOAs featuring high form accuracy. However, in the machining of MOAs with high AR, the non-smooth cutting trajectory of F/STS inevitably leads to intensive tool vibrations and the interference between the tool flank face and the finished surface, thereby deteriorating surface roughness. In this study, a novel offset-tool-servo (OTS) diamond machining technology and the corresponding toolpath generation algorithm are proposed to achieve the flexible fabrication of micro-freeform lens arrays with high AR. In OTS, with the assistance of four-axis servo motions, a spiral toolpath is generated for each single lenslet, which effectively avoids the tool interference induced by the steep descending movement of the tool in F/STS. Besides, the proposed machining strategy well ensures the smoothness of the generated toolpath for each lenslet, thereby effectively avoiding the destruction of the surface quality induced by the tool vibrations. In practice, this method is validated by fabricating different MOAs with aspheric and freeform structures. Compared with F/STS, the OTS method is demonstrated to be able to achieve two times larger AR values, and smoother and more uniform surface quality are simultaneously achieved.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining

Zhiwei Zhu, Suet To, and Shaojian Zhang
Opt. Express 23(16) 20593-20604 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Zuo, D.-Y. Choi, X. Gai, B. Luther-Davies, and B. Zhang, “CMOS compatible fabrication of micro, nano convex silicon lens arrays by conformal chemical vapor deposition,” Opt. Express 25(4), 3069–3076 (2017).
    [Crossref] [PubMed]
  2. K. Li, A. Ö. Yöntem, Y. Deng, P. Shrestha, D. Chu, J. Zhou, and J. Yao, “Full resolution auto-stereoscopic mobile display based on large scale uniform switchable liquid crystal micro-lens array,” Opt. Express 25(9), 9654–9675 (2017).
    [Crossref] [PubMed]
  3. H. Suzuki, T. Moriwaki, Y. Yamamoto, and Y. Goto, “Precision cutting of aspherical ceramic molds with micro PCD milling tool,” CIRP Ann. 56(1), 131–134 (2007).
    [Crossref]
  4. E. Brinksmeier and L. Schönemann, “Generation of discontinuous microstructures by diamond micro chiseling,” CIRP Ann. 63(1), 49–52 (2014).
    [Crossref]
  5. R. Jasinevicius, J. Duduch, G. Cirino, and P. Pizani, “Diamond turning of small Fresnel lens array in single crystal InSb,” J. Micromech. Microeng. 23(5), 055025 (2013).
    [Crossref]
  6. J. Chen, H. H. Lee, D. Wang, S. Di, and S.-C. Chen, “Hybrid imprinting process to fabricate a multi-layer compound eye for multispectral imaging,” Opt. Express 25(4), 4180–4189 (2017).
    [Crossref] [PubMed]
  7. D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
    [Crossref] [PubMed]
  8. C. Wang, C. F. Cheung, M. Liu, and W. B. Lee, “Fluid jet-array parallel machining of optical microstructure array surfaces,” Opt. Express 25(19), 22710–22725 (2017).
    [Crossref] [PubMed]
  9. Z. He, Y.-H. Lee, D. Chanda, and S.-T. Wu, “Adaptive liquid crystal microlens array enabled by two-photon polymerization,” Opt. Express 26(16), 21184–21193 (2018).
    [Crossref] [PubMed]
  10. J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
    [Crossref] [PubMed]
  11. Z. Sun, S. To, and K. M. Yu, “One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling,” Opt. Express 26(21), 28161–28177 (2018).
    [Crossref] [PubMed]
  12. B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
    [Crossref]
  13. Z. Li, F. Fang, J. Chen, and X. Zhang, “Machining approach of freeform optics on infrared materials via ultra-precision turning,” Opt. Express 25(3), 2051–2062 (2017).
    [Crossref] [PubMed]
  14. Z. Sun, S. To, and S. Zhang, “A novel ductile machining model of single-crystal silicon for freeform surfaces with large azimuthal height variation by ultra-precision fly cutting,” Int. J. Mach. Tools Manuf. 135, 1–11 (2018).
    [Crossref]
  15. G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” in Optical Manufacturing and Testing VIII, (International Society for Optics and Photonics, 2009), 742605.
  16. Z. Zhu, S. To, W.-L. Zhu, and P. Huang, “Feasibility study of the novel quasi-elliptical tool servo for vibration suppression in the turning of micro-lens arrays,” Int. J. Mach. Tools Manuf. 122, 98–105 (2017).
    [Crossref]
  17. Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593–20604 (2015).
    [Crossref] [PubMed]
  18. S. To, Z. Zhu, and H. Wang, “Virtual spindle based tool servo diamond turning of discontinuously structured microoptics arrays,” CIRP Ann. 65(1), 475–478 (2016).
    [Crossref]
  19. P. Huang, S. To, and Z. Zhu, “Diamond turning of micro-lens array on the roller featuring high aspect ratio,” Int. J. Adv. Manuf. Technol. 96(5-8), 2463–2469 (2018).
    [Crossref]
  20. D. W. K. Neo, A. S. Kumar, and M. Rahman, “An automated Guilloche machining technique for the fabrication of polygonal Fresnel lens array,” Precis. Eng. 41, 55–62 (2015).
    [Crossref]
  21. Z. Zhu, S. To, and S. Zhang, “Theoretical and experimental investigation on the novel end-fly-cutting-servo diamond machining of hierarchical micro-nanostructures,” Int. J. Mach. Tools Manuf. 94, 15–25 (2015).
    [Crossref]
  22. X. Zhou, Y. Weng, Y. Peng, G. Chen, J. Lin, Q. Yan, Y. Zhang, and T. Guo, “Design and fabrication of square micro-lens array for integral imaging 3D display,” Optik (Stuttg.) 157, 532–539 (2018).
    [Crossref]
  23. C. C. Chiu and Y. C. Lee, “Fabricating of aspheric micro-lens array by excimer laser micromachining,” Opt. Lasers Eng. 49(9-10), 1232–1237 (2011).
    [Crossref]
  24. L. Li and Y. Y. Allen, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19(10), 105010 (2009).
    [Crossref]
  25. Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
    [Crossref] [PubMed]
  26. D. Yu, Y. Wong, and G. Hong, “Ultraprecision machining of micro-structured functional surfaces on brittle materials,” J. Micromech. Microeng. 21(9), 095011 (2011).
    [Crossref]
  27. Z. Zhu and S. To, “Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics,” Opt. Express 23(16), 20234–20248 (2015).
    [Crossref] [PubMed]
  28. W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
    [Crossref]

