Abstract

Fabrication and characterization of flexible optical fiber bundles (FBs) with in-house synthesized high-index and low-index thermally matched glasses are presented. The FBs composed of around 15000 single-core fibers with pixel sizes between 1.1 and 10 μm are fabricated using the stack-and-draw technique from sets of thermally matched zirconium-silicate ZR3, borosilicate SK222, sodium-silicate K209, and F2 glasses. With high refractive index contrast pair of glasses ZR3/SK222 and K209/F2, FBs with numerical apertures (NAs) of 0.53 and 0.59 are obtained, respectively. Among the studied glass materials, ZR3, SK222, and K209 are in-house synthesized, while F2 is commercially acquired. Seven different FBs with varying pixel sizes and bundle diameters are characterized. Brightfield imaging of a micro-ruler and a Convallaria majalis sample and fluorescence imaging of a dye-stained paper tissue and a cirrhotic mice liver tissue are demonstrated using these FBs, demonstrating their good potential for microendoscopic imaging. Brightfield and fluorescence imaging performance of the studied FBs are compared. For both sets of glass compositions, good imaging performance is observed for FBs, with core diameter and core-to-core distance values larger than 1.6 μm and 2.3 μm, respectively. FBs fabricated with K209/F2 glass pairs revealed better performance in fluorescence imaging due to their higher NA of 0.59.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution chalcogenide fiber bundles for longwave infrared imaging

Sisheng Qi, Bin Zhang, Chengcheng Zhai, Yaocheng Li, Anping Yang, Yi Yu, Dingyuan Tang, Zhiyong Yang, and Barry Luther-Davies
Opt. Express 25(21) 26160-26165 (2017)

Analysis and characterization of high-resolution and high-aspect-ratio imaging fiber bundles

Nojan Motamedi, Salman Karbasi, Joseph E. Ford, and Vitaliy Lomakin
Appl. Opt. 54(32) 9422-9431 (2015)

Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures

Ya’nan Sun, Shixun Dai, Peiqing Zhang, Xunsi Wang, Yinsheng Xu, Zijun Liu, Feifei Chen, Yuehao Wu, Yuji Zhang, Rongping Wang, and Guangming Tao
Opt. Express 23(18) 23472-23483 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. A. N. Fisher, E. F. Civillico, D. Contreras, and A. G. Yodh, “In vivo fluorescence microscopy of neuronal activity in three dimensions by use of voltage-sensitive dyes,” Opt. Lett. 29(1), 71–73 (2004).
    [Crossref] [PubMed]
  2. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
    [Crossref] [PubMed]
  3. P. M. Delaney, M. R. Harris, and R. G. King, “Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging,” Appl. Opt. 33(4), 573–577 (1994).
    [Crossref] [PubMed]
  4. R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
    [Crossref] [PubMed]
  5. T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
    [Crossref] [PubMed]
  6. G. D. Papworth, P. M. Delaney, L. J. Bussau, L. T. Vo, and R. G. King, “In vivo fibre optic confocal imaging of microvasculature and nerves in the rat vas deferens and colon,” J. Anat. 192(Pt 4), 489–495 (1998).
    [Crossref] [PubMed]
  7. W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
    [Crossref] [PubMed]
  8. H.-J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007).
    [Crossref] [PubMed]
  9. L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of Normal Human Skin In Vivo as Observed Using Fluorescent Fiber-Optic Confocal Microscopic Imaging,” J. Invest. Dermatol. 121(4), 706–712 (2003).
    [Crossref] [PubMed]
  10. D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28(17), 1552–1554 (2003).
    [Crossref] [PubMed]
  11. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
    [Crossref] [PubMed]
  12. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
    [Crossref] [PubMed]
  13. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
    [Crossref] [PubMed]
  14. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
    [Crossref] [PubMed]
  15. D. R. Rivera, C. M. Brown, D. G. Ouzounov, W. W. Webb, and C. Xu, “Multifocal multiphoton endoscope,” Opt. Lett. 37(8), 1349–1351 (2012).
    [Crossref] [PubMed]
  16. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  17. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref] [PubMed]
  18. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [Crossref] [PubMed]
  19. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
    [Crossref] [PubMed]
  20. M. C. T. Bahaa,and E. A. Saleh, Fundamentals of Photonics, 2nd ed. (John Wiley & Sons, New York, 2007).
  21. G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
    [Crossref]
  22. R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5(1), 5581 (2014).
    [Crossref] [PubMed]
  23. S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan, “Scanning-free imaging through a single fiber by random spatio-spectral encoding,” Opt. Lett. 40(4), 534–537 (2015).
    [Crossref] [PubMed]
  24. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
    [Crossref] [PubMed]
  25. R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997).
    [Crossref]
  26. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
    [Crossref]
  27. P. M. Lane, A. L. P. Dlugan, R. Richards-Kortum, and C. E. Macaulay, “Fiber-optic confocal microscopy using a spatial light modulator,” Opt. Lett. 25(24), 1780–1782 (2000).
    [Crossref] [PubMed]
  28. N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16(11), 8016–8025 (2008).
    [Crossref] [PubMed]
  29. M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
    [Crossref] [PubMed]
  30. A. Shinde, S. M. Perinchery, and V. M. Murukeshan, “A targeted illumination optical fiber probe for high resolution fluorescence imaging and optical switching,” Sci. Rep. 7(1), 45654 (2017).
    [Crossref] [PubMed]
  31. M. Kim, J. Hong, J. Kim, and H. J. Shin, “Fiber bundle-based integrated platform for wide-field fluorescence imaging and patterned optical stimulation for modulation of vasoconstriction in the deep brain of a living animal,” Biomed. Opt. Express 8(6), 2781–2795 (2017).
    [Crossref] [PubMed]
  32. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
    [Crossref] [PubMed]
  33. M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
    [Crossref] [PubMed]
  34. D. Shin, M. C. Pierce, A. M. Gillenwater, M. D. Williams, and R. R. Richards-Kortum, “A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging,” PLoS One 5(6), e11218 (2010).
    [Crossref] [PubMed]
  35. W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
    [Crossref] [PubMed]
  36. H. Wang, N. Zhang, and S. Zuo, “Low-cost and highly flexible intraoperative endomicroscopy system for cellular imaging,” Appl. Opt. 57(7), 1554–1561 (2018).
    [Crossref] [PubMed]
  37. T. Kobayashi, T. Katagiri, and Y. Matsuura, “Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging,” in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVII (SPIE, 2017), 100580X.
  38. Y. Matsuura and K. Naito, “Flexible hollow optical fiber bundle for infrared thermal imaging,” Biomed. Opt. Express 2(1), 65–70 (2011).
    [Crossref] [PubMed]
  39. E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).
    [Crossref]
  40. B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
    [Crossref] [PubMed]
  41. M. S. Pochechuev, I. V. Fedotov, O. I. Ivashkina, M. A. Roshchina, D. V. Meshchankin, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics 11(4), e201700106 (2018).
    [Crossref] [PubMed]
  42. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, Cambridge, 2000).
  43. J.-H. Han, J. Lee, and J. U. Kang, “Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging,” Opt. Express 18(7), 7427–7439 (2010).
    [Crossref] [PubMed]
  44. C.-Y. Lee and J.-H. Han, “Elimination of honeycomb patterns in fiber bundle imaging by a superimposition method,” Opt. Lett. 38(12), 2023–2025 (2013).
    [Crossref] [PubMed]
  45. D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
    [Crossref] [PubMed]
  46. G. W. Cheon, J. Cha, and J. U. Kang, “Random transverse motion-induced spatial compounding for fiber bundle imaging,” Opt. Lett. 39(15), 4368–4371 (2014).
    [Crossref] [PubMed]
  47. J. Cimek, R. Stępień, G. Stępniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
    [Crossref]
  48. D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
    [Crossref]
  49. R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
    [Crossref]
  50. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
    [Crossref] [PubMed]
  51. K. Chung and K. Deisseroth, “CLARITY for mapping the nervous system,” Nat. Methods 10(6), 508–513 (2013).
    [Crossref] [PubMed]
  52. J. B. Anders Bjarklev, Araceli Sanchez Bjarklev, Photonic Crystal Fibres, 1 ed. (Springer US, 2003).
  53. Z. A. Steelman, S. Kim, E. T. Jelly, M. Crose, K. K. Chu, and A. Wax, “Comparison of imaging fiber bundles for coherence-domain imaging,” Appl. Opt. 57(6), 1455–1462 (2018).
    [Crossref] [PubMed]
  54. M. C. Hudson, “Calculation of the Maximum Optical Coupling Efficiency into Multimode Optical Waveguides,” Appl. Opt. 13(5), 1029–1033 (1974).
    [Crossref] [PubMed]
  55. U. A. Gamm, C. L. Hoy, F. van Leeuwen-van Zaane, H. J. Sterenborg, S. C. Kanick, D. J. Robinson, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium: experimental validation,” Biomed. Opt. Express 5(6), 1913–1925 (2014).
    [Crossref] [PubMed]
  56. R. Paschotta, Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008), p. 856.
  57. J. Schaffer and H. Bauch, “Test preparation for microscopes,” U.S. Patent 20040180384 (2004).