2018 (5)

P. Huang, S. To, and Z. Zhu, “Diamond turning of micro-lens array on the roller featuring high aspect ratio,” Int. J. Adv. Manuf. Technol. 96(5-8), 2463–2469 (2018).
[Crossref]

X. Zhou, Y. Weng, Y. Peng, G. Chen, J. Lin, Q. Yan, Y. Zhang, and T. Guo, “Design and fabrication of square micro-lens array for integral imaging 3D display,” Optik (Stuttg.) 157, 532–539 (2018).
[Crossref]

Z. Sun, S. To, and S. Zhang, “A novel ductile machining model of single-crystal silicon for freeform surfaces with large azimuthal height variation by ultra-precision fly cutting,” Int. J. Mach. Tools Manuf. 135, 1–11 (2018).
[Crossref]

Z. He, Y.-H. Lee, D. Chanda, and S.-T. Wu, “Adaptive liquid crystal microlens array enabled by two-photon polymerization,” Opt. Express 26(16), 21184–21193 (2018).
[Crossref] [PubMed]

Z. Sun, S. To, and K. M. Yu, “One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling,” Opt. Express 26(21), 28161–28177 (2018).
[Crossref] [PubMed]

2017 (6)

2016 (1)

S. To, Z. Zhu, and H. Wang, “Virtual spindle based tool servo diamond turning of discontinuously structured microoptics arrays,” CIRP Ann. 65(1), 475–478 (2016).
[Crossref]

2015 (4)

D. W. K. Neo, A. S. Kumar, and M. Rahman, “An automated Guilloche machining technique for the fabrication of polygonal Fresnel lens array,” Precis. Eng. 41, 55–62 (2015).
[Crossref]