2018 (3)

H. Wang, N. Zhang, and S. Zuo, “Low-cost and highly flexible intraoperative endomicroscopy system for cellular imaging,” Appl. Opt. 57(7), 1554–1561 (2018).
[Crossref] [PubMed]

M. S. Pochechuev, I. V. Fedotov, O. I. Ivashkina, M. A. Roshchina, D. V. Meshchankin, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics 11(4), e201700106 (2018).
[Crossref] [PubMed]

Z. A. Steelman, S. Kim, E. T. Jelly, M. Crose, K. K. Chu, and A. Wax, “Comparison of imaging fiber bundles for coherence-domain imaging,” Appl. Opt. 57(6), 1455–1462 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (1)

J. Cimek, R. Stępień, G. Stępniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

2015 (3)

2014 (6)

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5(1), 5581 (2014).
[Crossref] [PubMed]

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

G. W. Cheon, J. Cha, and J. U. Kang, “Random transverse motion-induced spatial compounding for fiber bundle imaging,” Opt. Lett. 39(15), 4368–4371 (2014).
[Crossref] [PubMed]

U. A. Gamm, C. L. Hoy, F. van Leeuwen-van Zaane, H. J. Sterenborg, S. C. Kanick, D. J. Robinson, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium: experimental validation,” Biomed. Opt. Express 5(6), 1913–1925 (2014).
[Crossref] [PubMed]

2013 (5)

K. Chung and K. Deisseroth, “CLARITY for mapping the nervous system,” Nat. Methods 10(6), 508–513 (2013).
[Crossref] [PubMed]

C.-Y. Lee and J.-H. Han, “Elimination of honeycomb patterns in fiber bundle imaging by a superimposition method,” Opt. Lett. 38(12), 2023–2025 (2013).
[Crossref] [PubMed]

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
[Crossref] [PubMed]

2012 (5)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

D. R. Rivera, C. M. Brown, D. G. Ouzounov, W. W. Webb, and C. Xu, “Multifocal multiphoton endoscope,” Opt. Lett. 37(8), 1349–1351 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

D. Shin, M. C. Pierce, A. M. Gillenwater, M. D. Williams, and R. R. Richards-Kortum, “A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging,” PLoS One 5(6), e11218 (2010).
[Crossref] [PubMed]

J.-H. Han, J. Lee, and J. U. Kang, “Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging,” Opt. Express 18(7), 7427–7439 (2010).
[Crossref] [PubMed]

2009 (1)

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (2)

2005 (2)

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[Crossref] [PubMed]

2004 (4)

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

J. A. N. Fisher, E. F. Civillico, D. Contreras, and A. G. Yodh, “In vivo fluorescence microscopy of neuronal activity in three dimensions by use of voltage-sensitive dyes,” Opt. Lett. 29(1), 71–73 (2004).
[Crossref] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

2003 (2)

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of Normal Human Skin In Vivo as Observed Using Fluorescent Fiber-Optic Confocal Microscopic Imaging,” J. Invest. Dermatol. 121(4), 706–712 (2003).
[Crossref] [PubMed]

D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28(17), 1552–1554 (2003).
[Crossref] [PubMed]

2001 (2)

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

2000 (2)

P. M. Lane, A. L. P. Dlugan, R. Richards-Kortum, and C. E. Macaulay, “Fiber-optic confocal microscopy using a spatial light modulator,” Opt. Lett. 25(24), 1780–1782 (2000).
[Crossref] [PubMed]

E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).
[Crossref]

1998 (1)

G. D. Papworth, P. M. Delaney, L. J. Bussau, L. T. Vo, and R. G. King, “In vivo fibre optic confocal imaging of microvasculature and nerves in the rat vas deferens and colon,” J. Anat. 192(Pt 4), 489–495 (1998).
[Crossref] [PubMed]

1997 (1)

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997).
[Crossref]

1994 (1)

1993 (1)

1974 (1)

Aksay, E.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Amelink, A.