Z. Zhu, S. To, and S. Zhang, “Theoretical and experimental investigation on the novel end-fly-cutting-servo diamond machining of hierarchical micro-nanostructures,” Int. J. Mach. Tools Manuf. 94, 15–25 (2015).
[Crossref]

Z. Zhu and S. To, “Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics,” Opt. Express 23(16), 20234–20248 (2015).
[Crossref] [PubMed]

Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593–20604 (2015).
[Crossref] [PubMed]

2014 (3)

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

E. Brinksmeier and L. Schönemann, “Generation of discontinuous microstructures by diamond micro chiseling,” CIRP Ann. 63(1), 49–52 (2014).
[Crossref]

2013 (3)

R. Jasinevicius, J. Duduch, G. Cirino, and P. Pizani, “Diamond turning of small Fresnel lens array in single crystal InSb,” J. Micromech. Microeng. 23(5), 055025 (2013).
[Crossref]

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
[Crossref] [PubMed]

2011 (2)

C. C. Chiu and Y. C. Lee, “Fabricating of aspheric micro-lens array by excimer laser micromachining,” Opt. Lasers Eng. 49(9-10), 1232–1237 (2011).
[Crossref]

D. Yu, Y. Wong, and G. Hong, “Ultraprecision machining of micro-structured functional surfaces on brittle materials,” J. Micromech. Microeng. 21(9), 095011 (2011).
[Crossref]

2009 (1)

L. Li and Y. Y. Allen, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19(10), 105010 (2009).
[Crossref]

2007 (1)

H. Suzuki, T. Moriwaki, Y. Yamamoto, and Y. Goto, “Precision cutting of aspherical ceramic molds with micro PCD milling tool,” CIRP Ann. 56(1), 131–134 (2007).
[Crossref]

2003 (1)

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

Allen, Y. Y.

L. Li and Y. Y. Allen, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19(10), 105010 (2009).
[Crossref]

Araki, T.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

Beausoleil, R. G.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Brinksmeier, E.

E. Brinksmeier and L. Schönemann, “Generation of discontinuous microstructures by diamond micro chiseling,” CIRP Ann. 63(1), 49–52 (2014).
[Crossref]

Brug, J.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Chanda, D.

Chen, G.

X. Zhou, Y. Weng, Y. Peng, G. Chen, J. Lin, Q. Yan, Y. Zhang, and T. Guo, “Design and fabrication of square micro-lens array for integral imaging 3D display,” Optik (Stuttg.) 157, 532–539 (2018).
[Crossref]

Chen, J.

Chen, S.-C.

Cheung, C. F.

Chiu, C. C.

C. C. Chiu and Y. C. Lee, “Fabricating of aspheric micro-lens array by excimer laser micromachining,” Opt. Lasers Eng. 49(9-10), 1232–1237 (2011).
[Crossref]

Choi, D.-Y.

Chu, D.

Cirino, G.

R. Jasinevicius, J. Duduch, G. Cirino, and P. Pizani, “Diamond turning of small Fresnel lens array in single crystal InSb,” J. Micromech. Microeng. 23(5), 055025 (2013).
[Crossref]

Davies, M. A.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Deng, Y.

Di, S.

Ding, Y.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Duduch, J.

R. Jasinevicius, J. Duduch, G. Cirino, and P. Pizani, “Diamond turning of small Fresnel lens array in single crystal InSb,” J. Micromech. Microeng. 23(5), 055025 (2013).
[Crossref]

Dutterer, B. S.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Fang, F.

Fattal, D.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Fiorentino, M.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Gai, X.

Gao, W.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

Goto, Y.

H. Suzuki, T. Moriwaki, Y. Yamamoto, and Y. Goto, “Precision cutting of aspherical ceramic molds with micro PCD milling tool,” CIRP Ann. 56(1), 131–134 (2007).
[Crossref]

Guo, T.