Anderson, E. P.

Anokhin, K. V.

M. S. Pochechuev, I. V. Fedotov, O. I. Ivashkina, M. A. Roshchina, D. V. Meshchankin, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics 11(4), e201700106 (2018).
[Crossref] [PubMed]

Aziz, D.

Barankov, R.

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5(1), 5581 (2014).
[Crossref] [PubMed]

Bird, D.

Bozinovic, N.

Brown, C. M.

Bubi, T. C.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

Buczynski, R.

J. Cimek, R. Stępień, G. Stępniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Burg, J.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Bussau, L. J.

G. D. Papworth, P. M. Delaney, L. J. Bussau, L. T. Vo, and R. G. King, “In vivo fibre optic confocal imaging of microvasculature and nerves in the rat vas deferens and colon,” J. Anat. 192(Pt 4), 489–495 (1998).
[Crossref] [PubMed]

Buzniak, J.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Celli, J. P.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Cha, J.

Chen, X.

Cheon, G. W.

Choi, W.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Chu, K. K.

Chung, E.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Chung, K.

K. Chung and K. Deisseroth, “CLARITY for mapping the nervous system,” Nat. Methods 10(6), 508–513 (2013).
[Crossref] [PubMed]

Cimek, J.

J. Cimek, R. Stępień, G. Stępniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Civillico, E. F.

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Cocker, E. D.

Contag, C. H.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Contreras, D.

Crose, M.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Deisseroth, K.

K. Chung and K. Deisseroth, “CLARITY for mapping the nervous system,” Nat. Methods 10(6), 508–513 (2013).
[Crossref] [PubMed]

Delaney, P.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Delaney, P. M.

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of Normal Human Skin In Vivo as Observed Using Fluorescent Fiber-Optic Confocal Microscopic Imaging,” J. Invest. Dermatol. 121(4), 706–712 (2003).
[Crossref] [PubMed]

G. D. Papworth, P. M. Delaney, L. J. Bussau, L. T. Vo, and R. G. King, “In vivo fibre optic confocal imaging of microvasculature and nerves in the rat vas deferens and colon,” J. Anat. 192(Pt 4), 489–495 (1998).
[Crossref] [PubMed]

P. M. Delaney, M. R. Harris, and R. G. King, “Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging,” Appl. Opt. 33(4), 573–577 (1994).
[Crossref] [PubMed]

Denk, W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Dholakia, K.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Dlugan, A. L. P.

Dobbs, J.

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

Dombeck, D. A.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

Enders, M.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Engelbrecht, C. J.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

Fedotov, A. B.

M. S. Pochechuev, I. V. Fedotov, O. I. Ivashkina, M. A. Roshchina, D. V. Meshchankin, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics 11(4), e201700106 (2018).
[Crossref] [PubMed]

Fedotov, I. V.

M. S. Pochechuev, I. V. Fedotov, O. I. Ivashkina, M. A. Roshchina, D. V. Meshchankin, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics 11(4), e201700106 (2018).
[Crossref] [PubMed]

Fee, M. S.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Filipkowski, A.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Fink, M.

Fisher, J. A. N.

Flusberg, B. A.

Ford, T.

Franczyk, M.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Freeman, M.

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of Normal Human Skin In Vivo as Observed Using Fluorescent Fiber-Optic Confocal Microscopic Imaging,” J. Invest. Dermatol. 121(4), 706–712 (2003).
[Crossref] [PubMed]

Friedland, S.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Fukuyama, H.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref] [PubMed]

Gai, X.

Galle, P. R.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Gamm, U. A.

Gigan, S.

Gillenwater, A.

Gillenwater, A. M.