X. Zhou, Y. Weng, Y. Peng, G. Chen, J. Lin, Q. Yan, Y. Zhang, and T. Guo, “Design and fabrication of square micro-lens array for integral imaging 3D display,” Optik (Stuttg.) 157, 532–539 (2018).
[Crossref]

Harriman, T. A.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

He, Z.

Hildebrand, D. S.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Hong, G.

D. Yu, Y. Wong, and G. Hong, “Ultraprecision machining of micro-structured functional surfaces on brittle materials,” J. Micromech. Microeng. 21(9), 095011 (2011).
[Crossref]

Huang, P.

P. Huang, S. To, and Z. Zhu, “Diamond turning of micro-lens array on the roller featuring high aspect ratio,” Int. J. Adv. Manuf. Technol. 96(5-8), 2463–2469 (2018).
[Crossref]

Z. Zhu, S. To, W.-L. Zhu, and P. Huang, “Feasibility study of the novel quasi-elliptical tool servo for vibration suppression in the turning of micro-lens arrays,” Int. J. Mach. Tools Manuf. 122, 98–105 (2017).
[Crossref]

Jasinevicius, R.

R. Jasinevicius, J. Duduch, G. Cirino, and P. Pizani, “Diamond turning of small Fresnel lens array in single crystal InSb,” J. Micromech. Microeng. 23(5), 055025 (2013).
[Crossref]

Kiyono, S.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

Kumar, A. S.

D. W. K. Neo, A. S. Kumar, and M. Rahman, “An automated Guilloche machining technique for the fabrication of polygonal Fresnel lens array,” Precis. Eng. 41, 55–62 (2015).
[Crossref]

Lee, H. H.

Lee, W. B.

Lee, Y. C.

C. C. Chiu and Y. C. Lee, “Fabricating of aspheric micro-lens array by excimer laser micromachining,” Opt. Lasers Eng. 49(9-10), 1232–1237 (2011).
[Crossref]

Lee, Y.-H.

Li, K.

Li, L.

L. Li and Y. Y. Allen, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19(10), 105010 (2009).
[Crossref]

Li, X.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Li, Z.

Lin, J.

X. Zhou, Y. Weng, Y. Peng, G. Chen, J. Lin, Q. Yan, Y. Zhang, and T. Guo, “Design and fabrication of square micro-lens array for integral imaging 3D display,” Optik (Stuttg.) 157, 532–539 (2018).
[Crossref]

Lineberger, J. L.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Liu, B.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Liu, M.

Liu, Q.

Lucca, D. A.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Luo, D.

Luther-Davies, B.

Mei, X.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Moriwaki, T.

H. Suzuki, T. Moriwaki, Y. Yamamoto, and Y. Goto, “Precision cutting of aspherical ceramic molds with micro PCD milling tool,” CIRP Ann. 56(1), 131–134 (2007).
[Crossref]

Neo, D. W. K.

D. W. K. Neo, A. S. Kumar, and M. Rahman, “An automated Guilloche machining technique for the fabrication of polygonal Fresnel lens array,” Precis. Eng. 41, 55–62 (2015).
[Crossref]

Okazaki, Y.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

Peng, Y.

X. Zhou, Y. Weng, Y. Peng, G. Chen, J. Lin, Q. Yan, Y. Zhang, and T. Guo, “Design and fabrication of square micro-lens array for integral imaging 3D display,” Optik (Stuttg.) 157, 532–539 (2018).
[Crossref]

Peng, Z.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Pizani, P.

R. Jasinevicius, J. Duduch, G. Cirino, and P. Pizani, “Diamond turning of small Fresnel lens array in single crystal InSb,” J. Micromech. Microeng. 23(5), 055025 (2013).
[Crossref]

Rahman, M.

D. W. K. Neo, A. S. Kumar, and M. Rahman, “An automated Guilloche machining technique for the fabrication of polygonal Fresnel lens array,” Precis. Eng. 41, 55–62 (2015).
[Crossref]

Schönemann, L.

E. Brinksmeier and L. Schönemann, “Generation of discontinuous microstructures by diamond micro chiseling,” CIRP Ann. 63(1), 49–52 (2014).
[Crossref]

Shao, J.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Shrestha, P.

Smilie, P. J.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Suleski, T. J.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Sun, Z.

Z. Sun, S. To, and K. M. Yu, “One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling,” Opt. Express 26(21), 28161–28177 (2018).
[Crossref] [PubMed]

Z. Sun, S. To, and S. Zhang, “A novel ductile machining model of single-crystal silicon for freeform surfaces with large azimuthal height variation by ultra-precision fly cutting,” Int. J. Mach. Tools Manuf. 135, 1–11 (2018).
[Crossref]

Suzuki, H.

H. Suzuki, T. Moriwaki, Y. Yamamoto, and Y. Goto, “Precision cutting of aspherical ceramic molds with micro PCD milling tool,” CIRP Ann. 56(1), 131–134 (2007).
[Crossref]

Tian, H.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

To, S.

Z. Sun, S. To, and K. M. Yu, “One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling,” Opt. Express 26(21), 28161–28177 (2018).
[Crossref] [PubMed]

P. Huang, S. To, and Z. Zhu, “Diamond turning of micro-lens array on the roller featuring high aspect ratio,” Int. J. Adv. Manuf. Technol. 96(5-8), 2463–2469 (2018).
[Crossref]

Z. Sun, S. To, and S. Zhang, “A novel ductile machining model of single-crystal silicon for freeform surfaces with large azimuthal height variation by ultra-precision fly cutting,” Int. J. Mach. Tools Manuf. 135, 1–11 (2018).
[Crossref]

Z. Zhu, S. To, W.-L. Zhu, and P. Huang, “Feasibility study of the novel quasi-elliptical tool servo for vibration suppression in the turning of micro-lens arrays,” Int. J. Mach. Tools Manuf. 122, 98–105 (2017).
[Crossref]

S. To, Z. Zhu, and H. Wang, “Virtual spindle based tool servo diamond turning of discontinuously structured microoptics arrays,” CIRP Ann. 65(1), 475–478 (2016).
[Crossref]

Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593–20604 (2015).
[Crossref] [PubMed]

Z. Zhu, S. To, and S. Zhang, “Theoretical and experimental investigation on the novel end-fly-cutting-servo diamond machining of hierarchical micro-nanostructures,” Int. J. Mach. Tools Manuf. 94, 15–25 (2015).
[Crossref]

Z. Zhu and S. To, “Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics,” Opt. Express 23(16), 20234–20248 (2015).
[Crossref] [PubMed]

Tran, T.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Vo, S.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Wang, C.

Wang, D.

Wang, H.

S. To, Z. Zhu, and H. Wang, “Virtual spindle based tool servo diamond turning of discontinuously structured microoptics arrays,” CIRP Ann. 65(1), 475–478 (2016).
[Crossref]

Wang, W.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Weng, Y.

X. Zhou, Y. Weng, Y. Peng, G. Chen, J. Lin, Q. Yan, Y. Zhang, and T. Guo, “Design and fabrication of square micro-lens array for integral imaging 3D display,” Optik (Stuttg.) 157, 532–539 (2018).
[Crossref]

Wong, Y.

D. Yu, Y. Wong, and G. Hong, “Ultraprecision machining of micro-structured functional surfaces on brittle materials,” J. Micromech. Microeng. 21(9), 095011 (2011).
[Crossref]

Wu, S.-T.

Yamamoto, Y.

H. Suzuki, T. Moriwaki, Y. Yamamoto, and Y. Goto, “Precision cutting of aspherical ceramic molds with micro PCD milling tool,” CIRP Ann. 56(1), 131–134 (2007).
[Crossref]

Yamanaka, M.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

Yan, Q.

X. Zhou, Y. Weng, Y. Peng, G. Chen, J. Lin, Q. Yan, Y. Zhang, and T. Guo, “Design and fabrication of square micro-lens array for integral imaging 3D display,” Optik (Stuttg.) 157, 532–539 (2018).
[Crossref]

Yao, J.

Yöntem, A. Ö.

Yu, D.

D. Yu, Y. Wong, and G. Hong, “Ultraprecision machining of micro-structured functional surfaces on brittle materials,” J. Micromech. Microeng. 21(9), 095011 (2011).
[Crossref]

Yu, K. M.