D. Shin, M. C. Pierce, A. M. Gillenwater, M. D. Williams, and R. R. Richards-Kortum, “A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging,” PLoS One 5(6), e11218 (2010).
[Crossref] [PubMed]

Gmitro, A. F.

Gnaendiger, J.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Gu, M.

Guo, W.

Han, J.-H.

Harasny, K.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Harris, M. R.

Hasan, T.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Helmchen, F.

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
[Crossref] [PubMed]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Hong, J.

Hoy, C. L.

Hudson, M. C.

Ishihara, Y.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref] [PubMed]

Ivashkina, O. I.

M. S. Pochechuev, I. V. Fedotov, O. I. Ivashkina, M. A. Roshchina, D. V. Meshchankin, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics 11(4), e201700106 (2018).
[Crossref] [PubMed]

Jain, S.

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

Janell, D.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Jelly, E. T.

Johnston, R. S.

Jung, J. C.

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[Crossref] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Juškattis, R.

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997).
[Crossref]

Kang, J. U.

Kanick, S. C.

Kasischke, K. A.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

Katz, O.

Katzir, A.

E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).
[Crossref]

Kayembe, M. K.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

Kiesslich, R.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Kim, D.

Kim, J.

Kim, M.

Kim, S.

King, R. G.

G. D. Papworth, P. M. Delaney, L. J. Bussau, L. T. Vo, and R. G. King, “In vivo fibre optic confocal imaging of microvasculature and nerves in the rat vas deferens and colon,” J. Anat. 192(Pt 4), 489–495 (1998).
[Crossref] [PubMed]

P. M. Delaney, M. R. Harris, and R. G. King, “Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging,” Appl. Opt. 33(4), 573–577 (1994).
[Crossref] [PubMed]

Kino, G. S.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Klimczak, M.

J. Cimek, R. Stępień, G. Stępniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Kociszewski, L.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Kolenderska, S. M.

Kujawa, I.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Kyrish, M.

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

Lane, P. M.

Lee, C.-Y.

Lee, D.

Lee, J.

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Levene, M. J.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

Liu, J. T.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Loewke, K.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Luther-Davies, B.

Macaulay, C. E.

Mai, Z.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Mandella, M. J.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Matsuura, Y.

McLaren, W.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Mehta, A. D.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Mertz, J.

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5(1), 5581 (2014).
[Crossref] [PubMed]

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16(11), 8016–8025 (2008).
[Crossref] [PubMed]

Meshchankin, D. V.

M. S. Pochechuev, I. V. Fedotov, O. I. Ivashkina, M. A. Roshchina, D. V. Meshchankin, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics 11(4), e201700106 (2018).
[Crossref] [PubMed]

Messerschmidt, B.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Molloy, R. P.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

Moon, J.

Moser, C.

Muldoon, T. J.

Murukeshan, V. M.

A. Shinde, S. M. Perinchery, and V. M. Murukeshan, “A targeted illumination optical fiber probe for high resolution fluorescence imaging and optical switching,” Sci. Rep. 7(1), 45654 (2017).
[Crossref] [PubMed]

Nafe, B.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Naito, K.

Neurath, M. F.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Nida, D. L.

Oh, G.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Ota, T.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref] [PubMed]

Ouzounov, D. G.

Papadopoulos, I. N.

Papworth, G. D.

G. D. Papworth, P. M. Delaney, L. J. Bussau, L. T. Vo, and R. G. King, “In vivo fibre optic confocal imaging of microvasculature and nerves in the rat vas deferens and colon,” J. Anat. 192(Pt 4), 489–495 (1998).
[Crossref] [PubMed]

Perinchery, S. M.

A. Shinde, S. M. Perinchery, and V. M. Murukeshan, “A targeted illumination optical fiber probe for high resolution fluorescence imaging and optical switching,” Sci. Rep. 7(1), 45654 (2017).
[Crossref] [PubMed]

Pierce, M. C.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

D. Shin, M. C. Pierce, A. M. Gillenwater, M. D. Williams, and R. R. Richards-Kortum, “A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging,” PLoS One 5(6), e11218 (2010).
[Crossref] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[Crossref] [PubMed]

H.-J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007).
[Crossref] [PubMed]

Piyawattanametha, W.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Pochechuev, M. S.

M. S. Pochechuev, I. V. Fedotov, O. I. Ivashkina, M. A. Roshchina, D. V. Meshchankin, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics 11(4), e201700106 (2018).
[Crossref] [PubMed]

Polglase, A.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Psaltis, D.

Pysz, D.

J. Cimek, R. Stępień, G. Stępniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Qi, S.

Qiu, Z.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Quinn, M. K.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

Ra, H.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

H.-J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007).
[Crossref] [PubMed]

Ramogola-Masire, D.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

Rave, E.

E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).
[Crossref]

Reichenbach, K. L.

Richards-Kortum, R.

Richards-Kortum, R. R.

D. Shin, M. C. Pierce, A. M. Gillenwater, M. D. Williams, and R. R. Richards-Kortum, “A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging,” PLoS One 5(6), e11218 (2010).
[Crossref] [PubMed]

Rivera, D. R.

Rizvi, I.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Robinson, D. J.

Roshchina, M. A.

M. S. Pochechuev, I. V. Fedotov, O. I. Ivashkina, M. A. Roshchina, D. V. Meshchankin, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics 11(4), e201700106 (2018).
[Crossref] [PubMed]

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Schnitzer, M. J.

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[Crossref] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Seibel, E. J.

Shemesh, D.

E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).
[Crossref]

Shin, D.

D. Shin, M. C. Pierce, A. M. Gillenwater, M. D. Williams, and R. R. Richards-Kortum, “A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging,” PLoS One 5(6), e11218 (2010).
[Crossref] [PubMed]

Shin, H. J.

Shin, H.-J.

Shinde, A.

A. Shinde, S. M. Perinchery, and V. M. Murukeshan, “A targeted illumination optical fiber probe for high resolution fluorescence imaging and optical switching,” Sci. Rep. 7(1), 45654 (2017).
[Crossref] [PubMed]

Sidorov-Biryukov, D. A.

M. S. Pochechuev, I. V. Fedotov, O. I. Ivashkina, M. A. Roshchina, D. V. Meshchankin, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics 11(4), e201700106 (2018).
[Crossref] [PubMed]

Siwicki, B.

J. Cimek, R. Stępień, G. Stępniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Solgaard, O.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

H.-J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007).
[Crossref] [PubMed]

Spring, B. Q.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Stafiej, P.

J. Cimek, R. Stępień, G. Stępniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Steelman, Z. A.

Stepien, R.

J. Cimek, R. Stępień, G. Stępniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Stepniewski, G.

J. Cimek, R. Stępień, G. Stępniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Stepnoski, R.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Sterenborg, H. J.

Swindle, L. D.

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of Normal Human Skin In Vivo as Observed Using Fluorescent Fiber-Optic Confocal Microscopic Imaging,” J. Invest. Dermatol. 121(4), 706–712 (2003).
[Crossref] [PubMed]

Takamatsu, T.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref] [PubMed]

Tanaka, H.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref] [PubMed]

Tang, D.

Tank, D. W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Tao, G.

Thomas, S.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Thomas, S. G.

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of Normal Human Skin In Vivo as Observed Using Fluorescent Fiber-Optic Confocal Microscopic Imaging,” J. Invest. Dermatol. 121(4), 706–712 (2003).
[Crossref] [PubMed]

Tkaczyk, T. S.

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

van Leeuwen-van Zaane, F.

Ventalon, C.

Vieth, M.

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

Vo, L. T.

G. D. Papworth, P. M. Delaney, L. J. Bussau, L. T. Vo, and R. G. King, “In vivo fibre optic confocal imaging of microvasculature and nerves in the rat vas deferens and colon,” J. Anat. 192(Pt 4), 489–495 (1998).
[Crossref] [PubMed]

Wang, H.

Wang, R.

Wang, T. D.

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

Wang, X.

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

Watson, T. F.

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997).
[Crossref]

Wax, A.

Webb, W. W.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, W. W. Webb, and C. Xu, “Multifocal multiphoton endoscope,” Opt. Lett. 37(8), 1349–1351 (2012).
[Crossref] [PubMed]

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

Williams, M. D.

D. Shin, M. C. Pierce, A. M. Gillenwater, M. D. Williams, and R. R. Richards-Kortum, “A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging,” PLoS One 5(6), e11218 (2010).
[Crossref] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[Crossref] [PubMed]

Wilson, T.