Zhai, H.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Zhang, B.

Zhang, S.

Z. Sun, S. To, and S. Zhang, “A novel ductile machining model of single-crystal silicon for freeform surfaces with large azimuthal height variation by ultra-precision fly cutting,” Int. J. Mach. Tools Manuf. 135, 1–11 (2018).
[Crossref]

Z. Zhu, S. To, and S. Zhang, “Theoretical and experimental investigation on the novel end-fly-cutting-servo diamond machining of hierarchical micro-nanostructures,” Int. J. Mach. Tools Manuf. 94, 15–25 (2015).
[Crossref]

Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593–20604 (2015).
[Crossref] [PubMed]

Zhang, X.

Zhang, Y.

X. Zhou, Y. Weng, Y. Peng, G. Chen, J. Lin, Q. Yan, Y. Zhang, and T. Guo, “Design and fabrication of square micro-lens array for integral imaging 3D display,” Optik (Stuttg.) 157, 532–539 (2018).
[Crossref]

Zhou, J.

Zhou, X.

X. Zhou, Y. Weng, Y. Peng, G. Chen, J. Lin, Q. Yan, Y. Zhang, and T. Guo, “Design and fabrication of square micro-lens array for integral imaging 3D display,” Optik (Stuttg.) 157, 532–539 (2018).
[Crossref]

Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
[Crossref] [PubMed]

Zhu, W.-L.

Z. Zhu, S. To, W.-L. Zhu, and P. Huang, “Feasibility study of the novel quasi-elliptical tool servo for vibration suppression in the turning of micro-lens arrays,” Int. J. Mach. Tools Manuf. 122, 98–105 (2017).
[Crossref]

Zhu, Z.

P. Huang, S. To, and Z. Zhu, “Diamond turning of micro-lens array on the roller featuring high aspect ratio,” Int. J. Adv. Manuf. Technol. 96(5-8), 2463–2469 (2018).
[Crossref]

Z. Zhu, S. To, W.-L. Zhu, and P. Huang, “Feasibility study of the novel quasi-elliptical tool servo for vibration suppression in the turning of micro-lens arrays,” Int. J. Mach. Tools Manuf. 122, 98–105 (2017).
[Crossref]

S. To, Z. Zhu, and H. Wang, “Virtual spindle based tool servo diamond turning of discontinuously structured microoptics arrays,” CIRP Ann. 65(1), 475–478 (2016).
[Crossref]

Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593–20604 (2015).
[Crossref] [PubMed]

Z. Zhu, S. To, and S. Zhang, “Theoretical and experimental investigation on the novel end-fly-cutting-servo diamond machining of hierarchical micro-nanostructures,” Int. J. Mach. Tools Manuf. 94, 15–25 (2015).
[Crossref]

Z. Zhu and S. To, “Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics,” Opt. Express 23(16), 20234–20248 (2015).
[Crossref] [PubMed]

Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
[Crossref] [PubMed]

Zuo, H.

CIRP Ann. (3)

H. Suzuki, T. Moriwaki, Y. Yamamoto, and Y. Goto, “Precision cutting of aspherical ceramic molds with micro PCD milling tool,” CIRP Ann. 56(1), 131–134 (2007).
[Crossref]

E. Brinksmeier and L. Schönemann, “Generation of discontinuous microstructures by diamond micro chiseling,” CIRP Ann. 63(1), 49–52 (2014).
[Crossref]

S. To, Z. Zhu, and H. Wang, “Virtual spindle based tool servo diamond turning of discontinuously structured microoptics arrays,” CIRP Ann. 65(1), 475–478 (2016).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

P. Huang, S. To, and Z. Zhu, “Diamond turning of micro-lens array on the roller featuring high aspect ratio,” Int. J. Adv. Manuf. Technol. 96(5-8), 2463–2469 (2018).
[Crossref]

Int. J. Mach. Tools Manuf. (3)

Z. Zhu, S. To, and S. Zhang, “Theoretical and experimental investigation on the novel end-fly-cutting-servo diamond machining of hierarchical micro-nanostructures,” Int. J. Mach. Tools Manuf. 94, 15–25 (2015).
[Crossref]

Z. Sun, S. To, and S. Zhang, “A novel ductile machining model of single-crystal silicon for freeform surfaces with large azimuthal height variation by ultra-precision fly cutting,” Int. J. Mach. Tools Manuf. 135, 1–11 (2018).
[Crossref]

Z. Zhu, S. To, W.-L. Zhu, and P. Huang, “Feasibility study of the novel quasi-elliptical tool servo for vibration suppression in the turning of micro-lens arrays,” Int. J. Mach. Tools Manuf. 122, 98–105 (2017).
[Crossref]

J. Micromech. Microeng. (3)

R. Jasinevicius, J. Duduch, G. Cirino, and P. Pizani, “Diamond turning of small Fresnel lens array in single crystal InSb,” J. Micromech. Microeng. 23(5), 055025 (2013).
[Crossref]

L. Li and Y. Y. Allen, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19(10), 105010 (2009).
[Crossref]

D. Yu, Y. Wong, and G. Hong, “Ultraprecision machining of micro-structured functional surfaces on brittle materials,” J. Micromech. Microeng. 21(9), 095011 (2011).
[Crossref]

Nature (1)

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Opt. Express (10)

Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
[Crossref] [PubMed]

Z. Zhu and S. To, “Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics,” Opt. Express 23(16), 20234–20248 (2015).
[Crossref] [PubMed]

Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593–20604 (2015).
[Crossref] [PubMed]

Z. Li, F. Fang, J. Chen, and X. Zhang, “Machining approach of freeform optics on infrared materials via ultra-precision turning,” Opt. Express 25(3), 2051–2062 (2017).
[Crossref] [PubMed]

H. Zuo, D.-Y. Choi, X. Gai, B. Luther-Davies, and B. Zhang, “CMOS compatible fabrication of micro, nano convex silicon lens arrays by conformal chemical vapor deposition,” Opt. Express 25(4), 3069–3076 (2017).
[Crossref] [PubMed]

J. Chen, H. H. Lee, D. Wang, S. Di, and S.-C. Chen, “Hybrid imprinting process to fabricate a multi-layer compound eye for multispectral imaging,” Opt. Express 25(4), 4180–4189 (2017).
[Crossref] [PubMed]

K. Li, A. Ö. Yöntem, Y. Deng, P. Shrestha, D. Chu, J. Zhou, and J. Yao, “Full resolution auto-stereoscopic mobile display based on large scale uniform switchable liquid crystal micro-lens array,” Opt. Express 25(9), 9654–9675 (2017).
[Crossref] [PubMed]

C. Wang, C. F. Cheung, M. Liu, and W. B. Lee, “Fluid jet-array parallel machining of optical microstructure array surfaces,” Opt. Express 25(19), 22710–22725 (2017).
[Crossref] [PubMed]

Z. He, Y.-H. Lee, D. Chanda, and S.-T. Wu, “Adaptive liquid crystal microlens array enabled by two-photon polymerization,” Opt. Express 26(16), 21184–21193 (2018).
[Crossref] [PubMed]

Z. Sun, S. To, and K. M. Yu, “One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling,” Opt. Express 26(21), 28161–28177 (2018).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

C. C. Chiu and Y. C. Lee, “Fabricating of aspheric micro-lens array by excimer laser micromachining,” Opt. Lasers Eng. 49(9-10), 1232–1237 (2011).
[Crossref]

Optik (Stuttg.) (1)

X. Zhou, Y. Weng, Y. Peng, G. Chen, J. Lin, Q. Yan, Y. Zhang, and T. Guo, “Design and fabrication of square micro-lens array for integral imaging 3D display,” Optik (Stuttg.) 157, 532–539 (2018).
[Crossref]

Precis. Eng. (3)

D. W. K. Neo, A. S. Kumar, and M. Rahman, “An automated Guilloche machining technique for the fabrication of polygonal Fresnel lens array,” Precis. Eng. 41, 55–62 (2015).
[Crossref]

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Small (1)

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Other (1)