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997).
[Crossref]

Xu, C.

Yang, A.

Yang, T. D.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yang, Z.

Yodh, A. G.

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yu, D.

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

Yu, Y.

Yun, S. H.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Zhai, C.

Zhang, B.

Zhang, N.

Zheltikov, A. M.

M. S. Pochechuev, I. V. Fedotov, O. I. Ivashkina, M. A. Roshchina, D. V. Meshchankin, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics 11(4), e201700106 (2018).
[Crossref] [PubMed]

Zhong, W.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Zuo, S.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).
[Crossref]

Biomed. Opt. Express (4)

Br. J. Cancer (1)

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[Crossref] [PubMed]

Bull. Pol. Acad. Sci. Tech. Sci. (1)

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Gastroenterology (1)

R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004).
[Crossref] [PubMed]

J. Anat. (1)

G. D. Papworth, P. M. Delaney, L. J. Bussau, L. T. Vo, and R. G. King, “In vivo fibre optic confocal imaging of microvasculature and nerves in the rat vas deferens and colon,” J. Anat. 192(Pt 4), 489–495 (1998).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012).
[Crossref] [PubMed]

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref] [PubMed]

M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, and T. S. Tkaczyk, “Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective,” J. Biomed. Opt. 18(9), 096003 (2013).
[Crossref] [PubMed]

J. Biophotonics (1)

M. S. Pochechuev, I. V. Fedotov, O. I. Ivashkina, M. A. Roshchina, D. V. Meshchankin, D. A. Sidorov-Biryukov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics 11(4), e201700106 (2018).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of Normal Human Skin In Vivo as Observed Using Fluorescent Fiber-Optic Confocal Microscopic Imaging,” J. Invest. Dermatol. 121(4), 706–712 (2003).
[Crossref] [PubMed]

J. Neurophysiol. (2)

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Nat. Commun. (2)

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5(1), 5581 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

K. Chung and K. Deisseroth, “CLARITY for mapping the nervous system,” Nat. Methods 10(6), 508–513 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Neuron (1)

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Opt. Eng. (1)

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Opt. Lett. (11)

P. M. Lane, A. L. P. Dlugan, R. Richards-Kortum, and C. E. Macaulay, “Fiber-optic confocal microscopy using a spatial light modulator,” Opt. Lett. 25(24), 1780–1782 (2000).
[Crossref] [PubMed]

D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28(17), 1552–1554 (2003).
[Crossref] [PubMed]

J. A. N. Fisher, E. F. Civillico, D. Contreras, and A. G. Yodh, “In vivo fluorescence microscopy of neuronal activity in three dimensions by use of voltage-sensitive dyes,” Opt. Lett. 29(1), 71–73 (2004).
[Crossref] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[Crossref] [PubMed]

D. R. Rivera, C. M. Brown, D. G. Ouzounov, W. W. Webb, and C. Xu, “Multifocal multiphoton endoscope,” Opt. Lett. 37(8), 1349–1351 (2012).
[Crossref] [PubMed]

A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
[Crossref] [PubMed]

C.-Y. Lee and J.-H. Han, “Elimination of honeycomb patterns in fiber bundle imaging by a superimposition method,” Opt. Lett. 38(12), 2023–2025 (2013).
[Crossref] [PubMed]

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

G. W. Cheon, J. Cha, and J. U. Kang, “Random transverse motion-induced spatial compounding for fiber bundle imaging,” Opt. Lett. 39(15), 4368–4371 (2014).
[Crossref] [PubMed]

S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan, “Scanning-free imaging through a single fiber by random spatio-spectral encoding,” Opt. Lett. 40(4), 534–537 (2015).
[Crossref] [PubMed]

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
[Crossref] [PubMed]

Opt. Mater. (1)

J. Cimek, R. Stępień, G. Stępniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Phys. Rev. Lett. (1)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

PLoS One (2)

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-Resolution Microendoscopy for the Detection of Cervical Neoplasia in Low-Resource Settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

D. Shin, M. C. Pierce, A. M. Gillenwater, M. D. Williams, and R. R. Richards-Kortum, “A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging,” PLoS One 5(6), e11218 (2010).
[Crossref] [PubMed]

Scanning (1)

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997).
[Crossref]

Sci. Rep. (1)

A. Shinde, S. M. Perinchery, and V. M. Murukeshan, “A targeted illumination optical fiber probe for high resolution fluorescence imaging and optical switching,” Sci. Rep. 7(1), 45654 (2017).
[Crossref] [PubMed]

Other (6)

M. C. T. Bahaa,and E. A. Saleh, Fundamentals of Photonics, 2nd ed. (John Wiley & Sons, New York, 2007).

T. Kobayashi, T. Katagiri, and Y. Matsuura, “Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging,” in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVII (SPIE, 2017), 100580X.

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, Cambridge, 2000).

J. B. Anders Bjarklev, Araceli Sanchez Bjarklev, Photonic Crystal Fibres, 1 ed. (Springer US, 2003).

R. Paschotta, Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008), p. 856.

J. Schaffer and H. Bauch, “Test preparation for microscopes,” U.S. Patent 20040180384 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of stack-and-draw process for optical FB fabrication: (a) Development of individual rods made of two types of thermally matched glasses, (b) assembly of perform, (c) drawing final fiber optic bundle.
Fig. 2
Fig. 2 SEM images of FB 1-7 with core sizes of (a) 1.1 μm, (b) 1.6 μm, (c) 10 μm, (d) 1.9 μm, (e) 2.4 μm, (f) 2.5 μm, and (g) 2.9 μm, respectively. Enlarged images inside the red boxes were taken with a 5000X magnification. Scale bars under the enlarged images represent 10 μm length.
Fig. 3
Fig. 3 Measured FWHMs of the beam as a function of distance from bundle tip. Insets show the 2D intensity profiles of the beam at given positions for the FB7. The square roots of the 2D data are shown in the insets for clarity. Scale bars on the 2D intensity profiles indicate 2 mm length.
Fig. 4
Fig. 4 Influence of NA on optical FB performance: a) Dependence of the collection efficiency, η, on fiber core diameter, d, and NA, b) dependence of the mode overlap integral on the distance between centers of the cores for pair of cores with the diameter of 2 µm each and various NA values.
Fig. 5
Fig. 5 Schematics of the setup used for fluorescence imaging experiments using fiber bundles.
Fig. 6
Fig. 6 Brightfield images of the micro-ruler sample (a-c), brightfield images of the Convallaria majalis sample (d-f), and fluorescence images of the fluorescein stained paper tissue sample (g-i) as-recorded by FBs 1-3, respectively. Scale bar: 100 μm. Dashed boxes indicate the regions used for σ/µ calculations.
Fig. 7
Fig. 7 Brightfield images of the micro-ruler sample (a-d), brightfield images of the Convallaria majalis sample (e-h), and fluorescence images of the fluorescein stained paper tissue sample (l-l) as-recorded by FBs 4-7, respectively. Scale bar: 100 μm. Dashed boxes indicate the regions used for σ/µ calculations.
Fig. 8
Fig. 8 As-recorded fluorescent images of the cirrhotic liver tissue sample using FB 1 (a), FB 2 (b), FB 3 (c), FB 4 (d), FB 5 (e), FB 6 (f), and FB 7 (g). Tissue was clarified using CLARITY method and stained with fluorescein (FITC). Excitation wavelength is 488 nm. Scale bar: 100 μm. Dashed boxes indicate the regions used for σ/µ calculations.

Tables (3)

Tables Icon

Table 1 Optical and thermo-physical parameters of the glasses: nd – refraction index (d-line), α – linear thermal expansion (20 ÷ 450°C range), DTM – dilatometric softening point, Tg – transition temperature, Tz – ovalization point, Tk – sphere point, Tpk – hemisphere point.

Tables Icon

Table 2 Specifications of developed imaging FBs.

Tables Icon

Table 3 σ/µ values calculated for the regions indicated with dashed boxes in different images in Figs. 6, 7, and 8.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η= N A 2 2 n 0 2 π d 2 4 A s ,
A s = π d 2 4 ( 1+ 2NAz d n 0 ) 2 .
f= | E 1 * E 2 dA | 2 | E 1 | 2 dA | E 2 | 2 dA ,

Metrics