G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” in Optical Manufacturing and Testing VIII, (International Society for Optics and Photonics, 2009), 742605.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematics of (a) the configuration of the OTS and (b) the basic machining principle.
Fig. 2
Fig. 2 Relative position between the diamond tool and the lenslet generated by (a) OTS system and (b) F/STS system.
Fig. 3
Fig. 3 Schematic of the kinematics of the OST machining for a single lenslet cell in (a) initial stage and (b) cutting process.
Fig. 4
Fig. 4 Schematic of the determination of CCP in the ow-xwywzw system.
Fig. 5
Fig. 5 Characteristics of the toolpath for (a) OTS and (b) F/STS.
Fig. 6
Fig. 6 Dynamic characteristics of the tool motions in Z-axis for OTS: (a) position, (b) velocity and (c) acceleration and for F/STS (d) position, (e) velocity and (f) acceleration.
Fig. 7
Fig. 7 Hardware configuration of the OTS system.
Fig. 8
Fig. 8 3D topographies of (a) the micro-aspheric arrays and (b) the cross-sectional profile in x direction.
Fig. 9
Fig. 9 3D topographies of (a) generated lenslet cell, (b) and (c) the cross-sectional profiles in X and Y directions.
Fig. 10
Fig. 10 Microscope images of the MOAs generated by (a) OTS and (b) STS.
Fig. 11
Fig. 11 Micro-topographies of the lenslet cells at different places (a) and (b) generated by OTS and (c) and (d) generated by STS.
Fig. 12
Fig. 12 Topography of the (a) radiant micro-structure arrays generated by OTS and (b) an arbitrary lenslet and (c) cross-sectional profile.

Tables (3)

Tables Icon

Table 1 Coeffecients of the micro-aspheric surface generated by OTA and STS.

Tables Icon

Table 2 Machining parameters for OTS and STS.

Tables Icon

Table 3 Coeffecients of the Radiant micro-structure arrays.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

φ m , n = 2 π m + 2 π n N s
{ x C L P ( m , n ) = d c cos ( θ c + φ m , n ) d c + φ m , n f e 2 π y C L P ( m , n ) = d c sin ( θ c + φ m , n )
{ d c = ( a 2 + b 2 ) θ c = arc tan ( b / a )
{ x T ( m , n ) = x C L P ( m , n ) + l × cos ( φ m , n ) y T ( m , n ) = y C L P ( m , n ) + l × sin ( φ m , n ) z T ( m , n ) = z 0 R t 2 l 2 , l = [ R t cos ( δ ) , R t cos ( δ ) ]
T i = ( x T ( m , n ) l , y T ( m , n ) l , z T ( m , n ) l ) | l = l i l i = R t cos ( δ ) + ( i 1 ) 2 R t cos ( δ ) N 0
V i = ( F w x , F w y , 1 ) | x = x T , i ( m , n ) , y = y T , i ( m , n )
d T ( m , n ) = arg min l i { | V i × T i | , i [ 1 , N 0 + 1 ] }
{ x C L P ( m , n ) = d c cos ( θ c + φ m , n ) d c + φ m , n f e / 2 π y C L P ( m , n ) = d c sin ( θ c + φ m , n ) z C L P ( m , n ) = R t 2 l i 2 + F w [ x C L P ( m , n ) + l i × cos ( φ m , n ) , y C L P ( m , n ) + l i × sin ( φ m , n ) ]
( x s ( m , n ) y s ( m , n ) z s ( m , n ) 1 ) = ( 1 0 0 ρ cos ( α ) 0 1 0 ρ sin ( α ) 0 0 1 0 0 0 0 1 ) × ( x C L P ( m , n ) y C L P ( m , n ) z C L P ( m , n ) 1 )
z ( x , y ) = s C R 0 2 4 + 4 1 ( 1 + k ) C 2 R 0 2 s C ρ 2 ( x , y ) 4 + 4 1 ( 1 + k ) C 2 ρ 2 ( x , y )
z ( ρ , φ ) = R b a l l 2 ρ 2 R b a l l 2 R l 2 + A sin ( 6 φ )

Metrics